
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Jian Ma,
Harbin Medical University, China

REVIEWED BY

Shuaishi Gao,
Peking University, China
Fan Zhang,
Duke University, United States
Yiyong Zhao,
Harvard University, United States

*CORRESPONDENCE

Yingze Zhang

yzling_liu@163.com

Xia Zhao

zhaoxia3032@163.com

†These authors have contributed equally to
this work

RECEIVED 11 September 2023
ACCEPTED 01 November 2023

PUBLISHED 20 November 2023

CITATION

Xu K, Zhang L, Wang T, Ren Z, Yu T,
Zhang Y and Zhao X (2023) Untargeted
metabolomics reveals dynamic changes in
metabolic profiles of rat supraspinatus
tendon at three different time points after
diabetes induction.
Front. Endocrinol. 14:1292103.
doi: 10.3389/fendo.2023.1292103

COPYRIGHT

© 2023 Xu, Zhang, Wang, Ren, Yu, Zhang
and Zhao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 20 November 2023

DOI 10.3389/fendo.2023.1292103
Untargeted metabolomics
reveals dynamic changes in
metabolic profiles of rat
supraspinatus tendon at three
different time points after
diabetes induction

Kuishuai Xu1†, Liang Zhang1†, Tianrui Wang1†, Zhongkai Ren1,
Tengbo Yu2, Yingze Zhang1* and Xia Zhao1*

1Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao, China,
2Department of Sports Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China
Objective: To investigate the dynamic changes of metabolite composition in rat

supraspinatus tendons at different stages of diabetes by untargeted

metabolomics analysis.

Methods: A total of 80 Sprague–Dawley rats were randomly divided into normal

(NG, n = 20) and type 2 diabetes mellitus groups (T2DM, n = 60) and subdivided

into three groups according to the duration of diabetes: T2DM-4w, T2DM-12w,

and T2DM-24w groups; the duration was calculated from the time point of

T2DM rat model establishment. The three comparison groups were set up in this

study, T2DM-4w group vs. NG, T2DM-12w group vs. T2DM-4w group, and

T2DM-24w group vs. T2DM-12w group. Themetabolite profiles of supraspinatus

tendon were obtained using tandem mass spectrometry. Metabolomics

multivariate statistics were used for metabolic data analysis and differential

metabolite (DEM) determination. The intersection of the three comparison

groups’ DEMs was defined as key metabolites that changed consistently in the

supraspinatus tendon after diabetes induction; then, Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analysis was performed.

Results: T2DM-4w group vs. NG, T2DM-12w group vs. T2DM-4w group, and

T2DM-24w group vs. T2DM-12w group detected 94 (86 up-regulated and 8

down-regulated), 36 (13 up-regulated and 23 down-regulated) and 86 (24 up-

regulated and 62 down-regulated) DEMs, respectively. Seven key metabolites of

sustained changes in the supraspinatus tendon following induction of diabetes

include D-Lactic acid, xanthine, O-acetyl-L-carnitine, isoleucylproline,

propoxycarbazone, uric acid, and cytidine, which are the first identified biomarkers

of the supraspinatus tendon as it progresses through the course of diabetes. The

results of KEGG pathway enrichment analysis showed that the main pathway of

supraspinatus metabolism affected by diabetes (p < 0.05) was purine metabolism.

The results of the KEGG metabolic pathway vs. DEMs correlation network graph

revealed that uric acid and xanthine play a role in more metabolic pathways.
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Conclusion: Untargeted metabolomics revealed the dynamic changes of

metabolite composition in rat supraspinatus tendons at different stages of

diabetes, and the newly discovered seven metabolites, especially uric acid and

xanthine, may provide novel research to elucidate the mechanism of diabetes-

induced tendinopathy.
KEYWORDS

diabetes mellitus, rotator cuff, supraspinatus, metabolomics, biomarker
discovery, progression
1 Introduction

Tendinopathy is one of the common diseases of the human

motor system, and many factors, including aging, inflammation,

chronic injury, and metabolic diseases, lead to tendinopathy (1).

