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The first exome wide association
study in Tunisia: identification of
candidate loci and pathways
with biological relevance for
type 2 diabetes
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Introduction: Type 2 diabetes (T2D) is a multifactorial disease involving genetic

and environmental components. Several genome-wide association studies

(GWAS) have been conducted to decipher potential genetic aberrations

promoting the onset of this metabolic disorder. These GWAS have identified

over 400 associated variants, mostly in the intronic or intergenic regions.

Recently, a growing number of exome genotyping or exome sequencing

experiments have identified coding variants associated with T2D. Such studies

were mainly conducted in European populations, and the few candidate-gene

replication studies in North African populations revealed inconsistent results. In

the present study, we aimed to discover the coding genetic etiology of T2D in the

Tunisian population.

Methods: We carried out a pilot Exome Wide Association Study (EWAS) on 50

Tunisian individuals. Single variant analysis was performed as implemented in

PLINK on potentially deleterious coding variants. Subsequently, we applied gene-

based and gene-set analyses using MAGMA software to identify genes and

pathways associated with T2D. Potential signals were further replicated in an

existing large in-silico dataset, involving up to 177116 European individuals.

Results: Our analysis revealed, for the first time, promising associations between

T2D and variations in MYORG gene, implicated in the skeletal muscle fiber

development. Gene-set analysis identified two candidate pathways having

nominal associations with T2D in our study samples, namely the positive

regulation of neuron apoptotic process and the regulation of mucus secretion.

These two pathways are implicated in the neurogenerative alterations and in the
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inflammatory mechanisms of metabolic diseases. In addition, replication analysis

revealed nominal associations of the regulation of beta-cell development and

the regulation of peptidase activity pathways with T2D, both in the Tunisian

subjects and in the European in-silico dataset.

Conclusions: The present study is the first EWAS to investigate the impact of

single genetic variants and their aggregate effects on T2D risk in Africa. The

promising disease markers, revealed by our pilot EWAS, will promote the

understanding of the T2D pathophysiology in North Africa as well as the

discovery of potential treatments.
KEYWORDS
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1 Introduction

Type 2 diabetes (T2D) is a multifactorial disease involving

genetic and environmental components (1). A large number of

Genome-Wide Association Studies (GWAS) have been carried out

to investigate its genetic basis. These studies, performed mostly in

Europeans, identified more than 240 susceptibility loci comprising

over 400 association signals with T2D (2–4). Despite these findings,

the understanding of the biological mechanisms of this disease is

still limited. In fact, GWAS-derived SNPs always have small effects

on complex traits as they can be in high linkage disequilibrium (LD)

with the real causal variants. In addition, most of them are located

within intronic and intergenic regions, which makes the

interpretation of their roles very difficult (5).

In order to overcome these problems, advances in genome

sequencing have enabled the investigation of coding variants,

providing further functional insights of disease mechanisms. In

this context, recent exome genotyping chips and whole exome

sequencing (WES) based studies have identified coding variants

associated with T2D (6–13).

Many studies have reported differences in LD structure, minor

allele frequencies (MAF), as well as effect sizes of several T2D

susceptibility variants between different ethnicities (14). Therefore,

conducting association studies in underrepresented populations is

crucial to uncover novel insights about genetic diseases (15). For

instance, Barbitoff et al. identified five susceptibility loci for T2D in

the Russian population upon analysis of exome sequencing data of

89 individuals (49 patients with T2D and 40 controls) (6).

T2D is a public health problem in Tunisia, with a prevalence

estimation of 23% according to the last national epidemiological

study (16). This prevalence is predicted to reach 26.6% by 2027 (17).

Hence, urgent measures are needed to better understand population

specific risk factors of T2D and to alleviate its burden.

Here, we conducted the first pilot Exome Wide Association

study (EWAS) on T2D in the Tunisian population. Our aims were:
02
1) to identify novel genetic loci associated to T2D in Tunisian

subjects; 2) to study the aggregate effects of variants and genes on

the predisposition to T2D; 3) to replicate these analyses in a large

European in-silico dataset.
2 Materials and methods

2.1 Study population

This study was carried out in the frame of the ACIP 2017_45

project. The Institutional Review Board at Institut Pasteur of Tunis

approved the study (reference number: 2018/08/I/LR11IPT05/V2).

