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Is MG53 a potential therapeutic
target for cancer?
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1School of Sports Science, Beijing Sport University, Beijing, China, 2National Institute of Sports
Medicine, Beijing, China
Cancer treatment still encounters challenges, such as side effects and drug

resistance. The tripartite-motif (TRIM) protein family is widely involved in

regulation of the occurrence, development, and drug resistance of tumors.

MG53, a member of the TRIM protein family, shows strong potential in cancer

therapy, primarily due to its E3 ubiquitin ligase properties. The classic membrane

repair function and anti-inflammatory capacity of MG53 may also be beneficial

for cancer prevention and treatment. However, MG53 appears to be a key

regulatory factor in impaired glucose metabolism and a negative regulatory

mechanism in muscle regeneration that may have a negative effect on cancer

treatment. Developing MG53mutants that balance the pros and cons may be the

key to solving the problem. This article aims to summarize the role and

mechanism of MG53 in the occurrence, progression, and invasion of cancer,

focusing on the potential impact of the biological function of MG53 on

cancer therapy.
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1 Introduction

The tripartite-motif (TRIM) family is characterized by a really interesting new gene

(RING) finger domain, one or two B-box domains, and a coiled coil domain (1). Tripartite

domains are highly conserved among TRIM proteins and hence perform similar functions

in cellular processes (2). The vast majority of TRIM proteins contain RING finger domains

in their N-terminal regions and seem to participate mostly in ubiquitination (3). B-box

domains may exist solely in TRIM proteins and may mediate protein–protein interactions

(1, 4). The coiled coil domain has been proven to mediate homo-oligomeric and hetero-

oligomeric interactions given that self-association via this domain is believed to play a

critical role in catalytic activity of TRIM proteins (5). The variation in the C-terminal

domain contributes to the diverse functions of TRIM proteins.

About 80 TRIM protein genes have been identified in humans (6). Many diseases have

been shown to be associated with TRIM proteins. These diseases include metabolic and

neurodegenerative diseases, viral infections, and cancers (7–10). The role of TRIM proteins

in cancer has received more attention. As a result of structural differences, TRIM proteins

act as oncogenes and tumor suppressors in different cancers (11). However, the
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relationship between some members of TRIM proteins and cancer

remains unexplored (10).

TRIM72, also known as Mitsugumin 53 (MG53), is secreted by

muscle tissues and is a TRIM family protein derived from an

immunoproteomics pool (12). The C-terminal of MG53 contains

PRY and SPRY domains, which are the most common domains in

TRIM proteins (4, 13). These domains can recognize specific

partner proteins, thus acting as protein-interacting modules (14).

As a typical E3 ubiquitin ligase, MG53 was initially found to

participate in damage repair in skeletal muscle cells, and its key

feature of membrane repair in a variety of organ injuries was later

confirmed (12, 13). MG53 overexpression can inhibit systemic

insulin response and subsequently cause metabolic issues (15).

However, other researchers take a completely opposing position

(16). Evidence suggesting that MG53 may perform an anticancer

role in cancers, such as hepatocellular carcinoma, colorectal

carcinoma, tongue cancer, and nonsmall cell lung cancer

(NSCLC), has recently emerged (17–20). In this review, we

summarize the roles and mechanisms of MG53 in a variety of

cancers and discuss the possible contribution of the diverse

biological functions of MG53 in cancer.
2 Beneficial effects of MG53 on
cancer therapy

2.1 MG53 in colorectal carcinoma

Colorectal cancer is the second most common cause of cancer

deaths worldwide and is expected to cause 1.2 million deaths by

2030 (21, 22). Considering that most patients with colorectal cancer

progress slowly over many years, colorectal cancer is usually curable

if diagnosed at an early stage (23). Screening for colorectal cancer

requires the development of sensitive biomarkers in peripheral

blood. Many members of the TRIM protein family have been

reported to act as oncogenic and tumor-suppressive factors in

gastrointestinal cancers via different signaling pathways (24). In

addition, TRIM47 may be an effective diagnostic marker for

predicting colorectal cancer (25).

