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It has been well documented that there is a two-way relationship between

diabetes mellitus and periodontitis. Diabetes mellitus represents an established

risk factor for chronic periodontitis. Conversely, chronic periodontitis adversely

modulates serum glucose levels in diabetic patients. Activated immune and

inflammatory responses are noted during diabetes and periodontitis, under the

modulation of similar biological mediators. These activated responses result in

increased activity of certain immune-inflammatory mediators including

adipokines and microRNAs in diabetic patients with periodontal disease.

Notably, certain microbes in the oral cavity were identified to be involved in

the occurrence of diabetes and periodontitis. In other words, these immune-

inflammatory mediators and microbes may potentially serve as biomarkers for

risk assessment and therapy selection in diabetes and periodontitis. In this review,

we briefly provide an updated overview on different potential biomarkers,

providing novel diagnostic and therapeutic insights on periodontal

complications and diabetes mellitus.

KEYWORDS
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Abbreviations: ATF4, activating transcription factor 4; BspA, leucine-rich-repeat protein; CgA,

Chromogranin A; GCF, gingival crevicular fluid; HbA1c, hemoglobin; IL-6, interleukin-6; LPS,

lipopolysaccharides; MMP, matrix metalloproteinase; NLRP3, nucleotide-binding oligomerization domain

like receptor pyrin domain containing 3; SAA, serum amyloid A; SOD, superoxide dismutase; sTWEAK,

soluble tumor necrosis factor-like weak inducer of apoptosis; TNF-a, tumor necrosis factor a; TLR2, toll-like

receptor 2; TRAF6, tumor necrosis factor (TNF) receptor associated factor 6.
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Introduction

Diabetes mellitus is clinically and genetically a heterogeneous

group of disorders characterized by dysregulated nutrient

metabolism, resulting from defects in insulin secretion and action

(1). Hyperglycemia, the hallmark of diabetes mellitus, can lead to a

range of chronic complications associated with long-term damage

and dysfunction in various organs and body systems (2).

Importantly, diabetic patients is more likely to develop chronic

periodontitis (3), where a two-way relationship has been previously

documented between diabetes and periodontitis (4, 5) (Figure 1).

However, the detailed mechanisms underlying the bidirectional

relationship remain largely unknown. Pathologically, the

hyperactive inflammatory response plays a contributory role in

the progression of these two diseases (6). Particularly, diabetes

causes the activation of immune and inflammatory responses in

periodontal tissues, increasing the risk of periodontitis. The

activated responses subsequently result in increased secretion of

cytokines, amplified oxidative damage, and disruption of receptor-

mediated signaling. Altogether, these events accelerate the

breakdown of periodontal connective tissues and resorption of

alveolar bone, thus exacerbating periodontitis. In the other

direction, periodontitis may cause dysregulated glycemic control

in diabetic patients. Periodontal bacteria and their metabolic

products, together with locally produced inflammatory cytokines

and mediators in the inflamed periodontal tissues, enter the

circulation to trigger systemic inflammation, further worsening

glucose tolerance and insulin resistance (7). Certain pathogenic

microbes in the oral cavity even aggravate the progression of

periodontitis and diabetes mellitus by triggering host

inflammation and causing burden on host immunity. Biomarkers

serve as useful indicators during the onset and development of

inflammatory and systemic diseases. In addition to the screening

and risk assessment of diseases, biomarkers could also be applied in

staging, grading, and selection of therapies (8). It has been reported

that the levels of certain molecular biomarkers, such as adipokines

and microRNAs, vary significantly in saliva, serum and gingival
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crevicular fluid (GCF) of individuals with both diabetes mellitus

and periodontitis (9). Moreover, several strategies have been

developed to safely and conveniently collect GCF from

individuals, such as extracrevicular and intracrevicular GCF

collection techniques (10). Hence, saliva, serum and GCF

represent feasible sources of biomarkers for diagnostic purposes.