It was conducted in accordance with the declaration of Helsinki.

A total of 50 subjects (33 cases with T2D and 17 controls), aged

between 35 and 65 years old, were enrolled in the study. T2D was

diagnosed based on the American Diabetes Association criteria,

including fasting plasma glucose (FPG) ≥ 1,26 g/l and/or glycated

hemoglobin A1C (HBA1c) ≥ 6.5% (18). After obtaining written

informed consents, all patients were interviewed to obtain their

family history of diseases, as well as anthropometric (weight, height,

body mass index (BMI=weight (Kg)/height2(m2))) and clinical data.

Subsequently, blood samples were collected for biochemical and

molecular analyses.
2.2 Whole exome sequencing

DNA samples of all participants were extracted using the

Flexigen DNA kit (QIAGEN). The quantity and the quality of the

extracted DNA were measured using the DENOVIX DS-11

nanodrop spectrophotometer. Then, WES was performed at

Macrogen (South Korea). Briefly, exome capture was carried out

using Agilent SureSelect V6, and massive parallel sequencing was

then performed on an Illumina Novaseq 6000 system to generate

151-bp paired-end reads.
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2.3 Bioinformatic analysis

Quality control of the raw sequencing data was performed using

the FastQC program (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc) with default settings. Then, paired-end reads were

mapped to the hg38 human reference genome, and the resulting

alignments were prepared for variant calling according to the

GATK best practices. Subsequently, genetic variants were called

using GATK in a single merged VCF file, followed by an application

of variant score quality recalibration using the GATK VQSR

algorithm (19). Finally, we used Annovar, implemented in Varaft

tool, to annotate the variants for all the samples in the merged VCF

file (20, 21). The variants were assigned to genes and functionally

annotated with allele frequencies in 1000 Genomes project (https://

www.internationalgenome.org/) and GnomAD (https://

gnomad.broadinstitute.org/) (22, 23). In addition, we assessed the

effects of non-synonymous variants by 12 pathogenicity prediction

algorithms: SIFT (24), Polyphen HDIV (25), MutationTaster (26),

Mutation Assessor (27), PROVEAN (28), MetaSVM, MetaLR (29),

LRT (30), FATHMM (31), DANN (32), CADD (33) and

VEST3 (34).
2.4 Variant filtration and quality control

In the present study, we focused on autosomal coding variants,

including non-synonymous, stop-gain, stop-loss variants and

frameshift indels. The impact of the non-synonymous genetic

variants was assessed by an approach similar to that developed by

Pezzilli et al. (35). It comprises 12 pathogenicity-prediction software

packages, that were chosen because of their performance and high

classification records (36, 37). The scores generated by these packages

were binarized to 1 when the following conditions were met, and to 0

otherwise: SIFT score < 0.05, PolyPhen2 HDIV score > 0.453,

FATHMM score < 0, MetaLR score > 0.5, MetaSVM score > 0,

DANN score > 0.8, VEST3 score > 0.75, CADD score > 20,

PROVEAN score < -2.5, Mutation Assessor score > 1.9, LRT=D

and Mutation Taster=A or D. Finally, we summed the single 12

binary scores to get a total pathogenicity score for each non-

synonymous variant. The genetic variants with a total pathogenicity

score > 6 were filtered in for further investigation.

In addition, we excluded variants with call rate < 98% as well as

those that deviated from the Hardy-Weinberg equilibrium (P < 10−6).
2.5 Single variant analysis

We performed single-variant analysis (SVA), using a logistic

regression model with adjustment for age, as implemented in

PLINK 1.9 (https://www.cog-genomics.org/plink/1.9/) (38). To

do, we incorporated the ages of the 50 participants as a covariate

into the model. Statistical significance was set using Bonferroni

correction at 4 × 10-6 (0.05/12516 variants tested, after surviving the
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filtration process). Manhattan plot was generated using CMplot R

package (39).
2.6 Gene and pathway-based analyses

In order to increase the statistical power, we applied gene and

pathway-based tests which combine associations within genes and

gene-sets, respectively.

Gene and pathway analyses were conducted using theMultimarker

Analysis on GenoMic Annotation (MAGMA) v1.10 software package

(40), in a three-step analytic process. First, we mapped the SNPs to

genes based on theNCBI 38 human gene reference build. Second, SNP-

based EWAS summary statistics, generated by PLINK 1.9, served as

input for MAGMA to perform gene-based association analysis.