Among these, diabetes mellitus is a major factor affecting tendon

quality and leading to tendinopathy (2). In recent years, the

increasing number of people with diabetes has prompted a large

number of studies (3, 4) to focus on the adverse effects of diabetes

on tendons. Some studies have shown that diabetes alters the

physical and chemical properties of tendons and the arrangement

of collagen fibers, extracellular matrix composition, and

biomechanics in a high-glucose microenvironment (5). The

current study demonstrated that the degree of tendinopathy

gradually worsens and the biomechanical properties decrease in

the supraspinatus tendon of rats at 2, 4, 8, and 12 weeks after

diabetes induction (6). However, studies on how diabetes leads to

the continuous progression and deterioration of rotator cuff

tendinopathy have not been reported; also, the changes in

endogenous small molecules and the involved biological pathways

with the progression of diabetes remain unclear. With the

increasing development of metabolomics, metabolomic-based

studies provide novel ideas for the study of tendinopathy. In a

recent non-targeted metabolomics study, Sikes et al. (7)

demonstrated that creatine, inositol, and lipid signaling pathways

may be involved in the development of tendinopathy in mouse

models. Although the subjects of this study were not animal models

of diabetes, untargeted metabolomics results showed subtle

differences between samples providing new insights into the

mechanisms of disease development and progression.

In previous studies, metabolomics techniques have played a

significant role in investigating the mechanisms by which diabetes

leads to the continuous progression and deterioration of diseases in

the kidney (8), microvasculature (9), and retina (10), as well as

obesity (11). Peng et al. (8) found that two differential metabolites

(DEMs) (Asn-Met-Cys-Ser and Asn-Cys-Pro-Pro) increased with

the progression of proteinuria in diabetic nephropathy, and the

newly discovered serum metabolites could be used as biomarkers

for the continuous progression of diabetic nephropathy. Li et al. (9)

identified 24 metabolites that reflect the metabolic changes at

different stages of diabetic peripheral vascular disease by

untargeted metabolomics. Yun et al. (10) used targeted
02
metabolomics and showed that the mechanism by which diabetes

leads to the development and progression of retinopathy might be

related to carnitine and phosphatidylcholine. Lv et al. (11) identified

DEMs using metabolomics, which might be putative biomarkers for

assessing pancreatic b-cell function at different stages of diabetes.

Although several studies have investigated the mechanism by which

diabetes leads to the development and progression of various

complications using metabolomics techniques, the dynamic

changes in the metabolic profiles of supraspinatus tendons at

different stages after diabetes induction have not been reported.

Patients/animal tendons with different duration of diabetes

have diverse molecular profiles of metabolites. Consequently, 40

supraspinatus tendon samples were extracted from normal and

diabetic rats in this study to reveal a list of metabolites associated

with the progression of diabetic tendinopathy (Figure 1). Next, we

performed untargeted metabolomics testing on all samples,

screened for DEMs that consistently changed throughout

diabetes, and performed hierarchical cluster analysis and KEGG

pathway analysis. We speculated that this study provides new ideas

for exploring the mechanisms by which diabetes leads to the

development and progression of rotator cuff tendinopathy.
2 Materials and methods

2.1 Experimental grouping and
establishment of type 2 diabetic rat model

A total of 80 Sprague–Dawley rats (6-week-old, 200–220 g,

Beijing Vital River, production license No. SCXK (Zhejiang) 2019-

0001) were divided into four groups according to random number

table method: normal, diabetic 4-week, diabetic 12-week, and

diabetic 24-week group. The normal group was fed a normal diet,

and the diabetic group was fed a high-sugar and high-fat diet

(Mediscience, MD12033) for 4 weeks. subsequently, diabetic rats

were injected 40 mg/kg streptozotocin (STZ, Aladdin)

intraperitoneally on an empty stomach (12), and rats fed a

normal diet were injected with an equivalent volume of sodium

citrate buffer (SSC, BIOISCO, 40 mg/kg). Three days after the

injection of STZ solution, fasting blood glucose (FBG)

concentration was measured in the rat tail tip blood; if the blood

glucose level was ≥ 16.7 mmol/L for 3 consecutive days, the model
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was considered successful (13). Rats whose blood glucose did not

reach the criterion were excluded and quantitatively supplemented.
2.2 Metabolite sample preparation