This article aims to review the potential biomarkers in diabetes and

periodontitis, providing novel diagnostic and therapeutic insights

on periodontal complications in associated with diabetes mellitus.
Adipokines

Adipokines are a group of secretory proteins mainly released by

an active endocrine organ, particularly adipose tissue, into the

systemic circulation. Adipokines are believed to be tightly

associated with energy control, insulin sensitivity, and immune-

inflammatory responses (11, 12). During diabetes mellitus,

abnormal metabolism in adipose tissue may affect various organs

via adipokine production (13). Periodontitis can lead to a

proinflammatory state and affect adipokine levels in serum, tear

fluid and GCF of obese patients (14, 15). Furthermore, diabetes

mellitus can promote dyslipidemia and inflammation via regulation

of adipokines (16). It has been postulated that the concentration of

adipokines might be indicative to chronic metabolic disorders and

pathological processes in local tissues. Therefore, any variations of

adipokine levels in body fluids might be indicative to the severity of

diabetes mellitus and chronic periodontitis (11) (Table 1).
Adiponectin

A bidirectional relationship exists between diabetes mellitus and

periodontitis (32). It has been reported that diabetic subjects with

insulin resistance are more likely to develop severe periodontitis

(33, 34). Adiponectin, an adipokine mainly secreted by adipocytes,

exerts anti-inflammatory effects and plays a pivotal role in
FIGURE 1

The bidirectional relationship between periodontitis and diabetes mellitus. Hyperactive immune and inflammatory responses participate in the
vicious cycle between periodontitis and type 2 diabetes mellitus, associated with increased secretion of proinflammatory cytokines, higher oxidative
stress and disruption of signaling pathways. Yellow cross: promotion. Up red arrows: increase.
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regulating glycemia (17). Adiponectin acts as an endogenous insulin

sensitizer in the regulation of insulin sensitivity, and its level is

inversely correlated with obesity and insulin resistance (18). Some

intervention studies have suggested that periodontal treatment

could significantly increase serum adiponectin levels in type 2

diabetic patients with periodontitis (19, 20). Furthermore,

periodontal therapy has been shown to be associated with

improved glycemic control and insulin resistance in diabetic

patients (35). More importantly, another clinical trial stated that

periodontal intervention also improved lipid profile, reduced

inflammatory cytokines in serum, and elevated levels of serum

adiponectin in diabetic patients (34). Adiponectin profoundly

improves insulin sensitivity by inhibiting glucose output from the

liver, and limiting glucose uptake by adipose tissue and muscle (36).
Resistin

Named after its apparent ability to ‘resist insulin’, resistin is

another adipokine first discovered in murine. Resistin is an 11 kDa

protein encoded on chromosome 8, which was once classified as a

unique signaling molecule in-between obesity and type 2 diabetes

mellitus (21, 26). In multiple obese animal models, resistin was

shown to induce insulin resistance, where hyper-resistinemia

remarkably impairs insulin sensitivity. However, the exact role of

resistin in obesity and type 2 diabetes mellitus in humans have not

been comprehensively defined (37–39). In contrast, human resistin

is predominantly expressed in peripheral-blood mononuclear cells.

It aggravates inflammation which has been conclusively associated

with the development of obesity and insulin resistance (23). It has

been reported that resistin acts as a proinflammatory molecule by

stimulating the secretion of tumor necrosis factor a (TNF-a),
interleukin (IL)-6 and IL-12, thereby inducing its own production

via a positive feedback cycle during periodontitis (22). Of note, the

elevated levels of resistin in periodontal disease may highlight its

role as a specific and sensitive biomarker in the early detection and

intervention of diabetes-related periodontitis. Joshi et al. has

reported that GCF level of resistin was significantly higher in

diabetic patients with chronic periodontitis, where its level
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showed no correlation with glycated hemoglobin (HbA1c) value

(24). Such finding indicated that resistin is more closely related to

the inflammatory condition instead of the glycemic state of the

individual, suggesting resistin as an inflammatory biomarker in two

diseases. Another study has shown that single-nucleotide

polymorphism of resistin gene is correlated to the resistin levels

in serum and GCF of diabetic patients with chronic periodontitis

(25). Moreover, in vitro clues are present that release of

inflammatory cytokines, such as IL-6 and TNF-a, and maturation

of monocytes into macrophages could alter resistin levels.

