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Mate choice is a critical decision with direct implications for fitness. Although it

has been recognized for over 150 years, our understanding of its underlying

mechanisms is still limited. Most studies on mate choice focus on the

evolutionary causes of behavior, with less attention given to the physiological

and molecular mechanisms involved. This is especially true for invertebrates,

where research on mate choice has largely focused on male behavior. This

review summarizes the current state of knowledge on the neural, molecular and

neurohormonal mechanisms of female choice in invertebrates, including

behaviors before, during, and after copulation. We identify areas of research

that have not been extensively explored in invertebrates, suggesting potential

directions for future investigation. We hope that this review will stimulate further

research in this area.
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1 Introduction

Mate choice is one of the most critical decisions organisms make because of its direct

impact on their fitness. Mate choice is an evolutionary process that often favors the

evolution of conspicuous traits in individuals (1). These traits, called secondary sexual

characters (SSCs), include structures, colors, odors, and behavior (Box 1). Mate choice

occurs when the evolution of SSCs in one sex leads to non-randommating with members of

the opposite sex based on those characters (7, 8). Although mate choice was recognized

over 150 years ago (3), many gaps exist in our understanding of its underlying mechanisms.

For example, most studies on mate choice focus on the evolutionary causes of behavior,

with less attention given to the physiological and molecular mechanisms involved (9, 10).

Furthermore, although female choice is recognized as the more frequent type of mate

choice (1, 11, 12), there have been more studies focusing on male behavior during the
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process of mate choice compared to female behavior (13). This bias

may exist because male behaviors tend to be more conspicuous than

female behaviors, resulting in a misinterpretation of females in a

passive role in sexual selection. However, it is important to

understand that the information conveyed by males through their

behavior is interpreted within the female’s nervous system (14, 15)

(Figure 1). Studying how female brains work during mate choice is
Frontiers in Endocrinology 02
crucial for fully understanding these behaviors from mechanism to

evolutionary consequences.

While a growing number of studies in vertebrates reveal the

neural mechanisms involved in the process of selecting a mate, our

comprehension of the neural mechanisms of mate choice in

invertebrates remains limited. DeAngelis and Hofmann reviewed

the most relevant works in vertebrates on the neural and molecular
BOX 1 Sexual selection.

Darwin described sexual selection as “a struggle not for existence concerning other organic beings or external conditions, but a struggle between individuals of the same
sex, usually males, for possession of the other sex” [(2), p. 59]. The result of this fight is not death but the lack of offspring of individuals. This implies that males with the
most exaggerated secondary sexual characteristics (SSCs) (coloration, plumage, antlers, pheromones, etc.) will be favored by mate choice to leave more progeny. Sexual
selection has three components. The first two, mate competition and mate choice were described by Darwin (3). The third, sexual conflict between mating pairs, occurs
when males and females compete with their partners to obtain an optimum between the costs and benefits of mating and reproducing, with this optimum differing between
the sexes (4–6).
A B C