The gene and protein levels of MG53 were considerably lower in

colon cancer tissues than in healthy colon tissues, and the same

results were found in the serum of patients with colon cancer (26). In

colon cancer and normal colon tissues, MG53 may be expressed and

secreted by stromal cells instead of normal colon or colon cancer cells,

and serum MG53 levels are negatively correlated with colon cancer

stage and metastasis, suggesting that the low MG53 levels in the

serum of patients with colon cancer may be due to local tissue lesions

(26). Low levels of MG53 in focal tissues have also been suggested to

account for the poor prognosis of stage II colon carcinoma (27).

Under colorectal carcinogen induction, MG53 knockoutmice present

more severe tumor progression than wild-type mice, whereas mice

with MG53 overexpression have relatively good colorectal structure

and function (19). MG53 has also been shown to inhibit the

proliferation of colorectal cancer cells in an in vitro study. And this

study found that MG53, as an E3 ubiquitin ligase capable of targeting
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cyclin D1, induces its ubiquitination-dependent degradation to

inhibit the proliferation of gastrointestinal cancer cells by arresting

the cell cycle at the G1 phase (28). In addition, MG53 acts differently

on different anticancer drugs. MG53 and pabocinib inhibit the

proliferation of colon cancer cells synergistically, and MG53 could

partially ameliorate drug resistance (19). The safety of recombinant

human MG53 (rhMG53) has been validated in a mouse model of

colorectal cancer (28). Although rhMG53 do not affect the

doxorubicin sensitivity of resistant colorectal cancer cells (SW620/

AD300), it inhibits the proliferation of colorectal cancer cells.

Moreover, in mouse tumor xenograft models of colorectal

adenocarcinoma with multidrug resistance, the combination of

doxorubicin and rhMG53 appeared to be more effective than

doxorubicin or rhMG53 alone (28).
2.2 MG53 in hepatocellular carcinoma

Although vaccination and antiviral therapy have reduced the

incidence of hepatocellular carcinoma, the incidence and mortality

rates of this malignancy continue to increase in many regions of the

world (29). In hepatocellular carcinoma, the expression of

numerous TRIM proteins tends to be altered and has been shown

to be correlated with diagnosis, treatment, and prognosis (30).

TRIM proteins appear to be involved in the survival, growth,

aerobic glycolysis, immune infiltration, and invasion of

hepatocellular carcinoma cells (31–34).

The mRNA expression of MG53 was detected in human

hepatocellular carcinoma and normal human hepatocyte cell

lines. In patients with hepatocellular carcinoma, the high

expression of MG53 may be associated with poor overall survival

(35). However, one study has shown that the gene and protein

expression levels of MG53 have been suggested to be drastically

lower in hepatocellular carcinoma tissue than in matched

noncancerous liver tissue (17). MG53 regulates the ubiquitination

and degradation of RAC1, a small GTPase with oncogenic function,

this effect, in turn, inhibits the malignant progression of

hepatocellular carcinoma and improves the resistance of

hepatocellular carcinoma to sorafenib treatment by blocking the

RAC1/MAPK signaling pathway (17).
2.3 MG53 in NSCLC

Although the application of precision medicine in NSCLC

treatment has advanced considerably over the past decade, the 5-

year survival rate of patients with metastatic NSCLC remains less than

5% due to multiple drug resistance mechanisms (36, 37). Some TRIM

proteins may contribute to NSCLC or resistance to targeted drugs

(38–44), whereas others have completely opposite functions (45–47).

MG53 is downregulated in metastatic tumors from patients

with NSCLC relative to in nonmetastatic tumors, and MG53

knockout promotes the growth and metastasis of lung tumors in

mice (48, 49). G3BP2, a protein associated with the formation of

multiple tumors, was upregulated in the cytosol of tumor cells from

patients with NSCLC relative to in nontumor cells. Circulating
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levels of MG53 appear to influence the proliferation and migration

of NSCLC cells directly via G3BP2. Instead of performing classical

ubiquitination-dependent degradation functions, the amino

terminus of MG53 physically interacts with G3BP2 and enhances

its nuclear translocation, which may be a key mechanism by which

MG53 inhibits the G3BP2-mediated formation of lung cancer

tumors and stress granules (20, 50). Furthermore, an in vitro

study showed that rhMG53 inhibited the formation of stress

granules and potentiated the cytotoxic effect of cisplatin on

human NSCLC cells (20).
2.4 MG53 in other cancers

MG53 appears to have an ameliorative effect on multiple types

of cancer. However, many TRIM proteins have inconsistent effects

on different cancers. A three-dimensional growth system study

reported that MG53 dramatically suppressed the proliferation,

invasion, and colony formation of tongue cancer cells (18).