The bilateral supraspinatus tendons of rats were removed, the

excess muscle components around the tendons were separated, the

tendons were immediately placed in a precooled phosphate-

buffered saline (PBS), the stains and blood on the tissue surface

were washed, the liquid on the surface was blotted, and the treated

tissues were rapidly placed in precooled numbered enzyme-

resistant −192°C ultra-low temperature-threaded mouth cryogenic

vials without enzymes, snap frozen in liquid nitrogen for 3-4 h, and

placed in a −80°C freezer. The samples were stored on dry ice

during shipment for metabolomics analysis. Moreover,

metabolomic analysis requires at least 50 mg of tissue, and

supraspinatus tendon tissue from both rotator cuffs is undermass

in one animal; hence, supraspinatus tendon tissue from two animals

(four shoulders) needs to be pooled to construct one

metabolomic sample.
2.3 Untargeted metabolomic analysis of
supraspinatus tendon

Metabolites were extracted from tendons with 50% methanol

buffer. The processes of sample collection, storage, and preparation

were consistent with that of Han et al. (14). Pooled quality control

(QC) samples were prepared by mixing 10 mL of each extraction

mixture. This analysis was carried out on an ultra-performance

liquid chromatography (UPLC)–MS/MS system: a UPLC (UltiMate

3000 HPLC, Thermo Fisher Scientific, San Jose, CA, USA)

connected to a high-resolution tandem mass spectrometer (Q-
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Exactive, Thermo Fisher Scientific, Saint Louis, MO, USA). The

supernatants were collected and used for metabolomic analysis. LC/

MS and untargeted metabolomics raw data were analyzed at LC-Bio

Technology Co., Ltd (Hangzhou, Zhejiang Province, China). The

instrument parameters were set using previously reported methods

(14). A high-resolution tandem mass spectrometer Q-Exactive

(Thermo Scientific) was used to detect metabolites eluted form

the column. The Q-Exactive was operated in both positive and

negative ion modes. Precursor spectra (70–1050 m/z) were collected

at 70,000 resolution to hit an AGC target of 3e6. The maximum

inject time was set to 100 ms. A top 3 configuration to acquire data

was set in DDA mode. Fragment spectra were collected at 17,500

resolution to hit an AGC target of 1e5 with a maximum inject time

of 80 ms. In order to evaluate the stability of the LC-MS during the

whole acquisition, a quality control sample (Pool of all samples) was

acquired after every 10 samples.

Metabolomics datasets were analyzed using the open-source

software metaX, and univariate and multivariate analyses were

performed to obtain DEMs between the three comparison groups.

Collecting, identifying, and analyzing baseline data was similar to that

reported in a recent study by Yang et al. (15). The p-value was

adjusted by Benjamini–Hochberg’s approach. Variable Importance in

Projection (VIP) value > 1, FC > 2 or < 0.5, and an adjusted p-value <

0.05 were selected as DE features and used for further analyses. These

criteria were selected according to those described previously (16).

The metabolites included in the intersection of DEMs between the

three comparison groups were identified by Venn Diagram. The

relative content of the metabolites was calculated by a Z-score plot,

and then the trend change of metabolites between the three diabetes

stages was analyzed. All DEM features/metabolites were annotated in

KEGG (http://www.kegg.jp/) (17) andHMDB (http://www.hmdb.ca/)

according to Tao et al. (18); then, the annotated metabolites were

mapped to the KEGG pathway database (http://www.kegg.jp/

kegg/pathway.html).
FIGURE 1

Study design and metabolomic analysis of the supraspinatus tendon in diabetic rats. Overview of the cohort (including 10 normal samples, 10 type 2
diabetes 4-week samples, 10 type 2 diabetes 12-week samples, and 10 type 2 diabetes 24-week samples) and study design (including metabolomics
LC-MS/MS, database search, detection, identification, and quantitative analysis of metabolites, and screening of DEMS).
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2.4 Statistical analysis