FIGURE 1

General description of neural pathways during female choice in insects. (A) Pre-copulation: Female mate choice is influenced by gene expression
cascades that respond to stimuli from both the potential mate (e.g., sounds, colors, structures, pheromones) and the environment. The process
begins with neural pathways that carry information from the sensory organs to integration points in the corresponding brain areas. There, synaptic
plasticity genes activate primarily to produce suitable, plastic, and immediate responses based on the intensity of the signals presented by males (16,
17). If appropriate, such neural activity will prompt arousal, motivation, and reward systems mainly modulated by neurotransmitters (18). Furthermore,
all the mentioned steps are subject to epigenetic regulation, while simultaneously being able to influence the same epigenetic regulators. Finally, the
neural responses will result in behaviors that favor mating. (B) Copulation: During copulation, mechanical stimulation from the aedeagus (or pennis-
like structure) intrusion stimulates abdominal neurons that carry the signal and triggers neural release of neurotransmitters involved in reward
systems (18–20), such as dopamine (21). Motivation and reward systems facilitate sexual receptivity and copulation. The mechanical stimulus could
inhibit re-mating through muscle inhibitor peptides or by blocking rewarding systems. In certain species, neurotransmitters may modulate pair
bonding and memory formation mediated by oxytocin-like peptides in the brain (22). Changes in brain areas responsible for memory could trigger
partner preference but may also lead to rejection of less attractive males or to former mates in the case of polyandrous females. In addition to
mechanic stimulation, male ejaculate contains peptides that have the potential to act in the brain and release other neurotransmitters (23, 24). Other
seminal peptides also have effects on the neural control of the female reproductive tract. Some of the neural process occurring during copula may
be regulated by epigenetic enzymes, such as methyltransferases (17). (C) Post-copulation: Following copulation, additional mechanisms enable
females to bias the paternity of their offspring or counteract male manipulation prior to or during copulation (25). Because the neural mechanisms of
this stage are not well understood, a general description of what occurs in this stage is not yet possible. However, some works provide insights into
the neural mechanisms of certain female behaviors. For example, hormones such as Diuretic hormone 44 in Drosophila, responsible for controlling
neurons in the muscle of the female tract to control sperm retention or dump (26). Octopamine and octopamine receptors located in the decision-
making brain areas of insects are required for ovulation, egg laying and muscular contraction of spermathecae (27–29). Vitellogenin is required for
egg production and maturation, but is also located in the brain of social insects during reproduction and mate choice (17, 30). Females bias
fertilization through sperm activation and/or deactivation, for example by glandular secretions that preserve the stored sperm (31) or with
spermicidal action (32), it is unknown whether females exercise glandular control via neural actions from decision-making areas. Created
with BioRender.com.
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mechanisms of female choice, focusing mainly on decision-making

(9). Although such studies in invertebrates are limited, the existing

research provides an opportunity to explore several important

research avenues. 1) What are the specific locations and

mechanisms within the nervous system that govern the intricate

process of mate choice decision-making? and where in the brain

does the process of mate choice occur: before, during, or after

mating? 2) Given the diversity of mating strategies invertebrates

possess (33, 34), is there a corresponding diversity in their neural

mechanisms, or do a few mechanisms control such diversity? 3) Are

the neural mechanisms underlying behaviors that are less explored

or absent in invertebrates, such as selective use of stored sperm or

sexual cannibalism, controlled by similar mechanisms to better

studied behaviors in vertebrates? 4) The mechanistic understanding

of mate choice behavior in invertebrates may provide hints to their

origin and evolution, and this knowledge may be important for

understanding the variety of ways that such behaviors can occur

and may additionally allow a better understanding of the evolution

and mechanisms of behaviors that we observe in vertebrates.

Here, we review the neural mechanisms of female choice in

invertebrates during mate choice. We specifically include works that

focus on the role of genes, molecules (such as neurotransmitters,

hormones, and proteins), and neurons that participate in female

choice. We consider female choice to be a behavior that contributes

to non-random mating and/or fertilization, including behaviors

before, during, and after copulation. Furthermore, we identify areas

of research that have not been extensively explored in invertebrates,

suggesting potential directions for future investigation.
2 Precopulatory neural mechanisms

A crucial early phase in mate choice involves the accurate

perception of signals from a potential mate, with a primary

function being the identification of the sender as a member of the

opposite sex (1). The mechanisms behind this stage will depend

mainly on the nature of the signals and the type of organs and

sensory cells used to receive the stimulus, e.g. chemoreceptors in the

antennae of fruit flies (35, 36), the cuticle of nematodes (37, 38) or

the ventral mesosoma of scorpions (39); the mechanoreceptors of

Drosophila (40), crickets (41) and arachnids (39, 42); UV sensitive

and other wavelength photoreceptors in odonates (43) and spiders

(44, 45). The type of male signals will determine the neurobiological

pathway that will carry this information to the integration centers in

the female brain (Box 1) (46, 47). After the individual has been

identified as a male of the same species, the female will be able to

discriminate between potential mates.
2.1 Sexual receptivity

Before choosing a male, the sexual status of the female

determines her receptivity to copulation. A receptive female often

displays a series of behaviors facilitating reproduction (48), which

may include the release of chemical signals, movements toward

males, or ovipositor extrusion. The neural mechanisms for sexual
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receptivity have been studied in Drosophila melanogaster. When

immature virgin or recently mated D. melanogaster females are not

receptive, they do not respond to the male’s courtship and instead

avoid him by performing specific stereotypical movements:

immature virgins curl their abdomen tip downwards, a behavior

referred to as “curling”; mated females and immature virgins engage

in a behavior called “decamping”, which involves running, jumping,

or flying away; and mature females and immature virgins kick

backward, a behavior termed “kicking”. (49) When receptive,

however, they pause their movements and interact with male

partners to copulate, a behavior referred to as “pausing” (18, 49).