Knocking down MG53 in tongue cancer cells resulted in a

remarkable increase in the phosphorylation of AKTSer308 and

AKTThr473. Animal studies showed that in mice, knocking out

MG53 also accelerated the progression of tongue cancer (18). O6-

methylguanine DNA methyl transferase (MGMT) is an important

target in cancer therapy because it blocks the beneficial effects of

chemotherapy on tumor cells (51). The RING structural domain of

MG53 interacts with the N-terminal region of MGMT and regulates

the ubiquitination-dependent degradation of MGMT. Human uveal

melanoma cells have higher MGMT levels and lower MG53 levels

than normal human pigment epithelium cells . MG53

overexpression in uveal melanoma cells contributes to improved

chemoresistance to dacarbazine treatment (52). MG53 is
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downregulated in the tumor tissue of patients with breast cancer

relative to in paired adjacent nontumor tissue and is also

downregulated in many breast cancer cell lines relative to in

normal human mammary cell lines. In vivo and in vitro, MG53

inhibits breast cancer progression likely because it can inhibit the

activation of the PI3K/Akt/mTOR pathway and reduce lactate levels

through protein phosphatase 3 catalytic subunit a (53). One study

analyzed ubiquitin-related genes in The Cancer Genome Atlas

cohort and found that MG53 was correlated strongly with the

grade, stage, and T stage of clear cell renal cell carcinoma. However,

the expression of MG53 in patients with clear cell renal cell

carcinoma remains to be confirmed (54).

In accordance with the current evidence, MG53 appears to be

beneficial for delaying the progression of various cancers and

improving resistance to some anticancer drugs in in vitro and

animal models (Figure 1). Available studies suggest that the

antitumor effect of MG53 may be mainly derived from its role as

an E3 ubiquitin ligase. However, the current evidence for specific

cancer types remains insufficient and lacks mechanism research.

Further safety verification is required for the application of rhMG53.
3 Other biological functions of MG53
may contribute to cancer therapy

3.1 Potential role of MG53 as a plasma
membrane repair protein in cancer
treatment

During cancer progression and treatment, many organs suffer

varying degrees of tissue damage from the tumor, cancer
FIGURE 1

Beneficial effects of MG53 on cancer. MG53 can inhibits the progression of a broad range of cancers and helps improve the therapeutic sensitivity of
numerous anticancer drugs. The antitumor capacity of MG53 may be mainly attributed to its E3 ubiquitin ligase properties.
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complications, and treatment side effects, all of which are related to

plasma membrane damage and may accelerate cancer progression

(55–57). MG53 was initially well known for its function in the

repair of muscle cell membranes. Evidence showing that MG53 can

participate in the repair of various cell membranes and promote

tissue regeneration has emerged with the deepening of research (13,

58). MG53 secreted by skeletal muscles is transported in the

circulatory system in the form of vesicles and participates in

muscle cell membrane repair. The failure of MG53-mediated

membrane damage repair may cause certain skeletal muscle

diseases (12, 59–61). In addition, the pathological processes of

myocardial injury and cancer are intertwined, and heart failure

induced by anticancer therapy has become a key focus in cardiac

oncology research (62, 63). Evidence also suggests that cancer and

ischemia–reperfusion injury share common pathways also

exists (64).