Therefore, it is reasonable to postulate that periodontal

inflammation, possibly via cytokine secretion and macrophage

maturation, might influence resistin expression (25). However,

more long-term interventional studies in larger sample sizes are

needed to fully uncover the cause-effect relationships between

resistin levels and diabetes-related periodontitis (8).
Visfatin

Visfatin, also known as pre-B-cell colony enhancing factor, is a

52 kDa adipokine secreted by visceral adipose tissues (28). By

binding to insulin receptor at a site distinct from that of insulin,

visfatin exerts insulin-like effects to reduce glucose release and

stimulate glucose utilization in adipocytes and myocytes (40).

Furthermore, visfatin has been reported to induce the

productions of proinflammatory cytokines, like IL-6, TNF-a and

IL-1b, during infection and inflammation phases (29). During

periodontal inflammation, periodontopathogens trigger local

expressions of IL-6 and TNF-a in periodontal tissues. These

proinflammatory cytokines, in turn, trigger visfatin production in

periodontal tissues. Bahammam and Attia have found significantly

elevated levels of IL-6, TNF-a, and visfatin in GCF of diabetic

patients afflicted with chronic periodontitis (27). Clinically,

compared to periodontally healthy individuals and diabetic

patients, the mean visfatin levels remained the highest in both

serum and GCF of diabetic patients afflicted with chronic

periodontitis. Meanwhile, visfatin concentrations in both serum

and GCF were shown positively correlated with the severity of
TABLE 1 Adipokines as potential biomarkers for periodontitis and diabetes mellitus.

Adipokines Biological functions Correlation
with periodontitis

Correlation with
diabetes mellitus

Ref

Adiponectin
· Exerts anti-inflammatory effects
· Regulates glycemia
· Acts as endogenous insulin sensitizer

· Periodontal treatment increases its
serum level

· Inversely correlated with obesity and
insulin resistance

(17–20)

Resistin

· Induces insulin resistance in animals
· Aggravates inflammation in humans
· Stimulates the secretion of proinflammatory
cytokines (e.g. TNF-a, IL-6 and IL-12)

· Positively correlated
with periodontitis

· Positively correlated to proinflammatory
cytokine levels during diabetes mellitus
· Increased GCF level of resistin in diabetic
patients with chronic periodontitis

(21–26)

Visfatin

· Reduces glucose release
· Stimulates glucose utilization in adipocytes
and monocytes
· Stimulates the production of
proinflammatory cytokines (e.g. TNF-a, IL-6
and IL-1b)

· Positively correlated with
periodontitis
· Non-surgical periodontal treatment
reduces its serum and GCF levels

· Positively correlated to proinflammatory
cytokine levels during diabetes mellitus
· Positively correlated with diabetes-
related periodontitis

(27–31)
fr
*Red color: body fluids or tissues/cells where these biomarkers could be collected for potential diagnostic purpose.
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periodontal disease (30). Importantly, non-surgical periodontal

treatment was reported to remarkably reduce visfatin levels in

serum and GCF of diabetic patients with periodontitis (31). These

clues suggested that visfatin might serve as a potential predictor and

therapeutic target in the management of diabetes mellitus and

periodontitis (41).
Proinflammatory cytokines

It is well established that diabetes is a disorder of inflammation

and metabolic dysregulation, associated with increased production

of cytokines, including IL-6, IL-1b, and TNF-a (42, 43). It has been

suggested that periodontal therapy could reduce systemic

inflammation in diabetic patients by targeting intraoral bacteria

and reducing periodontal inflammation (44). Poor glycemic control

in type 2 diabetic patients is clinically associated with poor

prognosis of periodontal tissues (45). Levels of these

inflammatory cytokines are significantly higher in patients with

periodontitis (46). These cytokines stimulate bone resorption by

inducing osteoclast progenitor proliferation, as well as the

production of chemokines, extracellular matrix metalloproteinases

(MMPs), cytokines, collagenases, and prostaglandins (47). Besides,

increased levels of these cytokines further alter insulin sensitivity

through direct and indirect mechanisms (48), resulting in a vicious

cycle between diabetes progression and periodontal damage (49).