SPSS 21.0 software (IBM, Armonk, NY, USA) was used for

statistical analysis of the final experimental data. GraphPad Prism

8.0 (La Jolla, CA, USA) was used to plot the histograms of the

expression of seven key metabolites with mean ± standard error of

the mean (SEM). Bioinformatics-related widely untargeted

metabolomic analysis was performed using the OmicStudio tools

(https://www.omicstudio.cn/tool) (accessed on 3 October 2022).
3 Results

3.1 Metabolic profile of
supraspinatus tendon

Total ion chromatograms (TIC) of QC samples tested in

positive (POS) ion mode (Figure 2A) and negative (NEG) ion

mode (Figure 2B) demonstrated the repeatability and reliability of

the data. A total of 335 metabolites were detected in supraspinatus

tendon samples, accounting for only 3.77% of the total metabolites,

as seen by the results of untargeted metabolomics analysis. A total of

201 POS-mode metabolites (Supplementary Table 1) and 134 NEG-

mode metabolites (Supplementary Table 2) were tentatively

identified, which could be annotated into 14 classes (Figure 2C),

mainly including lipids and lipid-like molecules (39.1%), organic

acids and derivatives (18.81%), and benzenes (9.85%).
3.2 Principal component analysis (PCA)
and partial least squares-discriminant
analysis (PLS-DA)

The PCA of metabolites (Figures 3A, D, G) showed the degree

of separation between tendon tissues from different courses of

diabetes, indicating that various stages of diabetes had diverse

effects on tendons, indicating differences in metabolites between

the two groups; also, the analytical method was reproducible. In

order to maximize the differences between groups, PLS-DA

provided a multivariate statistical analysis method with

supervised pattern recognition, revealing distinct differences

between groups and better clustering of sample points within

groups (Figures 3B, E, H). PLS-DA model could overfit in
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processing high-dimensional data, and to prevent model

overfitting, the permutation tests of PLS-DA model were

conducted. Q2<0 in the permutation tests diagram (Figures 3C, F,

I) indicates that there is no overfitting of the model, and the

differential metabolite analysis is more accurate. In addition, the

data in the blue line (R2) were higher than those in the red line

(Q2), indicating that the model established by the experiment had

not undergone overfitting, indicating its validity that could be

analyzed further.
3.3 DEMs and their KEGG
enrichment analysis

Next, we analyzed the annotated metabolites in tendon tissue,

and volcano plots were used to illustrate the distribution of DEMs at

various time points of diabetes (Figures 4A–C). Red and blue circles

in the volcano plot are up- and downregulated metabolites, and the

data showed that the number of DEMs exhibits an increasing trend

in a diabetes-duration manner (Table 1). A total of 94 DEMs were

detected in the T2DM-4w group compared to NG (Supplementary

Table 3), including 86 up- and 8 downregulated metabolites. The

most affected metabolites were organic acids and derivatives

(42.55%), lipid and lipid molecules (15.56%), and organic

heterocyclic compounds (14.89%) (Figure 5A). DEMs were

enriched into the KEGG database, following which, we detected

the enrichment of 92 pathways (Supplementary Table 6, Figure 6A),

of which the top three significantly enriched metabolic pathways

were protein biosynthesis and absorption, aminoacyl-tRNA

digestion, and ABC transporters. We also identified 36 DEMs in

the T2DM-12w compared to the T2DM-4w group (Supplementary

Table 4), including 13 up- and 23 downregulated metabolites. The

most affected metabolites were lipids and lipid molecules (39%),

organic acids and derivatives (14%), organic heterocyclic

compounds (11%), and benzene (11%) (Figure 5B). DEMs were

enriched in the KEGG database, and it was found that 17 pathways

were enriched (Supplementary Table 6, Figure 6B), of which

the top three significantly enriched metabolic pathways were

purine metabolism, choline metabolism in cancer, and

glycerophospholipid metabolism. A total of 86 DEMs were found

in T2DM-24w compared to the T2DM-12w group (Supplementary

Table 5), including 24 up- and 62 downregulated metabolites. The

most affected metabolites were lipids and lipid molecules (56%),
B CA

FIGURE 2

Total ion chromatograms of LC-MS data from metabolite profiles of QC samples detected in the POS ion mode (A) and NEG ion mode (B) X-axis
represents retention time, and Y-axis represents total ion chromatogram in MS. (C) Superclass entries for all identified metabolites.
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organo-oxygenated compounds (9%), organic acids and derivatives

(8%), and organic heterocyclic compounds (8%) (Figure 5C). DEMs

were enriched in the KEGG database, and it was found that 86

pathways were enriched (Supplementary Table 6, Figure 6C), of

which the top three significantly enriched metabolic pathways were

choline metabolism in cancer, glycerophospholipid metabolism,

and arginine biosynthesis. DEMs from the three comparison

groups could be aggregated by hierarchical cluster analysis

(Figures 5D–F), and regions of different colors represent cluster

grouping to visualize the variations in metabolites between groups

by color gradients.
Frontiers in Endocrinology 05
3.4 Metabolomic alterations
associated with the progression of
diabetic tendinopathy