Two primary genes regulate D. melanogaster’s receptivity, doublesex

(dsx) and fruitless (fru). Both are transcription factors responsible

for differences in male and female sexual behaviors, and these

differences are also observed in the neuronal circuits (50–53). The

description of the neural circuitry of sexual receptivity inDrosophila

has allowed the identification of dsx- and fru-expressing neurons,

dendritic projections, and connection sites in the brain and

reproductive tract (18, 52, 53). Zhou et al. found that the

silencing of dsx-expressing neurons reduced female receptivity

(53). In addition to dsx, Bussell et al. showed that the

transcription factor Abdominal-B (Abd-B) regulates the female

behavior of pausing in front of courting males and interacting

with them to copulate (18). Abd-B is present in a group of neurons

in the abdominal ganglion with projections to the brain and

reproductive tract, which suggests that their function is to

integrate the sensory information of courtship and output the

observed motor activity, such as “pausing” (18). The nervous

system of females can be altered by peptides produced by

themselves, but also by those transferred by males in the

spermatic fluid (23). As an example, the sex peptide (SP) is

originated in the male accessory glands and transferred during

insemination to females. SP elicits alterations in neural activity that

reduce receptivity (23). Within the female’s reproductive tract,

sensory neurons responsive to sex peptide detect its presence and

convey the signal to the SP-abdominal ganglia neurons and to

myoinhibitory peptide interneurons. Concurrently, SP suppresses

the activity of serotonergic projection neurons, leading to a decline

in female receptivity (54–57).
2.2 Neural response to male courtship

The neural circuits of sexual behavior in invertebrates have been

primarily studied in Drosophila. Immonen and Ritchie identified

differences in gene expression in Drosophila simulans female brains

exposed to courtship songs by conspecific and heterospecific males

(36). They identified several antennal signaling genes that are part

of neuropeptide signaling pathways, including the neuropeptide

Corazonin (Crz) (36) which is involved in dopamine regulation and

modulates female sexual receptivity in Drosophila (21). In addition,

they found that exposure to courtship songs influences the

expression of genes involved in chemical communication, such as

odorant receptor and co-receptor genes and odorant-binding

protein-coding genes, most of which are involved in binding

pheromones (36). These findings suggest that male courtship
frontiersin.org
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sensorial stimulation facilitates receptivity in females by enhancing

their sensitivity to male chemical signals.

Female response to courtship may change after mating, as

evidenced by olfactometry studies that demonstrate a decreased

response to male olfactory cues in mated females of Anastrepha

fruit flies compared to their unmated counterparts (58). While the

neural pathways governing female responses to male courtship have

been extensively elucidated in Drosophila, studies on other

invertebrate species have identified specific components involved in

responding to various types of male signals, including visual and

vibrational stimuli (conveyed through leg and pedipalp drumming)

in the courtship of Schizocosa wolf spiders (42). Notably, Schizocosa

females possess vibration receptor organs in their legs comprised of

multiple slit sensilla, each innervated by two neurons (42). Research

by Knowlton and Gaffin (42) revealed that neurons in all sensilla,

both proximal and distal, responded to leg drumming, with proximal

sensilla exhibiting a higher response to pedipalpal drumming. It’s

worth noting that pedipalps are also employed for sperm transfer.

Therefore, the diverse responses to vibrational signals from different

sources provide clues into the precision and sensitivity involved in

detecting signals during courtship. Studying the nervous system

during courtship not only enhances our understanding of female

responses but also helps determine more precisely which male signals

elicit a response in the female. Recent evidence suggests that, during

courtship, the leg movements of male Schizocosa retrorsa induce air

particle movements, which females respond to during mate choice,

rather than responding solely to the visual stimulus (59).
2.3 Neural responses during
mate evaluation

Experience with different males causes changes in female brain

activity and affects how they choose a partner. Experience and

exposure to males with variation in their SSCs play an essential role

in how females choose in future encounters. In flies and crickets, it

has been observed that females increase the acceptance threshold of

potential partners according to the type of males with whom they

have had previous social experiences (60, 61). Although the

mechanisms behind the increase in choice threshold remain

unknown, one suggestion is that Drosophila females become more

selective after mating because copulation increases their Juvenile

Hormone (JH) levels, which reduces olfactory sensitivity of Or47b

odorant receptor neurons that sense the male sex pheromone (62).