Interestingly, periodontal therapy could elicit beneficial effects on

glycemic control via suppressing these cytokines, facilitating a less-

pronounced inflammatory state (43, 50). Moreover, IL-6, IL-1b, and
TNF-a are confirmed important modulators in bone metabolism

within oral cavity. Altogether, these cytokines in serum and GCF

can be potentially considered as biomarkers in the prediction,

intervention and treatment of chronic periodontitis afflicted with

type 2 diabetes mellitus (43, 49, 51).

Another important mediator in chronic inflammatory diseases,

soluble tumor necrosis factor-like weak inducer of apoptosis

(sTWEAK), is gaining increasing attentions recently (52).

sTWEAK belongs to the TNF superfamily cytokines and elicits an

immunoregulatory role in periodontitis and diabetes mellitus (53,

54). Serum sTWEAK level was shown to be significantly lower in

patients with chronic periodontitis, and lowest in patients with

concomitant chronic periodontitis and type 2 diabetes mellitus (55).

However, another recent clinical study found that significantly

higher levels of circulating sTWEAK were observed in severe

periodontal patients when compared to those without

periodontitis (56). More extensive studies are still needed to

correlate the temporal change in circulating sTWEAK level with

the progression of concomitant periodontitis and diabetes mellitus.
Oxidative stress markers

Increasing oxidative stress can be considered as a critical

contributing factor during the pathogenesis of both diabetes

mellitus and periodontitis (57). Some previous clinical studies

have reported the alterations of oxidative stress markers in
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different body fluids of patients with concomitant periodontitis

and diabetes mellitus. For instance, the salivary levels of the free

radical marker malondialdehyde were higher in patients with

chronic periodontitis when compared to healthy individuals,

where the levels became even higher in patients with concomitant

periodontitis and diabetes mellitus (58). Superoxide dismutase

(SOD) is an antioxidant enzyme which protects against

deleterious effects of high oxidative stress. Another clinical study

has shown that the serum levels of superoxide dismutase were the

highest in patients with concomitant periodontitis and diabetes

mellitus when compared to those of periodontal patients and

healthy individuals (59). Catalase is one the central antioxidant

enzymes to constitute the primary defense against oxidative

damage. A previous clinical trial found that the serum levels of

catalase in patients with concomitant periodontitis and diabetes

mellitus were lower than individuals with and without periodontitis

(60). Furthermore, the serum and GCF levels of 4-hydroxy-2-

nonenal, a product of lipid peroxidation, were shown to be higher

in patients with both diabetes mellitus and periodontitis (61). These

clinical findings suggested oxidative stress as a link between the

two diseases.
MicroRNAs

MicroRNAs represent a group of small non-coding regulatory

RNAs (~22 nucleotides) which post-transcriptionally lower stability

and suppress gene expression (62). In mammalian cells, more than

2,500 microRNAs have been reported to regulate >60% of protein-

coding genes (63). Revealed by extensive studies, microRNAs have

been confirmed to regulate various physiological and pathological

processes in various human diseases, including autoimmune

disorders, cancers and inflammatory disorders (64). Of note,

microRNAs play a regulatory role in the pathogenesis of

periodontitis, where the microRNA profiles in healthy and

inflamed gingival tissues significantly vary (65, 66). Meanwhile,

microRNAs also play a critical role in the mediation of glucose

homeostasis and progression of diabetes mellitus. Nowadays, more

and more studies have recognized microRNAs as biomarkers in

clinical medicine, where microRNAs can potentially be prognostic

and predictive biomarkers in the treatment of chronic periodontitis

and diabetes mellitus (67–69) (Table 2).

Various microRNAs have been demonstrated to be key

regulators in inflammation. A substantial literature indicated that

miR-146a is involved in the pathogenesis of multiple inflammatory

disorders, such as chronic periodontitis, diabetes mellitus and

coronary artery disease (70). miR-146a levels have been found

significantly lower in peripheral blood mononuclear cells from

patients with type 2 diabetes mellitus (71). Notably, serum levels

of miR-146a remarkably decrease in type 2 diabetic patients, which

is inversely correlated to that of the proinflammatory cytokine IL-8

(72). Moreover, the miR-146a expression also changes during

chronic periodontitis. Motedayyen et al. demonstrated that higher

levels of miR-146a, whereas lower expressions of inflammatory

cytokines, particularly IL-6 and TNF-a, were observed in the

gingival tissues of periodontitis patients (73). These findings
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suggested miR-146a as a negative regulator for immune response