Bonferroni correction was applied for multiple testing correction (p-

value = 0.05/2263 genes= 2.2 x 10-5). Finally, a competitive gene-set

analysis was applied to test for the association of biological pathways

with T2D. We used two collections of predefined gene-sets. The first

collection was downloaded from the MsigDB v2022.1.Hs database,

including Gene Ontology (GO) biological processes, KEGG and

Reactome canonical pathways (41, 42). Significant pathways were

called with p-value of 8.99 x 10-6 (0.05/5557 gene-sets), according to

Bonferroni correction for multiple testing. The second collection

consisted of 16 sets of candidate T2D-relevant genes, that were

curated by Flannick et al. on their EWAS carried out on 2019 (10).
2.7 Replication analysis

We carried out a replication study using the summary statistics

of the European ExTexT2D in-silico dataset, downloaded from the

DIAGRAM consortium (http://diagram-consortium.org/

downloads.html). This dataset consists of ExomeChip meta-

analysis of T2D in Europeans, involving up to 177116 individuals,

that was previously published in Mahajan et al. (43). We selected a

European replication dataset due to the close genetic relationship

between Tunisians and Europeans. In fact, previous studies showed

that the genetic landscape of the Tunisian population is a mosaic of

Eurasian and North African lineages (44–47). This observation may

be explained by the migratory waves that occurred in the

Mediterranean region since the prehistoric period (44). Gene and

pathway-based association p-values were computed with MAGMA

using the same code employed in the analysis on the Tunisian

subjects. The flowchart of this study is shown in Figure 1.
3 Results

3.1 Characteristics of the study participants

Baseline characteristics of our study participants are

summarized in Table 1. BMI, fasting plasma glucose and HBA1c

were significantly higher in T2D cases compared to controls.
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3.2 Single variant-association analysis

A total of 12694 variants passed the quality control and variant

filtration process to undergo statistical analyses. The Manhattan

plot showed that none of the variants reached the exome-

significance level (Figure 2). The highest peak has an association

signal below a nominal threshold of 1 x 10-2. This signal stands for

the stop-gain variant rs4879782:c.69C>G/p.Tyr23Ter, located in the

MYORG (Myogenesis regulating glycosidase) gene, with a p-value

equal to 9.58 x 10-3. However, this signal was not observed in our

replication analysis performed on the European in-silico exome-

chip dataset. Summary statistics of SVA are provided as

Supplementary Table 1.
3.3 Gene-based analysis

Gene-based analysis using MAGMA, revealed no signals that

reached exome-wide significance (p-value < 1.47 x 10-5). The top

most associated gene was MYORG (p-value=9.58 x 10-3), as it was

the case with the SVA results (Table 2; Figure 3).
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3.4 Pathway-based analysis

We identified two nominal associations of two gene sets from the

Gene Ontology database in our study samples (p-value < 2 x 10-3).

They consist of the positive regulation of neuron apoptotic process

and the regulation of mucus secretion (Table 3). In addition, our

EWAS identified two pathways having nominal association with T2D

(p-value < 1 x 10-2), both in our study samples and in the European

replication dataset (Table 4).

Regarding pathway analysis using the known T2D-relevant gene-

sets, there was not a significant association (all p-values > 0.05).
4 Discussion

The clinical heterogeneity of T2D and the development of

multisystemic complications suggest that multiple genetic variations

are involved in the manifestation of the disease phenotype.

In the present study, we performed a pilot EWAS to interrogate

the association of variants, genes and pathways with T2D in

Tunisia. The key findings of our study are as follows: 1) single

variant and gene-based analyses revealed a promising association

signal in MYORG gene, although not reaching exome wide

significance threshold, 2) gene-set analysis identified two

pathways with nominal association to T2D: positive regulation of

neuron apoptotic process, and regulation of mucus secretion.

However, these pathways’ associations were not replicated in an

independent European in-silico exome chip dataset comprising up

to 177116 individuals. In addition, our EWAS identified two

pathways with nominal association to T2D, both in our study

samples and in the European replication dataset.