3.1.1 MG53 in kidney injury
The occurrence of acute and chronic kidney injury is strongly

associated with the development of kidney cancer, and early

intervention for kidney injury is an effective means of kidney

cancer prevention (65). Moreover, the presence of acute kidney

injury is fairly prevalent in patients with cancer. The management

strategies for acute kidney injury differ in accordance with

predisposing factors. For example, immunotherapy-induced acute

kidney injury is influenced by tumor type and treatment modality

(66, 67). When renal proximal tubular epithelium cells experience

acute injury, such as mechanical or chemical damage, MG53 rapidly

translocates to the injured site to form a repair patch. By contrast, in

injured renal proximal tubular epithelium cells with MG53

knockout, the defect in membrane repair function leads to rapid

death of cells. MG53 knockout mice exhibit tubulointerstitial

defects and show more severe renal injury than wild-type mice

during ischemia–reperfusion. In animals, the preadministration of

rhMG53 alleviates cisplatin or iodine contrast agent-induced acute

kidney injury (68, 69). In chronic kidney disease, MG53 provides

benefits by controlling inflammation and promoting mitochondrial

autophagy (70, 71).

3.1.2 MG53 in lung injury
Chronic lung injury, such as chronic obstructive pulmonary

disease, is strongly associated with the development of lung cancer,

and this mechanistic overlap has attracted increasing attention (72,

73). Chemotherapy, surgery, medication treatment for lung cancer,

and even treatment for other types of cancer can lead to lung injury

(74–77). Chronic moderate liver injury tends to induce hepatic cell

carcinogenesis rather than hepatocellular senescence, which can

inhibit carcinogenesis (78). In several models of lung injury, MG53

shows reparative effects on pulmonary epithelial cells. Animals

lacking MG53 exhibit increased susceptibility to injury induced

by various factors, and rhMG53 can protect lung tissue from lung

injury. MG53 may execute its membrane repair function by

coregulating the endocytosis of alveolar epithelial cells with

caveolin 1 (79–85).
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3.1.3 MG53 in liver injury
The liver is susceptible to the effects of drugs, such as

conventional chemotherapy drugs, small-molecule-targeting

drugs, including multikinase inhibitors, or immune checkpoint

inhibitors, all of which can induce varying degrees of liver injury

(86–88). With the widespread application of immune checkpoint

inhibitors in liver tumor therapy, the relationship between

checkpoint inhibitors and liver safety has received increased

attention (89). Although hepatocytes do not express MG53

mRNA, circulating MG53 leads to the ubiquitination-dependent

degradation of RIPK3, which inhibits the phosphorylation and

membrane translocation of MLKL and thus alleviates

acetaminophen-induced hepatocyte injury (90, 91). MG53 can

also ameliorate oxidative stress and hepatocyte death induced by

hepatic ischemia–reperfusion through interaction with

dysferlin (92).

Overall, the plasma membrane repair function of MG53 has

considerable potential for application in cancer prevention and

treatment. Current research focuses on the association between

MG53 and the progression of tumor tissues, whereas only a few

studies have investigated the contribution of plasma membrane

repair by MG53 to cancer treatment. However, the fact that

excessive membrane repair contributes to cancer cell invasion is

also important to consider when using rhMG53 (93). For example,

the annexin family, which participates in membrane repair together

with MG53, is overexpressed in invasive cancer cells and promotes

the plasma membrane repair of cancer cells. Inhibiting Annexin-

mediated repair is beneficial for inducing cancer cell death (94–98).
3.2 Potential role of MG53 as an anti-
inflammatory factor in cancer treatment

Inflammatory response is an important defense mechanism of

the body, but it can also promote the formation of tumor

microenvironment and tumor promotion, especially chronic

inflammation (99). Anti-inflammatory therapy targeting

inflammation-related factors such as nuclear factor-kB (NF-kB)
plays an important role in cancer control (100). TRIM proteins are

widely involved in regulating inflammatory responses and MG53

appears to have anti-inflammatory effects in multiple tissues (101).

MG53 interacts with the p65 subunit of NF-kB and thereby

inhibits the nuclear translocation of NF-kB, which in turn alleviates

inflammatory responses in kidney, nervous system and airway (70,

102, 103). After infection of macrophages or mice with virus, MG53

attenuates inflammatory response by decreasing type I interferon

levels (104). In mice with Duchenne muscular dystrophy, MG53

appears to enhance mitochondrial autophagy, thereby reducing

nucleotide oligomerization domain-like receptor protein 3

(NLRP3) inflammasomes and suppressing chronic inflammation

in skeletal muscles (105). Similarly, it was emphasised that MG53

may improve neuroinflammation by decreasing NLRP3

inflammasomes in a study using human umbilical cord

mesenchymal stem cells and mice (106).
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MG53 can ameliorate inflammation inmany disease models, but its

role in carcinogenic inflammation, inflammation caused by cancer and

inflammation triggered by cancer treatment remains to be investigated.