Therefore, in a circumstance where a previously mated female

encounters more than one male, the chosen male will be the one

that produces enough sex pheromones to surpass the threshold,

which could lead to strong intra and intersexual competition.

Sensory modalities in mate choice may vary across species.

However, other processes involved in information integration and

neural response modulation may be evolutionarily conserved. For

instance, the process of mate choice in vertebrates includes

alterations in gene expression related to neural plasticity (16, 63),

along with epigenetic control (64). Hernandez-Villanueva et al.

found similar responses in the brain of Tenebrio molitor females,

consisting in an increase in proteins related to synaptic plasticity
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and changes in the levels of methyltransferases and subunits of the

methyltransferase complexes when they evaluate and mate with

males of different phenotypes (17).
2.4 Attention-directed behaviors of sexual
signals from various males

During female choice, females receive male signals from various

potential partners and should differentiate one signal from another

to choose the best option, that is, the signal that favors their fitness.

This could be challenging in systems where several males court

females simultaneously. In these cases, the female must be able to

differentiate the signals of potential partners and focus her attention

only on one male while ignoring the others. In crickets (Mecopoda

elongata), when females receive acoustic signals from several males

that give similar calls at brief time intervals, they prefer the leading

male, who generally sets the interval rate that other males follow

(65). Omega neuron 1 (ON1) neurons are involved in perceiving

acoustic signals and receive excitatory monosynaptic connections

from ipsilateral afferent sensory cells. ON1 neurons also have

inhibitory activity on their contralateral connections (41). When

females receive identical signals from two males in opposite

directions, the ON1 neurons that receive the signal from the

leading male are excited and simultaneously inhibit the

contralateral ON1 neurons, preventing them from perceiving

the other males’ acoustic signals (41). This raises the question of

how the female brain discerns between males in species in which

males court females as a group (lek) and how these mechanisms

vary in subsequent encounters.
3 Copulatory neural mechanisms

A species’mating system can be classified as either monogamous

or polygamous (Box 2) (66), which may differ in their copulatory

mechanisms. However, there is currently a gap in our knowledge, as

molecular studies investigating gene expression and neural changes in

the female brain of invertebrates with different mating systems are

notably lacking, and potential behavioral disparities between these

mating systemsmay be rooted in variations in the neural mechanisms

that drive frequent mating with one or more partners. This

information is also essential for determining whether these

mechanisms are analogous to those found in vertebrates [e.g. (69)

and (70)]. Furthermore, females may influence the outcome of

copulation in several ways, which may vary by mating system.

Females may respond positively or negatively to copulatory

stimulation, they may control the duration of copulation (71) or

may bias sperm utilization by favoring certain males (72, 73).
3.1 Responses to stimulation
during copulation

In vertebrates, there is ample evidence that mechanical stimuli

received during copulation can exert changes in the neuronal
frontiersin.org
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response of the female reproductive tract (74–76). In Drosophila,

during copulation, intrusion by the male aedeagus has been shown

to decrease the activity of neuron clusters in the central brain

[possibly pC1 and pCd populations (53)], resulting in reduced

sexual receptivity of females independent of the action of seminal

molecules that males transfer (19, 20). Female abdominal neurons

expressing Piezo mechanosensitive channels are stimulated by

insertion of the aedeagus. Then, the signal is transmitted to

ascending neurons called LSANs that connect in the central brain

(20). Shao et al. proposed that LSAN neurons connect to other

neurons that produce a peptide known as muscle-inhibitory peptide

(also described as allatostatin-B in Drosophila) resulting in a

reduction in female receptivity (20).
3.2 Control of copulation duration

Duration of copulation is an important factor in how much

ejaculate is transferred from the male and how likely fertilization is

to occur. Abdominal ganglia are heavily involved in regulating

muscle contractions in the reproductive tract to influence

copulation duration (20). Although the specific neuronal centers

involved remain unidentified, the brain also plays a significant role,

as supported by observations in three fly species [Musca domestica

(77), Anastrepha suspensa (78), and Batrocera tryoni (71)] that

copulation with decapitated or decerebrated females lasted longer

than with intact females (71, 77, 78).
3.3 Monogamy: neuromodulatory
mechanisms of pair bonding