Venn diagram (Figure 7A) shows the DEMs co-existing in the

three comparison groups. We found that seven selected metabolites

were common DEMs in all comparison groups (Table 2), including

D-lactic acid, xanthine, O-acetyl-L-carnitine, isoleucylproline,

propoxyazone, uric acid, and cytidine, all of which were the first

biomarkers identified in the supraspinatus tendon with the

progression of diabetes (Figures 7B–H). Seven DEMs were
B CA

FIGURE 4

Volcano plot of DEMS between three comparison groups. Each dot represents one metabolite Red dots represent the significantly upregulated
metabolites, and blue dots represent the significantly downregulated metabolites Gray dots represent no significant DEMS. (A) T2DM-4w group vs.
Normal group: (B) T2DM-12w group vs. T2DM-4w group: (C) T2DM-24w group vs. T2DM-12w group.
B C

D E F

G H I

A

FIGURE 3

Metabolomic changes in rat supraspinatus tendon at different time points after diabetes induction compared to the normal group. PCA analysis
(A), PLS-DA (B), and permutation analysis (C) in the T2DM-4w group vs. Normal group. PCA analysis (D), PLS-DA (E), and permutation analysis (F) in
the T2DM-12w group vs. T2DM-4w group. PCA analysis (G), PLS-DA (H), and permutation analysis (I) in the T2DM-24w group vs. T2DM-12w group.
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subjected to KEGG enrichment analysis, and the results showed

that a total of 12 metabolic pathways were enriched (Table 3), of

which purine metabolic pathways were significantly enriched

(p < 0.05), suggesting that purine metabolism is crucial for the

progression of diabetic tendinopathy (Figure 8A). The results of the

network diagram of DEM correlations in KEGG-enriched pathways

(Figure 8B) revealed that uric acid and xanthine play a role in

several metabolic pathways, and these two biomarkers may be

closely associated with the development of diabetic tendinopathy.
4 Discussion

Metabolomics is widely used in many fields and plays a critical

role in the study of mechanisms involved in diabetes and its

complications and the establishment of predictive models (19,

20). Metabolomics techniques involve the identification and

characterization of small molecules; the commonly used analytical

techniques include nuclear magnetic resonance (NMR), gas

chromatography-mass spectrometry (GC-MS), and liquid

chromatography-mass spectrometry (LC-MS) (21). Non-targeted

metabolomics studies analyze endogenous small molecule

metabolites in the body without bias, providing information on

thousands of compounds detected in samples and discovering the

correlation between metabolites and physiological and pathological

changes (22). Because each individual’s metabolic profile is unique,
Frontiers in Endocrinology 06
fluctuations and differences in metabolite levels directly reflect the

mechanisms underlying disease development and progression (23).

Over the past decade, many studies have provided information

regarding the mechanisms by which diabetes leads to the

continuous progression and deterioration of the kidney (8),

microvasculature (9), and retinal diseases (10) through untargeted

metabolomics techniques. However, the correlation between

metabolite profiles and the severity of diabetic tendinopathy has

not yet been investigated.

This is the first study to establish a list of biomolecules that may

be involved in the dynamic changes of the supraspinatus tendon of

the rotator cuff with the progression of diabetes using mass

spectrometry-based untargeted metabolomics techniques. In

addition, we identified seven key metabolites that may be

associated with the progression of rotator cuff tendinopathy,

especially uric acid and xanthine play a role in metabolic

pathways which might be closely related to the development of

diabetic tendinopathy.

The comparison of time-dependent metabolic trajectories

between diabetic and control groups provided information about

metabolites that may be involved in the development of diabetic

tendinopathy. In the present study, 12 pathways, such as purine,

pyruvate, and microbial metabolisms in different environments,

were likely to be associated with the development of diabetic

tendinopathy, and one of the most significantly changed (p <

0.05) pathways was the purine metabolism pathway. Purines are
B C

D E F

A

FIGURE 5

Classification of metabolites including T2DM-4w group vs. Normal group (A), T2DM-12w group is, T2DM-4w group (B), and T2DM-24w group vs
T2DM-12w group (C); Heatmap of annotated metabolites with increasing and decreasing trend, including T2DM-4w group vs. Normal group
(D), T2DM-12w group vs. T2DM-4w group (E), and T2DM- 24w group vs. T2DM-12w group (F). Each column represents a sample, and each
metabolite is visualized in a row Red indicates a high abundance, and blue indicates a relatively low abundance of metabolites.
TABLE 1 Changes in differential metabolites in the three comparison groups.