Furthermore, other biological functions ofMG53may be beneficial

for cancer therapy. For example, angiogenesis is an important target for

cancer treatment, and MG53 inhibits angiogenesis in vivo and in vitro

by decreasing focal adhesion kinase phosphorylation and blocking the

Src/Akt/ERK1/2 signaling pathway (107, 108). Peroxisome

proliferator-activated receptor-a (PPARa) agonists have a role in

anti-tumor therapy and MG53 attenuates inflammatory responses in

cardiomyocytes by upregulating PPARa expression (109, 110).

However, there is too little relevant evidence to demonstrate that

these functions of MG53 are beneficial for cancer therapy.
4 Potential adverse effects of MG53
on cancer treatment

4.1 MG53 overexpression may disrupt
glucose metabolism signals

Insulin resistance is a key factor in the occurrence and

development of cancer, and a substantial proportion of patients with

cancer have insulin resistance (111–114). Impaired glucose tolerance is

also strongly associated with long-term cancer risk and is an important

risk factor for cancer-related death (115–119). During cancer

treatment, the blood glucose and insulin levels of patients must be

monitored to learn about the insulin resistance induced by therapeutic

measures and thus adjust the treatment protocol promptly (120).

The relationship between MG53 and insulin resistance has long

been controversial. Some studies have suggested that MG53 induces

insulin resistance through multiple pathways, including targeting

insulin receptor substrate 1 (IRS-1), insulin receptors (IRs), and

AMP-activated protein kinase for ubiquitin-dependent degradation,

promoting the expression of peroxisome proliferator-activated

receptor-a and its target genes to facilitate myocardial lipid uptake

and thereby leading to lipid accumulation and toxicity, and binding to

the extracellular structural domains of IRs to inhibit receptors

allosterically (15, 121–124). In addition, the direct application of

rhMG53 may exacerbate insulin resistance, and the protective effect

of MG53 on myocardial cells may be counteracted by its adverse

metabolism. Two mutants of rhMG53, rhMG53-C14A and rhMG53-

S255A, can eliminate adverse effects on metabolism while retaining the

membrane repair function of rhMG53 (121, 125–128).

However, MG53 expression is inconsistent in various models of

metabolic disorders, and neither the ablation nor overexpression of

MG53 in wild-type and db/db mice has been noted to alter insulin

signaling. Additionally, in rats, the repeated intravenous

administration of rhMG53 does not seem to affect glucose

metabolism (16, 129–133). Indeed, the lack of IRS-1 does not

immediately give rise to diabetes because strong compensatory

mechanisms exist between different IR subtypes (134, 135).

The aforementioned controversy may be attributed to the

overlooked role of MG53 in pancreatic b-cells. In the absence of

global insulin resistance, the IRs of pancreatic b-cells can inhibit high
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glucose-induced insulin secretion and their knockout can promote

insulin secretion and improve glucose tolerance. However, this

regulatory function of the IRs to b-cells does not occur in the

presence of global insulin resistance (136). High glucose and insulin

levels can promote the secretion of MG53 in striated muscle, and

MG53 can induce the ubiquitination-dependent degradation and

inactivation of IRs (15, 121). Under the assumption that MG53 can

affect the function of pancreatic b-cells through IRs, MG53

overexpression would have a complicated effect on glucose

metabolism in healthy and insulin-resistant humans (Figure 2). A

cohort study involving 283 subjects supports our hypothesis. This study

found that although serum MG53 levels appeared to be unrelated to

insulin resistance, subjects with impaired glucose metabolism had

remarkably higher circulating levels of MG53 than healthy subjects.

Furthermore, circulating levels of MG53 were found to be an

independent risk factor for the development of type 2 diabetes rather

than a simple disease marker, and elevated circulating levels of MG53

represent the diminished function of b-cells (137).
The above evidence suggests that MG53 has important

implications for glucose metabolic disorders although the

relationship between MG53 and insulin resistance is controversial.