(81). Since miR-146a plays crucial roles in both diabetes mellitus

and periodontitis, it is reasonable to hypothesize that miR-146a may

participate in the bidirectional relationship of two diseases. A recent

study has revealed that expressions of inflammatory cytokines

d im i n i s h e d upon t r a n s f e c t i o n o f m iR - 1 4 6 a i n t o

lipopolysaccharides (LPS)-stimulated adipocytes and gingival

fibroblasts, when co-cultured with macrophages. Similarly,

transfection of miR-146a into macrophages down-regulated TNF-

a expression in the presence of inflammatory stimuli. In vivo

findings suggested that intravenous injection of miR-146a

protected C57BL/6 mice from high-fat diet-induced inflammatory

insults in adipose and gingival tissues. These findings implied a

protective role of miR-146a against inflammation-related obesity

and periodontal disease (82). Clinically, miR-146a level was

reported to be significantly higher in GCF of type 2 diabetic

patients afflicted with periodontitis, but decreased upon non-

surgical periodontal treatment (69). These preclinical and clinical

studies hinted that miR-146a might be a potential biomarker and

therapeutic target for the treatment of periodontitis and

diabetes mellitus.

Other microRNAs, including miR-214, miR-147 and miR-126,

have been reported to play pivotal roles in both diabetes and

periodontitis. Necroptosis, a newly discovered mode of

programmed cell death, is a highly proinflammatory event

involved in the pathogenesis of periodontitis and diabetes (83,

84). Previous studies have shown that miR-214 is responsible for

the regulation of cell death and glucose metabolism (74–76). Ou

et al. has found that miR-214 regulates necroptosis through

targeting activating transcription factor 4 (ATF4) in periodontal

tissues and osteoblast cells under co-stimulation by high glucose

and LPS (77). In rats, experimental periodontitis was shown to

promote systemic insulin resistance by inducing macrophage

activation and hence inflammation in adipose tissue (85).
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Notably, miR-147 was reported to act as a negative regulator in

attenuating inflammatory response in murine macrophages (78).

However, another study showed that miR-147 seems to promote

M1 polarization, the classical activation of macrophages, in

periodontal tissues of obese rats (79). Further verification and

mechanistic study are required to uncover the conflicting role of

miR-147 in periodontitis and diabetes mellitus, especially in human

subjects. Another microRNA, miR-126, has been shown to play a

protective role against high glucose-induced inflammation in

human gingival fibroblasts. Mechanistically, miR-126 promotes

the secretion of the anti-inflammatory cytokine IL-10 via

targeting tumor necrosis factor (TNF) receptor associated factor 6

(TRAF6) (80). Taken together, the emerging roles of microRNAs,

including miR-146a, miR-214, miR-147 and miR-126, may provide

new insights into the diagnostic and therapeutic strategies on the

treatment of concomitant periodontitis and type 2 diabetes mellitus.
Glycoproteins

A chitin- and heparin-binding glycoprotein, YKL-40, is secreted

by activated neutrophils and macrophages during acute or chronic

inflammatory diseases (86). Among patients with chronic

periodontitis, GCF levels of YKL-40 in patients with type 2

diabetes mellitus were often higher (87–89). Another acidic

glycoprotein, Chromogranin A (CgA), is identified in the

extracellular vesicles secreted by neurons and endocrine cells. The

concentration of CgA is known to be increased in response to

psychological stress, the risk factor for periodontal disease (90, 91).

Zhang et al. indicated that CgA values in saliva samples of chronic

periodontitis patients with or without type 2 diabetes mellitus were

significantly higher than those of control groups. These findings

suggested that salivary CgA could be a potential biomarker for

periodontitis and diabetes mellitus (92).
TABLE 2 MicroRNAs as potential biomarkers for periodontitis and diabetes mellitus.

microRNAs Biological functions Correlation
with periodontitis

Correlation with
diabetes mellitus

Ref

miR-146a
· Mediates the pathogenesis of multiple inflammation-
associated disorders (e.g. periodontitis, diabetes mellitus
and coronary artery disease)