To date, the majority of high throughput association studies of

T2D have been performed in Europeans. There were only a few

candidate gene studies of T2D in North African populations, and

they yielded conflicting results. For instance, Cauchi et al. reported

that 10 among 37 validated European loci were associated with T2D

in the Tunisian population (48).
TABLE 1 Demographics of Tunisian type 2 Diabetes cases and controls
in the study.

Parameter Controls T2D cases p-value

n 17 33

Gender (F/M)1 12/5 14/19 0.077

Age at
examination (yr)2,3

46 ± 6 59 ± 6 1.29 x 10-6

BMI (kg/m2)2,3 23.92 ± 3.88 29.12 ± 3.76 0.001

FPG (mmol/L)2,3 5.17 ± 0.36 10.22 ± 2.94 1.03 x 10-8

HbA1C (%)2,3 5.43 ± 0.49 8.95 ± 1.76 4.28 x 10-8
1 Fisher exact test p-value.
2 Data are presented as mean +- standard deviation.
3 Wilcoxon rank sum test with continuity correction p-value.
FIGURE 1

Overview of the study design and statistical analysis pipeline.
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In our pilot EWAS, the SVA and gene-based analysis did not

reveal any significant association with T2D in the Tunisian study

population. However, they both revealed a promising stop-gain

variant, rs4879782, located in the MYORG gene. This variant was

not previously associated with a clinical condition. On the cellular

level,MYORG encodes a glycosyl hydrolase, hydrolyzing O-glycosyl

compounds in the endoplasmic reticulum. Interestingly, it was

reported that MYORG is involved in the fiber development of

skeletal muscle, the major site for postprandial glucose uptake

from the blood circulation (49). Progressive loss of muscle mass

is associated with impairment of its roles in regulating glucose

homeostasis, which was shown to contribute to the pathogenesis of

T2D (50, 51). Based on these observations, further studies are

warranted to examine the relationships between MYORG

mutations and the glucose metabolism.

For pathway-based analysis, we conducted a competitive,

regression-based test as implemented by MAGMA (40), to

investigate the enrichment of genes associated with T2D.

It is known that T2D is a polygenic trait that is influenced by

hundreds of variants across many genes (52). Hence, any random

combination of genes is likely to be associated with T2D. We opted

for competitive tests that compare the association with T2D of

genes in a specific gene-set against genes that are not in this specific

gene-set.

Pathway association analysis revealed nominal associations

between T2D and two pathways. The first association was with

the “positive regulation of neuron apoptotic process”. This pathway

is implicated in the maintenance of the neuronal system in adult life

by the tight regulation of apoptotic mechanisms. However,

excessive activation of this process could lead to pathological

conditions such as neurodegenerative diseases (53). Neuronal

apoptosis can be triggered through mitochondrial pathways,
Frontiers in Endocrinology 05
including the release of caspase proteins or activation of death

receptors by the tumor necrosis factor receptor (54). In this context,

a recent study has demonstrated excessive activation of caspase and

tumor necrosis factor-alpha in T2D rat brains (55). Moreover, it has

been shown that apoptosis can be induced by oxidative stress and

inflammatory mechanisms triggered by insulin resistance, leading

to neurodegenerative diseases such as ischemic stroke and vascular

dementia (56, 57). These observations emphasize the relevance of

conducting further studies on the effects of genetic alterations in

this pathway on the development of T2D neurodegenerative

complications. The second association was with the “regulation of

mucus secretion” pathway. Intestinal mucus forms a highly

organized protective barrier against harmful substances (58).

Under perturbed conditions such as infections, pathogens can

disrupt the mucus barrier, which facilitates the translocation of

microbial products to the epithelial surface. This can cause

inflammatory response, which sets favorable conditions for the

development of metabolic diseases such as diabetes (59). In

addition, a recent study demonstrated that hyperglycemia alters

the intestinal barrier, which results in a systemic influx of microbial

products, leading to inflammatory consequences of diabetes and

obesity (60). In perspective, further studies are needed to decipher

the links between the regulation of the gut mucus secretion and the

development of metabolic disorders.