Comparison All Up Done NEG POS

T2DM-4w vs NG 94 86 8 40 54

T2DM-12w vs T2DM-4w 36 13 23 15 21

T2DM-24w vs T2DM-12w 86 24 62 46 40
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critical components of the cellular energy system and are also

critical components of pyrimidine, RNA, and DNA production

(24). To the best of our knowledge, this is the first study reporting

that diabetes alters purine metabolism in tendon samples. In

addition, xanthine was first decreased at week 4 after induction of

diabetes compared to the normal group, but significantly increased

in tendons from week 4 to week 8 of diabetes and decreased at week

12, but the results were still higher than those in the normal group.

Previous studies have also shown that the purine metabolic pathway

is associated with gestational diabetes (25), and xanthine is

significantly increased in the urine metabolome of subjects with

gestational diabetes (26). A total of 17 metabolites were identified

between type 2 diabetes and diabetic nephropathy; among these,

purine metabolism is mainly involved in this disease (27). In

addition, the pathophysiology of a high-sugar diet is associated

with the dysregulation of purine metabolism (28). Another study

recorded serum metabolomics data from 650 healthy people,

showing that consumption of sugar-rich foods is closely related to

elevated circulating purine levels. This finding suggested that
Frontiers in Endocrinology 07
dietary sugar affects human health through the dysregulation of

purine metabolism (29).

The optimal concentrations of uric acid are essential for the normal

functioning of the body (30). Compared to the control group, uric acid

levels in the supraspinatus tendon of rats with diabetes for 4 weeks

increased significantly and decreased gradually during the period from

weeks 4–24 of diabetes. The accelerated accumulation of uric acid in

the initial period after diabetes induction might contribute to the

development and progression of diabetic complications. The precursor

of uric acid is xanthine, which is further oxidized to uric acid by

xanthine oxidase (31). Cytosol contains about 4 mg/mL of uric acid,

which increases significantly after nucleic acid degradation in injured

cells (32). In addition, high levels of serum uric acid levels are associated

with glucose metabolism disorders (33). In a previous study, uric acid

was increased in meconium or urine of newborns from mothers

diagnosed with gestational diabetes (34). Elevated plasma/serum uric

acid is associated with an increased risk of insulin resistance (35, 36),

and pathogenic mechanisms may be related to the inhibition of insulin

signaling and AMPK activity (37, 38).
B C D

E F G H

A

FIGURE 7

(A) The Venn diagram compares the number of different metabolites among all three comparison groups, including the paired comparison groups of
T2DM-4w group vs. Normal group, T2DM-12w group vs. T2DM-4w group, and T2DM-24w group vs. T2DM-12w group. The different expression
levels of isoleucylproline (B), O-acetyl-L-carnitine (C), xanthine (D), D-lactic acid (E), propoxycarbazone (F), uric acid (G), and cytidine (H) between
Normal group, T2DM-4w group, T2DM-8w group, and T2DM-12w group. Adjusted p-value < 0.05 were selected as DE features.
B CA

FIGURE 6

KEGG pathways that the distinguished metabolites participate in different comparison groups. (A) T2DM-4w group vs. Normal group. (B) T2DM-12w
group vs. T2DM-4w group; (C) T2DM-24w group vs. T2DM-12w group. The color of the point represents the p-value. The smaller the value, the
higher the reliability of the test and the greater the statistical significance. The size of the point represents the number of differential metabolites in
the corresponding path. The larger the point, the more DEMs in the pathway.
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However, uric acid, as a natural antioxidant in vivo, can