After sexual attraction and choosing a mating partner, some

species may form pair bonds characterized by selective attachments

with some degree of durability (70, 79). Much of the knowledge

about the neural mechanisms of pair bonding has been generated

through the study of strictly monogamous species, mainly

mammals such as the rodent Microtus ochrogaster (70, 79, 80). In

this species, the peptides oxytocin and vasopressin modulate pair

bonding (79, 80), and together with the dopaminergic system in the

brain, promote continuous mating with the same partner (70). It

has been proposed that the genes encoding oxytocin and

vasopressin originated about 600 million years ago (81), with the

predecessor molecules to these peptides having a similar role as
Frontiers in Endocrinology 05
modulators of social behaviors in different taxa (82–86), including

invertebrates (87). However, the role of oxytocin-like peptides

during mate choice in invertebrates has yet to be explored, likely

because they are absent in flies and bees, precluding their study in

honey bees, the most widely studied social insect, and Drosophila

(88). Most descriptions of the role of oxytocin-like peptides are

about behaviors associated with male copulation in nematodes (88),

hirudines (89), and gastropods (90, 91). However, its role in female

pair bonding and copulation is poorly understood.

Some invertebrate species are described as monogamous,

remaining with a single sexual partner for an extended period of

time, usually marked by the period of parental care, or because they

mate only once in their lives (92). Monogamous behavior and its

neural mechanisms have been studied in the biparental beetle Lethrus

apterus. In this species the expression of genes encoding the insect

oxytocin-like peptide, inotocin (int), and its receptor (intr) in the

brain increase during reproductive season and are highest at the

beginning of pair formation and during the period of parental care

(22). These findings suggest that, as observed with oxytocin in

vertebrates, inotocin could modulate temporary mate-attachment

behavior in insects. More research is needed on the role of inotocin

in species typically described as monogamous or performing

biparental care. Additionally, while it is intuitive to study

monogamy in species that are commonly considered monogamous

or exhibit biparental care, the mating systems in invertebrates are

much more complex and flexible than typical descriptions found in

other species. Excluding these models limits our understanding of

how different mechanisms have evolved in similar behaviors. For

example, in Gonodactylus bredini shrimps, it has been observed that

males and females reduce their aggression towards their former mates

when they meet again (93). Some shrimps of the genus Alpheus are

considered socially monogamous (pair bond without implying sexual

exclusivity between the two partners) since both sexes defend the

territory and sometimes provide the nest with food, benefiting more

from living in pairs than alone (94). Manymolecular pathways can be

conserved over long periods of evolutionary time, and understanding

what molecules are involved in the modulation of mate attachment of

invertebrates would allow a better understanding of the evolution of

the molecular systems behind pair bonding that have been widely

described in typically monogamous mammals and other socially

monogamous vertebrates.

In addition to oxytocin-like peptides, other neuropeptides may

be involved in regulating mate attachment. Cunningham et al.

reported several neuropeptides that orchestrate biparental care in
BOX 2 Mating systems.

A mating system refers to the way in which individuals within species establish and maintain sexual pairs, as well as how fertilizations are achieved and which individuals
are involved (66, 67). These systems are frequently influenced by a range of factors, encompassing ecological, social, and evolutionary aspects. Studying mating systems is
invaluable for comprehending the reproductive strategies of diverse animal species and the dynamics of their populations. In the animal kingdom, various mating systems
are observed, and they can be broadly classified into the following main types (66–68):

Monogamy: In a monogamous mating system, a single male and a single female form a long-term (often lifelong) bond. Monogamy ensures that both parents
participate in the care and protection of their offspring. When females exhibit this behavior, it is referred to as monandry.

Polygamy: Polygamy is a mating system where both sexes mates with multiple individuals of the opposite sex. When females display this type of behavior, the term
used is polyandry.