· Increased in gingival tissues
during periodontitis
· Inversely correlated to
proinflammatory cytokine
levels (e.g. TNF-a and IL-6)
· Non-surgical periodontal
treatment reduces its GCF level

· Decreased in peripheral blood
mononuclear cells and serum during
type 2 diabetes mellitus
· Inversely correlated to
proinflammatory cytokine levels (e.g. IL-
8)
· Increased in GCF during diabetes-
related periodontitis

(69–73)

miR-214
· Regulates cell death
· Regulates glucose metabolism

· Activates necroptosis in
periodontal tissues and
osteoblast cells

· Inversely correlated to obesity and
insulin resistance

(74–77)

miR-147
· Attenuates inflammatory response
· Mediates macrophage activation

· Promotes macrophage
activation in periodontal tissues

· Inversely correlated to
proinflammatory cytokine expression in
macrophages (e.g. TNF-a and IL-6)

(78, 79)

miR-126 · Regulates inflammatory cytokine secretion

· Suppresses inflammation in
gingival fibroblasts
· Positively correlated to anti-
inflammatory cytokine levels
(e.g. IL-10)

· Inversely correlated with
diabetes mellitus

(80)
fro
*Red color: body fluids or tissues/cells where these biomarkers could be collected for potential diagnostic purpose.
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Oral microbes

Our oral cavity is inhabited by diverse microbes including

bacteria, fungi and protozoa, where over 700 bacterial species

have been identified (93). Disruption of balance between

commensal and harmful microbes in the oral cavity is associated

with the pathogenesis of certain diseases, including periodontitis

(94), diabetes mellitus (95), and cancers (96). In addition to the

endogenous biomarkers mentioned, such as adipokines and

microRNAs, the microbes in the oral cavity can also be potential

biomarkers of multiple diseases. Notably, alteration in the

abundance of certain bacterial species in the oral cavity may be

indicative to the severity of periodontitis and diabetes

mellitus (Table 3).
Porphyromonas gingivalis

Porphyromonas gingivalis (P. gingivalis) is a Gram-negative

anaerobe in the oral cavity, and is considered as the major

pathogenic bacterium for periodontitis (121). The capacity of P.

gingivalis to form subgingival biofilm, associated with increased

DPPIV activity, greatly contribute to the pathogenesis of

periodontitis (98). Additionally, P. gingivalis promotes

pathogenesis of aggressive periodontitis by inducing the

production of proinflammatory cytokines, such as IL-1b and IL-6,

from peripheral T helper cells (99). Meanwhile, P. gingivalis can

enhance osteoclast activation and Th1-Th17-response, which

further aggravate bone resorption during the pathogenesis of

destructive periodontitis (103). Clinically, the salivary

concen t r a t i on s o f P . g ing i va l i s , I L -1b and mat r i x
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metalloproteinase (MMP)-8 are associated with the severity of

periodontitis (102). On the other hand, P. gingivalis overgrowth

in the oral cavity can affect host glucose homeostasis. Once oral P.

gingivalis is translocated to the liver, it can inhibit glycogen

synthesis via the Akt/GSK-3b signaling, resulting in a higher

glucose level (100). Oral colonization with periodontal pathogens,

particularly P. gingivalis, impaired insulin resistance in high fat diet-

fed mice (97). In a previous clinical study, periodontal treatment

improved glycemic profiles and reduced detection rate of

subgingival P. gingivalis in type 2 diabetic patients (101). These

preclinical and clinical findings suggested P. gingivalis as a potential

microbial biomarker for periodontitis and diabetes mellitus.
Fusobacterium nucleatum

Another periodontal pathogen, Fusobacterium nucleatum (F.

Nucleatum) is also correlated to the occurrence of diabetes mellitus.

F. Nucleatum is a Gram-negative anaerobe, predominantly found in

biofilms of dental plaques (122). F. Nucleatum acts as an

intermediate colonizer bridging the attachment of commensal and

pathogenic bacteria on tooth and epithelial surfaces. Moreover, F.

Nucleatum contributes to the reducing microenvironment that

facilitates the colonization of oxygen-intolerant microbes (106).