scavenge toxic free radicals produced during physiological and

pathological processes and plays a critical role in anti-oxidative

stress, neuroprotection, and anti-inflammation (39). In humans,

about 50% of the plasma antioxidant capacity is obtained from uric

acid (40, 41). Uric acid acts as an antioxidant and can scavenge

excessive reactive oxygen species (ROS) and peroxynitrite from the

body (42). High levels of uric acid are detected in the cytoplasm of

normal human and mammalian cells, which is also closely related to

its antioxidant effects (43–45). In addition, uric acid plays a role in

tissue repair, and the related mechanisms may be associated with

initiating the inflammatory process and mobilizing progenitor

endothelial cells (46). Uric acid also has a role in the prevention

of disease; for example, peroxides and ROS can be blocked by high

uric acid levels, and hence, the probability of multiple sclerosis (MS)

is greatly reduced in patients with gout (47). Therefore, we

hypothesized that the decrease in uric acid levels in the

supraspinatus tendon from week 4–24 after diabetes induction

might further aggravate oxidative stress and inflammatory

response in the supraspinatus tendon, leading to the progression
Frontiers in Endocrinology 08
of tendinopathy; however, the specific mechanism needs to be

verified by additional studies in the future.

According to the current results, a series of amino acids was

significantly reduced in T2DM-24w compared to the T2DM-12w

group, including L-citrulline, L-(+)-arginine, citrulline, and

glutamic acid, which are critical substances to maintain the

normal function of the human body. The metabolic processes of

the body are extremely important, and glutamic acid is the most

abundant amino acid in the mammalian brain. It is mainly involved

in the synthesis of protein peptides and fatty acids, together with

glutamine, and regulates the ammonia levels in the body (48). In

addition, glutamate is an acidic amino acid, and although it is not an

essential amino acid for the human body, it participates in body

metabolism as a carbon and nitrogen nutrient (49). The alterations

in amino acid metabolism in the supraspinatus tendon of diabetic

rats may contribute to many clinical changes, and amino acid

metabolites may be potential biomarkers.

T2DM-12w showed a significant increase in LysoPE (18:2),

LysoPE (17:0), LysoPE (19:0), LysoPE (20:1), LysoPC (18:2),

LysoPC (18:3), and LysoPC (20:2) compared to the T2DM-4w
TABLE 3 List of pathways enriched for seven key metabolites.

Pathway ID Pathway Description Matching IDs Metabolite p-value

Map00230 Purine metabolism C00366;C00385 Uric acid, Xanthine 0.04

Map00620 Pyruvate metabolism C00256 D-Lactic acid 0.05

Map01120 Microbial metabolism in diverse environments C00366;C00256;C00385 Uric acid, D-Lactic acid, Xanthine 0.07

Map00232 Caffeine metabolism C00385 Xanthine 0.11

Map01502 Vancomycin resistance C00256 D-Lactic acid 0.15

Map04931 Insulin resistance C02571 O-Acetyl-L-carnitine 0.15

Map00240 Pyrimidine metabolism C00475 Cytidine 0.25

Map01065 Biosynthesis of alkaloids derived from histidine and purine C00385 Xanthine 0.25

Map04976 Bile secretion C00366 Uric acid 0.29

Map01060 Biosynthesis of plant secondary metabolites C00385 Xanthine 0.71

Map01100 Metabolic pathways C00366;C00475;C00385 Uric acid, Xanthine, Cytidine 0.80

Map01110 Biosynthesis of secondary metabolites C00385 Xanthine 0.84
fro
TABLE 2 List of basic information on seven key metabolites associated with the progression of diabetic tendinopathy.

Compound name m/z a rtb (min) Mode KEGG ID

Trend

4w vs NG 12w vs 4w 24w vs 12w

Xanthine 151.0258883 1.497016667 POS C00385 down up down

Uric acid 167.0210255 0.977166667 NEG C00366 up down down

O-Acetyl-L-carnitine 204.1221238 0.963716667 POS C02571 up down up

Propoxycarbazone 443.0774954 0.759583333 NEG – up down up

D-Lactic acid 89.0240203 1.316475 NEG C00256 up down up

Isoleucylproline 229.1532649 0.972533333 POS – up down up

Cytidine 266.0732398 0.95165 POS C00475 down down up
amass to charge ratio of the features; bretention time of the features.
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group. Lyso-phosphatidylcholine is a phospholipid closely related

to metabolic diseases, such as diabetes, dyslipidemia, and

atherosclerosis, and plays a key role in the inflammatory response

as the key metabolite of the lipid pro-inflammatory pathway (50).