Promiscuity: In a promiscuous mating system, individuals have multiple, often brief, sexual encounters with multiple partners, without forming long-term bonds.
This is common in many species, including many insects and some mammals.
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the beetle Nicrophorus vespilloides (95). For example, Natalisin

FMRFamide and Sulfokinin have functions that promote mating

in various taxa (96–98); Tachykinin is involved in aggression (99);

neuropeptide-like precursor 1 (NPLP-1) is involved in the division

of social labor in honeybee workers (100); and Pheromone-

Biosynthesis-Activating Neuropeptide (PBAN) activates

pheromone synthesis (101). These neuropeptides might be

important for pair bonding because biparental care is one of the

most important selective pressures for the evolution of monogamy

(66), and in Nicrophorus vespilloides pair bonding and parental care

of the larvae are long-lasting.

3.3.1 Other molecules involved in social
interactions and pair bonding

Another molecule related to insect social behavior is

vitellogenin (Vg), whose primary known function is the

production of yolk proteins in oviparous animals (102).

Nevertheless, Vg has also been detected in the brains of social

insects such as Apis mellifera (103) and N. vespilloides (30); as well

as in the brains of female Tenebrio molitor, a polygamous species

(17). Vitellogenin is also linked to parental care, with expression of

it and its receptor decreasing during active parental care and

varying throughout the reproductive cycle in both sexes of the

subsocial beetle Nicrophorus vespilloides (30), and to the regulation

of genes in the brain that are involved in division of labor in eusocial

insects, such as insulin receptor precursor, JH epoxide hydrolase,

Impl3 (ecdysone-inducible gene L3); PLRP2 (pancreatic lipase-

related protein 2 precursor); Sirt6 (sirt 6 histone deacetylase);

TRIP4 (thyroid hormone receptor interactor 4), the transcription

factor fruitless in the brain (104, 105). The relationship between Vg

expression in the brain and social behavior is not yet clear, but it is

also known to function in the brain to regulate energy metabolism

of glial cells (103) and to buffer against damage and oxidative stress

(106), which may provide some clues. Memory and decision-

making demand a large energy expenditure in the brain (107),

and cognitive processes such as mate recognition may have a high

metabolic demand. A potential area for future investigation could

involve examining whether vitellogenin mitigates brain damage in

species where females remember previous partners or engage in

continuous partner assessment based on previous experiences with

males. An example of this possibility is observed in T. molitor where

vitellogenin levels were higher in the brains of females that

evaluated more attractive males compared to those that evaluated

less attractive males (17). Furthermore, females exposed to

attractive males exhibited elevated levels of catalase in

comparison to those interacting with non-attractive males (17).

The increase in catalase levels implies the activation of an

antioxidant defense mechanism within the brain. Whether the

high metabolic rate in females evaluating different phenotypic

males is connected to such a mechanism remains to be answered.

Evidence shows that the peptides and proteins mentioned in the

above section are important candidate molecules to study their role as

regulators of social behavior during mate choice in invertebrates.

However, most approaches focus on analyzing brain gene expression
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during mate choice, pending behavioral observation when these

molecules’ functions are altered, for example, through silencing or

using agonist and antagonist drugs. Combining different experimental

approaches would allow knowing if the selected molecules or genes are

the only effectors of the behaviors mentioned or if it is a behavior that

responds to more than one effector.
3.4 Neural mechanisms
promoting polyandry

Polyandry is the system where a female mates with more than

one partner (66). However, many mating systems are flexible, with

females able to undergo phases of monandry or polyandry in the

face of changing ecological contexts (108), such as the availability of

mates in some schistosome species (109) and the damselfly Ischnura

hastata (110); or environment resources as seen in the beetle Ips

latidens (111) and the butterfly Pieris napi (112). In addition to the

absence of mate recognition and attachment systems described in

monogamy, the neural mechanisms of polyandry should address; 1)

the motivation to seek and accept copulation with multiple males,

and 2) behaviors promoting copulation with new males, such as

aggression towards previous partners with the intention of

increasing offspring variability (66). Re-mating motivation

mechanisms usually involve the same genes and neurons as

receptivity mechanisms (79, 113), and differences between mating

systems might be due to different activational states of these circuits.

In addition to signals perceived before copulation, seminal

proteins and peptides can affect female sexual receptivity circuitry

(23, 54, 114), leading the female to change temporarily from

polyandry to monandry or vice versa. In the cricket Teleogryllus

oceanicus, the seminal proteins ToSfp022 and ToSfp0 appear to be

responsible for reducing mate-seeking behavior, as females mated

with males with a knockdown in the ToSfp022 and ToSfp01 genes

left their nest significantly more frequently in response to male

courtship songs compared to those mated with control males (24).