Coherently, F. Nucleatum significantly enhanced the invasion of

human gingival epithelial cells by P. gingivalis (108). Oral infection

with F. Nucleatum promotes recruitment of macrophages and

osteoclasts towards gingival tissues, driving inflammation and

bone resorption (105). Clinically, among patients suffering from

chronic periodontitis, higher subgingival levels of F. Nucleatum

were observed in those with uncontrolled type 2 diabetes mellitus
TABLE 3 Oral bacteria as potential biomarkers for periodontitis and diabetes mellitus.

Oral
bacteria

Effects on host Correlation
with periodontitis

Correlation with
diabetes mellitus

Ref

P. gingivalis

· Forms subgingival biofilm (increased DPPIV
activity)
· Induces the production of proinflammatory
cytokines (IL-1b and IL-6)
· Enhances osteoblast activation and hence
bone resorption

·Salivary concentrations
positively correlated
with periodontitis

· Inhibits host glucose homeostasis
(glycogen synthesis and insulin resistance)
· Periodontal treatment reduces P.
gingivalis level and improves
glycemic profiles

(97–103)

F. Nucleatum

· Acts as intermediate colonizer bridging the
attachment of commensal and pathogenic bacteria
· Facilitates a reducing microenvironment for
colonization of anaerobes
· Promotes recruitment of macrophages and
osteoclasts to gingival tissues

· Positively correlated
with periodontitis

· Increased subgingival levels in patients
with uncontrolled type 2 diabetes mellitus
· Increased abundance in patients with
both periodontitis and diabetes mellitus

(104–108)

T. forsythia

· Triggers destruction of connective tissue
· Promotes resorption of alveolar bone
· Facilitates bacterial adhesion
· Promotes the production of inflammatory
cytokines (e.g. IL-6 and IL-10)

· Positively correlated
with periodontitis

· Increased subgingival levels in diabetic
patients
· Positively correlated to resistin levels
· Positively correlated to serum SAA levels

(109–114)

P. nigrescens

· Shifts from commensalism to virulence
· Upregulates expression of MMPs
· Induces the production of
proinflammatory cytokines

· Positively correlated with
periodontitis
· Periodontal treatment reduces
P. nigrescens level, and IL-6 level
in serum and GCF

· Increased abundance in diabetic patients (115–120)
*Red color: body fluids or tissues/cells where these biomarkers could be collected for potential diagnostic purpose.
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(104). Meanwhile, higher F. Nucleatum levels were associated with

poorer glycemic control in patients with both chronic periodontitis

and type 2 diabetes mellitus (107). However, the detailed

mechanism on how F. Nucleatum is related to the progression of

diabetes mellitus remains elusive.
Tannerella forsythia

Tannerella forsythia (T. forsythia), another Gram-negative

anaerobe, is also considered as a major contributor to the

development of periodontitis. T. forsythia triggers destruction of

connective tissue and resorption of alveolar bone during

periodontitis progression (110). Higher subgingival T. forsythia

levels were observed in obese individuals than those with normal

BMIs (111), implying a higher risk of periodontitis in obese

individuals. The leucine-rich-repeat protein (BspA) expressed by

T. forsythia has been shown to play a contributory role in bacterial

adhesion and inflammation in dental tissues. T. forsythia can

stimulate the secretion of proinflammatory cytokines and

chemokines from monocytes and osteoblasts respectively, driving

inflammation and bone resorption (113). Additionally, T. forsythia

enhances the expression of inflammatory cytokines (e.g. IL-6 and IL-

10) in macrophages and dendritic cells, in a toll-like receptor 2

(TLR2)-dependent manner (112). In type 2 diabetic patients, the

abundance of T. forsythia in subgingival plaque was found higher

than that of non-diabetic individuals (114). Interestingly, higher

levels of periodontal pathogens, including P. gingivalis and

T. forsythia, were observed along with higher resistin levels in

saliva of obese type 2 diabetic patients (109). In mice, oral

infection with T. forsythia remarkably increased the serum levels

of serum amyloid A (SAA), the subclinical inflammatory biomarker

in multiple diseases like diabetes mellitus, atherosclerosis and

rheumatic diseases (110).
Prevotella nigrescens

Prevotella nigrescens (P. nigrescens) is another Gram-negative and

non-spore forming anaerobe commonly found in the dental plaques of

periodontitis patients (118). During the progression of periodontitis, P.