Accumulation of LysoPC induces apoptosis and leads to

mitochondrial dysfunction (51). In vitro studies have shown that

LysoPC elicits apoptosis when incubated with cultured hepatocytes

(52). However, high phosphatidylcholine levels were associated

with a low risk of type 2 diabetes (20). The key metabolic

pathway associated with these metabolites is glycerophospholipid

metabolism, a type of lipid metabolism, and abnormal lipid

metabolism is directly associated with oxidative stress and

inflammatory responses (53). Compared to the T2DM-12w

group, some LysoPC decreased in the T2DM-24w group,

although the related mechanism needs to be explored further.

The current results suggested that abnormal glycerophospholipid

metabolism may be one of the metabolic pathways involved in the

progression of diabetic tendinopathy.

As the first study to investigate the dynamic changes of

metabolites in the supraspinatus tendon of the rotator cuff in

diabetic rats using untargeted metabolomics techniques, the

experimental results prompt the exploration of the mechanism of

the development and progression of diabetic tendinopathy.

Nevertheless, the present study has some limitations. First, we

identified several metabolites that continue to change with the

duration of diabetes as no similar studies have previously

corroborated these findings; hence, it is difficult to understand

and interpret these results in the development of diabetic

tendinopathy. While the identified metabolites are promising as

potential biomarkers, further validation in larger cohorts of both

animals and humans is needed to confirm their specificity and

relevance to tendinopathy. Second, While the study identifies key

metabolites and affected pathways, it may not provide a complete

mechanistic understanding of how these metabolites contribute to

diabetes-induced tendinopathy. Further research is required to

explore the causal relationships. Third, the development of

diabetic tendinopathy can be divided into several stages, such as

“early,” “middle,” and “late.” These experimental groupings also

attempted to investigate the potential differences in metabolites in
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these three stages; however, due to the lack of stage information on

the pathogenesis of tendinopathy in diabetic rats, we were unable to

completely mimic the pathogenesis of diabetic tendinopathy in this

study. Therefore, the present results do not facilitate definitive and

straightforward conclusions unless validated in subsequent diverse

samples. Fourth, because the metabolism of different individuals is

different and the sample size is limited, it is difficult to include

relevant experiments in three or more replicates. Therefore, future

studies need to replicate the experiment in parallel control with a

larger sample cohort. Finally, untargeted metabolomics, as a broad

and target-less detection modality, yields results that do not allow

quantitative analysis of metabolites; therefore, combining various

platforms and multi-omics in further studies is crucial.
5 Conclusions

In this study, we established for the first time a biomolecule list

of dynamic changes in rat supraspinatus tendon with the

progression of diabetes using mass spectrometry-based untargeted

metabolomics techniques. Moreover, seven key metabolites

detected in the supraspinatus tendon continue to change with

diabetes progression. Especially the discovery of uric acid and

xanthine may provide novel ideas for exploring the mechanisms

of diabetic tendinopathy progression.
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SUPPLEMENTARY TABLE 1

A total of 201 metabolites were identified from 5758 metabolite features

extracted from the raw data acquired in positive-ionization modes by
untargeted metabolomics analysis.

SUPPLEMENTARY TABLE 2

A total of 134 metabolites were identified from 3118 metabolite features

extracted from the raw data acquired in negative-ionization modes.

SUPPLEMENTARY TABLE 3

A total of 94 differential metabolites (86 up-regulated and 8 down-regulated)

were identified in the T2DM-4w group compared with the normal group.

SUPPLEMENTARY TABLE 4

A total of 36 differential metabolites (13 up-regulated and 23 down-regulated)
were identified in the T2DM-12w group compared with the T2DM-4w group.

SUPPLEMENTARY TABLE 5

A total of 86 differential metabolites (24 up-regulated and 62 down-

regulated) were identified in the T2DM-24w group compared with the
T2DM-12w group.

SUPPLEMENTARY TABLE 6

KEGG pathways, in which differentially expressed metabolites from the three
comparison groups are involved. Dots are colored to represent P-values. The

smaller the value, the greater the reliability of the test and the greater the

statistical significance. The size of the dots represents the number of
differentially expressed metabolites in the corresponding path. The larger

the point, the more differentially expressed metabolites in the pathway.
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