Besides these two pathways, MAGMA analysis identified two

pathways that showed nominal association (p-value < 1 x 10 -2) with

T2D pathogenesis in Tunisians and in a European replication

dataset. The first identified pathway was the regulation of beta-

cell development. It is known that pancreatic beta-cells ensure the

production, the storage and the secretion of the insulin used by the

organism to maintain normoglycemia (61). Changes in nutrient

state affect the insulin secretory response according to an interplay

between extracellular signals and beta cell-specific transcriptional

programs. Defects in this interplay process will alter the beta-cells

function, leading to a relative insufficiency of insulin blood levels,

which is characteristic of T2D (62). Thus, it is undeniable that a

deeper understanding of beta-cell transcriptional programs and

their associated signals will have direct implications for diabetes

therapies. The second pathway was the regulation of peptidase

activity. The most known peptidase that affects glucose metabolism
frontiersin.o
FIGURE 2

Manhattan plot of single variant analysis. The orange continuous line corresponds to the exome wide significance threshold for single variant analysis
(4 x 10-6), while the green dashed line corresponds to a nominal association threshold (1 x 10-2). The promising variant is highlighted in red.
TABLE 2 The results of the gene-based analysis.

Gene Chromosome Discovery
analysis
p-value

Replication
analysis
p-value

MYORG 9 9.58 x 10-3 0.39
rg
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is the dipeptidyl peptidase-4 (DPP-4). This protein inhibits the

glucagon-like-peptide-1, an incretin expressed in the post-prandial

phase in order to stimulate insulin secretion (63). Interestingly, it

has been reported that obese and type 2 diabetic subjects have high

circulating DPP-4 levels (64). Moreover, it has been proposed that

DPP-4 triggers inflammation and insulin resistance in adipose and

hepatic tissue (65, 66). These observations promoted the

development of DPP-4 inhibitors, used nowadays as oral anti-

diabetic medications. However, the overall significance of DPP-4

activity for the regulation of glucose homeostasis remains to

be resolved.

A potential limitation of our study resides in the relatively small

sample size of the discovery cohort. This limitation may induce a

lack of sufficient statistical power to detect all associations. To
Frontiers in Endocrinology 06
overcome this limitation, we applied a three-step approach in order

to reduce the number of statistical tests, and thus increase the

statistical power. First, we prioritized candidate markers that

potentially damage protein’s structure and function. Second, we

applied gene-based and pathway-based analyses in order to test the

aggregate effects of combinations of genetic variants on the

regulation of the glycemic homeostasis. Finally, we replicated our

analyses in a large existing in-silico dataset. Overall, our strategy led

to identify nominal variant and gene associations, as well as

biologically relevant pathways associated with T2D in the

Tunisian population. Therefore, it seems suitable to discover

candidate disease markers in underrepresented populations.

In summary, the present study is the first EWAS on T2D in

Africa. Variant and gene-based analyses highlighted changes in

MYORG gene as new promising markers of T2D in Tunisians,

although not reaching exome wide significance. Further gene-set

analysis highlighted the potential role of the positive regulation of

neuron apoptotic process, the regulation of mucus secretion, beta-cell

development and peptidase activity pathways in T2D development

and/or progression. These candidate loci and pathways will promote

the understanding of T2D pathophysiology in North-African

populations. Moreover, they may be the targets for functional

studies to discover potential treatments for T2D.
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FIGURE 3

Manhattan plot of the gene-based analysis. The orange continuous line corresponds to the exome wide significance threshold for gene-based
analysis (2.2 x 10-5), while the green dashed line corresponds to a nominal association threshold (2 x 10-3). The promising gene is highlighted in red.
TABLE 3 Two candidate pathways that exhibited nominal association
with type 2 diabetes in the present study.

Database Pathway P-value in
the discov-
ery cohort

P-value in
the replica-
tion dataset

GOBP Positive regulation
of neuron
apoptotic process

1.40 x 10-3 0.29

GOBP Regulation of
mucus secretion

1.71 x 10-3 0.44
GOBP, Gene Ontology Biological Processes.
TABLE 4 Two candidate pathways that exhibited significant association
with type 2 diabetes in the present study and in the replication in-
silico dataset.