nigrescens shifts from commensalism to virulence via the upregulation of

MMPs (120). High levels of MMPs (e.g. MMP-8 and MMP-9) often

reflect periodontal inflammation (115). P. nigrescens can induce IL-1b
production in dendritic cells through the activation of TLR2 and

nucleotide-binding oligomerization domain like receptor pyrin domain

containing 3 (NLRP3) inflammasome (117). In type 2 diabetic patients,

higher abundance of P. nigrescens was also noted in periodontitis sites

when compared with those of non-diabetic individuals (116). In non-

diabetic pregnant women, periodontal therapy remarkably reduced P.

nigrescens abundance in dental plaque, and IL-6 levels in serum andGCF

(119). Therefore, it is reasonable to postulate that periodontal treatment

may elicit similar anti-inflammatory effects in diabetic patients by

decreasing P. nigrescens abundance.

Due to the ease of obtaining samples from saliva and dental

plaques, microbes in the oral cavity might be efficient and potential
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biomarkers for disease diagnosis and evaluation of therapeutic

outcomes in periodontitis and diabetes mellitus. However,

selection of a single bacterial strain may not most accurately

evaluate the severity of diseases. In contrast, selection of multiple

microbial biomarkers, or even in combination with other

endogenous biomarkers, may further improve the accuracy and

consistency of disease prediction and evaluation.
Therapeutic insights and
future perspectives

Notably, some of the mentioned biomarkers might also serve as

therapeutic targets for the treatment of diabetes mellitus and

periodontitis. In other words, therapeutic strategies that could

suppress the levels of certain biomarkers might alleviate the

progression of the two diseases, particularly when certain

biomarkers are involved in the pathogenic mechanisms of both

diseases. For instance, non-surgical periodontal treatment could

reduce serum and GCF levels of visfatin and improve glucose

homeostasis in patients with concomitant periodontitis and

diabetes mellitus (22). Of note, visfatin can alter glucose

metabolism and promote inflammation in gingival tissues (123).

Furthermore, periodontal treatment was shown to improve

glycemic profiles along with reduced persistence of P. gingivalis in

type 2 diabetic patients (101), where P. gingivalis is the major

pathogenic bacterium for periodontitis and can alter glucose level

once translocated to liver (100). Future studies shall investigate

whether other biomarkers participate in the pathogenic processes of

both diseases for more therapeutic insights.

The above studies also indicate that periodontal treatment is

possible to alter glycemic control in patients. On the other hand,

treatment that improves glycemic control might promote periodontal

health. A previous clinical study showed that effective glycemic

control without periodontal treatment could also improve bleeding

on probing in patients (124). It is therefore interesting to investigate

whether glycemic control alone could alter biomarker levels in oral

cavity (e.g. GCF) of patients in future study. Besides, further efforts

are needed to clarify whether a certain biomarker is a cause or

consequence of diabetes mellitus and periodontitis. Therapeutic

strategies that alter the consequent biomarker might not necessarily

alleviate lesions and disease progressions of both diseases.
Conclusions

Epidemiologically, periodontitis is now considered as a risk

factor for diabetes mellitus, and has been designated as the sixth

complication of diabetes mellitus (125, 126). It is also reasonable to

consider periodontitis as a co-morbidity of diabetes mellitus (127).

Increased periodontal breakdown in patients with diabetes can

attribute to the activation of immune and inflammatory

responses, and increased susceptibility to infection. Certain

endogenous biomarkers, including adipokines, microRNAs,

inflammatory mediators, oxidative stress markers, and

glycoproteins have been reported to play important roles in
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initiating and regulating different effector stages of immune and

inflammatory responses (69, 128). Potentially, these low-molecular-

weight proteins or non-coding RNAs are not only therapeutic

targets, but also clinical predictors for earlier diagnosis and

intervention for periodontitis and diabetes mellitus (20, 129).

Importantly, overgrowth of certain bacterial strains in the oral

cavity might be indicative to both periodontitis and diabetes

mellitus. Further biomarker research would be a worthwhile

endeavor to deepen our understanding towards the bidirectional

relationship between type 2 diabetes mellitus and periodontitis.
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