However, current research remains insufficient to elucidate its

underlying mechanisms. Additional robust evidence is needed to

explain the mechanism underlying the involvement of MG53 in

glucose metabolism and validate the safety of rhMG53 in patients

with metabolic disorders and cancer.
4.2 MG53 inhibits myogenesis and
promotes myocardial fibrosis

The potential adverse effects of MG53 on cancer cachexia must

also be considered when applying rhMG53 in cancer therapy.

Cancer cachexia, a common syndrome among patients with

cancer, is characterized primarily by the loss of muscle tissue and

inadequately relieved by nutritional means (138, 139). Changes in

factors related to protein metabolism during cancer progression or

treatment led to an imbalance between protein synthesis and

degradation, resulting in muscle tissue reduction (140, 141).

Reduced muscle mass in cancer cachexia is partly attributed to

suppression of the anabolic signaling pathway induced by insulin-

like growth factor1 (140). Cardiac atrophy and fibrosis in cancer

cachexia are associated with the activated transforming growth

factor-b (TGF-b)-mediated SMAD2/3 catabolic signaling pathway

(142–145). MG53 inhibits the IGF-induced IRS-1/PI (3)K/Akt

pathway, which is the best-characterized mechanism in cardiac

and skeletal muscle myogenesis, through the ubiquitin-dependent

degradation of IRS-1 (125, 139, 146, 147). Caveolin-1 plays an

antifibrotic role in multiple organs and reduces cardiac fibrosis by

repressing the TGF-b/Smad2 pathway (148, 149). MG53 can inhibit

the expression of caveolin-1, thereby promoting TGF-b1/SMAD2-

induced myocardial fibrosis (150). The activation of signal

transducers and activator of transcription 3 (STAT3) has been

implicated in promoting the progression of many cancers as well as

exacerbating the loss of skeletal muscle tissue in cancer cachexia

(151, 152). MG53 overexpression promotes the phosphorylation of
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STAT3, which thereby induces cardiac fibrosis, and its effect on

cardiac lesions in cancer cachexia remains to be investigated (153).

Current research strongly suggests that MG53 is an important

cancer therapy target, despite its potentially negative effects. Future

researches should be focused on elucidating the mechanism of

MG53’s role in cancer, glucose metabolism, and myogenesis, and on

this basis, attempts should be made to retain the cancer therapeutic

ability of MG53 while removing its side effects. MG53 mutants that

retain membrane repair function without impairing glucose

metabolism have been developed by eliminating the E3 ubiquitin

ligase property of MG53 (128). In cancer therapy, however, the E3

ubiquitin ligase function of MG53 seems to play a crucial role. For

the ubiquitination-dependent degradation of different proteins,

MG53 may need to be activated at different sites, which could be

the key to solving this problem (123, 128).

In summary, discussing the possible negative effects of MG53 on

cancer treatment, especially in the context of varying degrees of insulin

resistance and across gender, is urgently needed. If adverse effects are

evident, developing safe mutants of MG53may be a win-win approach.
5 Conclusions

The TRIM protein family has always been an important therapeutic

target for cancer treatment, and in recent years, the role of MG53 in

cancer has gradually been recognized. We found that almost all the

evidence indicates that MG53 has a strong inhibitory effect on the

progression of cancer and may serve as a biomarker for cancer.

However, due to the lack of clinical research, the effect of MG53 on
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human cancer is actually undetermined. Furthermore, current research

appears to overlook the contribution of the membrane repair function

and anti-inflammatory properties of MG53 to cancer and does not

discuss the potential adverse effects of MG53 on cancer treatment.

Therefore, the safety of rhMG53 also needs further discussion. From the

perspective of the biological functions of MG53, MG53 may still be a

double-edged sword in cancer treatment and further research is needed

to comprehensively investigate its role in cancer.
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FIGURE 2

MG53 and glucose metabolism. Elevated glucose levels increase MG53 secretion from muscle tissue, and excess MG53 can lead to global insulin
resistance through the inhibition of IRs or other pathways. High glucose also stimulates insulin secretion from pancreatic b-cells, where IRs play an
inhibitory role. However, in the case of global insulin resistance, this inhibitory function of IRs fails. MG53 may have different effects on insulin
secretion and therefore glucose metabolism in different severities of insulin resistance.
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