Database Pathway P-value in the
discovery
cohort

P-value in the
replication
dataset

REACTOME Regulation of
beta-
cell
development

8.30 x 10-3 2.32 x 10-6

GOBP Regulation of
peptidase
activity

6.73 x 10-3 5.68 x 10-3
GOBP, Gene Ontology Biological Processes.
frontiersin.org

https://www.ebi.ac.uk/eva/?eva-study=PRJEB70960
http://diagram-consortium.org/downloads.html
https://doi.org/10.3389/fendo.2023.1293124
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Dallali et al. 10.3389/fendo.2023.1293124
Author contributions

HD: Conceptualization, Data curation, Formal Analysis,

Investigation, Methodology, Resources, Software, Validation,

Visualization, Writing – original draft. WB: Data curation,

Formal Analysis, Methodology, Resources, Validation, Writing –

review & editing. NK: Data curation, Methodology, Resources,

Validation, Writing – review & editing. MF: Methodology,

Resources, Validation, Writing – review & editing. HJ: Data

curation, Methodology, Resources, Validation, Writing – review

& editing. MH: Data curation, Methodology, Resources, Validation,

Writing – review & editing. IG: Data curation, Methodology,

Resources, Validation, Writing – review & editing. MG: Data

curation, Methodology, Resources, Validation, Writing – review

& editing. WK: Data curation, Methodology, Resources, Validation,

Writing – review & editing. MM: Methodology, Validation, Writing

– review & editing. MT: Methodology, Validation, Writing – review

& editing. AK: Methodology, Validation, Writing – review &

editing. HT: Methodology, Validation, Writing – review &

editing. AB: Methodology, Validation, Writing – review & editing.

HJ: Investigation, Methodology, Resources, Validation, Writing –

review & editing. OM: Validation, Writing – review & editing. AA:

Investigation, Validation, Writing – review & editing. RK:

Conceptualization, Funding acquisition, Investigation, Project

administration, Resources, Supervision, Validation, Writing –

review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was funded by the Institut Pasteur International Network in the

frame of the “Actions Concertées InterPasteuriennes” (ACIP 45-

17), the Tunisian Ministry of Higher Education and Scientific

Research (LR16IPT05) and the Tunisian Ministry of Health.

Hamza Dallali, Nadia Kheriji and Haifa Jmel are recipients of

MOBIDOC fellowships, funded by The Tunisian Ministry of
Frontiers in Endocrinology 07
Higher Education and Scientific Research through the PromEssE

project and managed by the ANPR.
Acknowledgments

We thank the study participants for their collaboration. We

acknowledge Ahmed S. Chakroun from RAN BioLinks (Tunis,

Tunisia) for his assistance in the shipment of DNA samples as

well as the gathering of the raw data from the sequencing platform

at Macrogen, Inc. (Seoul, South Korea). The authors thank the

Clinical Core and the Department for Scientific Programming and

Incentive Actions (SPAIS) of the Institut Pasteur (Paris, France) for

their support in the implementation of the ACIP 45-17 project.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fendo.2023.1293124/

full#supplementary-material
References
1. McCarthy MI. Painting a new picture of personalised medicine for diabetes.
Diabetologia (2017) 60:793–9. doi: 10.1007/S00125-017-4210-X/FIGURES/1

2. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al.
Fine-mapping type 2 diabetes loci to single-variant resolution using high-density
imputation and islet-specific epigenome maps. Nat Genet (2018) 50:1505–13.
doi: 10.1038/s41588-018-0241-6

3. Scott RA, Scott LJ, Mägi R, Marullo L, Gaulton KJ, Kaakinen M, et al. An
expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes
(2017) 66:2888–902. doi: 10.2337/DB16-1253/-/DC1

4. Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z, et al. Genome-wide
association analyses identify 143 risk variants and putative regulatory mechanisms for
type 2 diabetes. Nat Commun (2018) 9:1–14. doi: 10.1038/s41467-018-04951-w

5. Grotz AK, Gloyn AL, Thomsen SK. Prioritising causal genes at type 2 diabetes risk
loci. Curr Diabetes Rep (2017) 17:1–9. doi: 10.1007/S11892-017-0907-Y/FIGURES/1

6. Barbitoff YA, Serebryakova EA, Nasykhova YA, Predeus AV, Polev DE, Shuvalova
AR, et al. Identification of novel candidate markers of type 2 diabetes and obesity in
Russia by exome sequencing with a limited sample size. Genes (Basel) (2018) 9:415.
doi: 10.3390/GENES9080415

7. Cheung CYY, Tang CS, Xu A, Lee CH, Au KW, Xu L, et al. Exome-chip
association analysis reveals an Asian-specific missense variant in PAX4 associated
with type 2 diabetes in Chinese individuals. Diabetologia (2017) 60:107–15.
doi: 10.1007/S00125-016-4132-Z/TABLES/3

8. Curtis D. Analysis of rare coding variants in 200,000 exome-sequenced subjects
reveals novel genetic risk factors for type 2 diabetes. Diabetes Metab Res Rev (2022) 38.
doi: 10.1002/DMRR.3482

9. Deaton AM, Parker MM, Ward LD, Flynn-Carroll AO, BonDurant L, Hinkle G,
et al. Gene-level analysis of rare variants in 379,066 whole exome sequences identifies
an association of GIGYF1 loss of function with type 2 diabetes. Sci Rep (2021) 11:1–16.
doi: 10.1038/s41598-021-99091-5

10. Flannick J, Mercader JM, Fuchsberger C, Udler MS, Mahajan A, Wessel J, et al.
Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature (2019)
570:71–6. doi: 10.1038/s41586-019-1231-2
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2023.1293124/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2023.1293124/full#supplementary-material
https://doi.org/10.1007/S00125-017-4210-X/FIGURES/1
https://doi.org/10.1038/s41588-018-0241-6
https://doi.org/10.2337/DB16-1253/-/DC1
https://doi.org/10.1038/s41467-018-04951-w
https://doi.org/10.1007/S11892-017-0907-Y/FIGURES/1
https://doi.org/10.3390/GENES9080415
https://doi.org/10.1007/S00125-016-4132-Z/TABLES/3
https://doi.org/10.1002/DMRR.3482
https://doi.org/10.1038/s41598-021-99091-5
https://doi.org/10.1038/s41586-019-1231-2
https://doi.org/10.3389/fendo.2023.1293124
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Dallali et al. 10.3389/fendo.2023.1293124
11. Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ,
et al. The genetic architecture of type 2 diabetes. Nature (2016) 536:41–7. doi: 10.1038/
nature18642

12. Kwak SH, Chae J, Lee S, Choi S, Koo BK, Yoon JW, et al. Nonsynonymous
variants in PAX4 and GLP1R are associated with type 2 diabetes in an East Asian
population. Diabetes (2018) 67:1892–902. doi: 10.2337/DB18-0361

13. O’Beirne SL, Salit J, Rodriguez-Flores JL, Staudt MR, Khalil CA, Fakhro KA, et al.
Exome sequencing-based identification of novel type 2 diabetes risk allele loci in the
Qatari population. PLoS One (2018) 13. doi: 10.1371/JOURNAL.PONE.0199837

14. Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ, Ferreira T, et al. Genome-
wide trans-ancestry meta-analysis provides insight into the genetic architecture of type
2 diabetes susceptibility. Nat Genet (2014) 46:234–44. doi: 10.1038/ng.2897

15. Zheng Q, Zhang Y, Jiang J, Jia J, Fan F, Gong Y, et al. Exome-wide association
study reveals several susceptibility genes and pathways associated with acute coronary
syndromes in Han Chinese. Front Genet (2020) 11:336/BIBTEX. doi: 10.3389/
FGENE.2020.00336/BIBTEX

16. Jemaa R, Razgallah R, Rais L, ben Ghorbel I, Feki M, Kallel A. Prevalence of
diabetes in the Tunisian population: Results of the ATERA-survey. Arch Cardiovasc Dis
Suppl (2023) 15:131. doi: 10.1016/J.ACVDSP.2022.10.253

17. Saidi O, O’Flaherty M, Ben Mansour N, Aissi W, Lassoued O, Capewell S, et al.
Forecasting Tunisian type 2 diabetes prevalence to 2027: validation of a simple model.
BMC Public Health (2015) 15:104. doi: 10.1186/s12889-015-1416-z

18. American Diabetes Association. 2. Classification and diagnosis of diabetes:
Standards of medical care in diabetes-2021. Diabetes Care (2021) 44:S15–33.
doi: 10.2337/dc21-S002

19. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der
Auwera GA, et al. Scaling accurate genetic variant discovery to tens of thousands of
samples. bioRxiv (2017), 201178. doi: 10.1101/201178

20. Wang K, Li M, Hakonarson H. ANNOVAR : functional annotation of genetic
variants from high-throughput sequencing data. Nucleic Acids Res (2010) 38:1–7.
doi: 10.1093/nar/gkq603

21. Desvignes J-P, Bartoli M, Delague V, Krahn M, Miltgen M, Béroud C, et al.
VarAFT: a variant annotation and filtration system for human next generation
sequencing data. Nucleic Acids Res (2018) 46:W545–53. doi: 10.1093/nar/gky471

22. Consortium T 1000 GP. A global reference for human genetic variation. Nature
(2015) 526:68–74. doi: 10.1038/nature15393

23. Chen S, Francioli LC, Goodrich JK, Collins RL, Wang Q, Alföldi J, et al. A
genome-wide mutational constraint map quantified from variation in 76,156 human
genomes. bioRxiv (2022). doi: 10.1101/2022.03.20.485034

24. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous
variants on protein function using the SIFT algorithm. Nat Protoc (2009) 4:1073–82.
doi: 10.1038/nprot.2009.86

25. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al.
A method and server for predicting damaging missense mutations. Nat Methods (2010)
7:248–9. doi: 10.1038/nmeth0410-248

26. Schwarz JM, Rödelsperger C, Schuelke M, Seelow D. MutationTaster evaluates
disease-causing potential of sequence alterations. Nat Methods (2010) 7:575–6.
doi: 10.1038/nmeth0810-575

27. Reva B, Antipin Y, Sander C. Determinants of protein function revealed by
combinatorial entropy optimization. Genome Biol (2007) 8:R232. doi: 10.1186/gb-
2007-8-11-r232

28. Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of
amino acid substitutions and indels. Bioinformatics (2015) 31:2745–7. doi: 10.1093/
bioinformatics/btv195

29. Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, et al. Comparison and
integration of deleteriousness prediction methods for nonsynonymous SNVs in whole
exome sequencing studies.HumMol Genet (2015) 24:2125–37. doi: 10.1093/hmg/ddu733

30. Chun S, Fay JC. Identification of deleterious mutations within three human
genomes. Genome research (2009) 19:1553–61. doi: 10.1101/gr.092619.109.2001

31. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GLA, Edwards KJ, et al.
Predicting the functional , molecular , and phenotypic consequences of amino acid
substitutions using hidden. Hum Mutat (2012) 34:57–65. doi: 10.1002/humu.22225

32. Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating the
pathogenicity of genetic variants. Bioinformatics (2015) 31:761–3. doi: 10.1093/
BIOINFORMATICS/BTU703

33. Kircher M, Witten DM, Jain P, O’roak BJ, Cooper GM, Shendure J. A general
framework for estimating the relative pathogenicity of human genetic variants. Nat
Genet (2014) 46, 310–315. doi: 10.1038/ng.2892

34. Carter H, Douville C, Stenson PD, Cooper DN, Karchin R. Identifying
Mendelian disease genes with the Variant Effect Scoring Tool. BMC Genomics (2013)
14:S3. doi: 10.1186/1471-2164-14-S3-S3

35. Pezzilli S, Ludovico O, Biagini T, Mercuri L, Alberico F, Lauricella E, et al.
Insights from molecular characterization of adult patients of families with
multigenerational diabetes. Diabetes (2018) 67:137–45. doi: 10.2337/db17-0867
Frontiers in Endocrinology 08
36. Castellana S, Fusilli C, Mazza T. Chapter 22 A broad overview of computational
methods for predicting the pathophysiological effects of non-synonymous variants.
Methods Mol Biol (2016) 1415:423–40. doi: 10.1007/978-1-4939-3572-7

37. Grimm DG, Azencott CA, Aicheler F, Gieraths U, Macarthur DG, Samocha KE,
et al. The evaluation of tools used to predict the impact of missense variants is hindered
by two types of circularity. Hum Mutat (2015) 36:513–23. doi: 10.1002/humu.22768

38. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-
generation PLINK: rising to the challenge of larger and richer datasets. Gigascience
(2015) 4:7. doi: 10.1186/s13742-015-0047-8

39. Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, et al. rMVP: A memory-efficient,
visualization-enhanced, and parallel-accelerated tool for genome-wide association
study. Genomics Proteomics Bioinf (2021) 19:619–28. doi: 10.1016/J.GPB.2020.10.007

40. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set
analysis of GWAS data. PLoS Comput Biol (2015) 11:e1004219. doi: 10.1371/
JOURNAL.PCBI.1004219
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