While the mechanism of action of these proteins remains unclear,

evidence suggests they interact with the female nervous system in a

manner similar to sex peptide in Drosophila (23, 54, 57).

Finally, among the benefits of polyandry are increased genetic

variability of the offspring and/or receiving more direct benefits

from different males [i.e. nuptial gifts, nutrients and high sperm

reserves (115, 116)]. Therefore, in studying the neural mechanisms

of polyandry, it is essential to include the behaviors of rejection and

aggression toward known males with whom they have previously

mated. Such behaviors are described in different taxa, such as the

pseudoscorpion Cordylochernes scorpioides (117), the spider

Pholcus phalangioides (118), the moth Ephestia kuehniella (119),

and the cricket Gryllodes sigillatus (120). Although for now this

explanation remains hypothetical, these works suggest that females

recognize their previous partners through chemical signals that they

transfer to males during copulation. These chemical cues might

trigger changes in female gene expression that could inactivate

neural circuitry for sexual receptivity upon subsequent encounters.
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4 Postcopulatory neural mechanisms

Females can skew the paternity of their offspring during and

after copulation, a phenomenon called cryptic female choice (25,

121). The mechanisms involved include morphological traits in the

reproductive tract or genitalia, physiology, and behaviors that non-

randomly favor paternity in certain males (122, 123). Some

behaviors include control of copulation duration, retention, or

expulsion of the ejaculate, and cryptic elimination of spermatozoa

by substances with spermicidal action (25). Below we describe

neural mechanisms studied during cryptic female choice

in invertebrates.
4.1 Neural control of
spermathecal contraction

Female arthropods have sperm storage organs called

spermathecae in which the sperm of one or several males can be

stored for use long after copulation has finished. This results in

males competing against the sperm of their rivals inside the female’s

reproductive tract (sperm competition). Based on the neural control

of the spermatheca by muscles in insects (124, 125), it has been

suggested that females could actively bias fertilization through the

nervous control of the spermatheca (27, 123, 126–128). Although it

is not yet clear how the spermatheca might bias male paternity,

important advances have been made in studying the mechanisms

that control spermatheca contractions in some insects. In Locusta

migratoria, females release sperm stored in the spermatheca

through contractions that begin when sensory cells located on the

wall of the genital chamber are activated by mechanical stimulation

from passage of the egg to be fertilized (129, 130). Joint action of

octopamine and tyramine increases the frequency of muscular

contractions of the spermatheca in D. melanogaster (123) and in

L. migratoria (28, 131). Furthermore, in D. melanogaster,

octopamine receptors in the mushroom bodies (OAMB) are

required both for ovulation (29) and the release of sperm from

spermatheca (123). In D. melanogaster, these results imply that the

mushroom bodies are involved in controlling reproduction and

ovulation. This makes sense with the fact that the mushroom bodies

are the primary information integration centers in the insect brain,

where learning processes, memory, odor, and size discrimination

occur (132–134). These results support the idea that females may

bias the paternity of some males based on cues received from male

evaluation before or during copulation.
4.2 Sperm dumping

Another behavior by which females may bias male paternity is

the selective expulsion of sperm that the male has transferred to her.

The neurobiological pathway behind this behavior has been studied

in D. melanogaster through the dynamics of Diuretic Hormone 44

(DH44) and its receptor Diuretic Hormone 44 Receptor 1

(DH44R1) in the brain. By silencing transcription of the genes
Frontiers in Endocrinology 07
encoding DH44 and its receptor in neurons of the pars

intercerebralis region with RNA interference, sperm expulsion

occurred much more rapidly than in control females (26). The

dh44 and dh44r1 genes are orthologous to the corticotropin-

releasing factor (crf) and corticotropin-releasing factor receptor

(crfr) genes that have stress response functions in vertebrates

(135). Therefore, the authors suggested that sperm expulsion in

Drosophila could be a stress response caused by the seminal

peptides transferred during copulation (26, 136).

In addition to the possible effect of seminal peptides, control of

sperm expulsion may occur based on the perceived genetic quality

of the male before or during copulation as seen in females of the

spider Physocyclus globosus. In this species, sperm expulsion occurs

during or after mating, but females favor paternity for males who

display increased courtship behaviors before and during copulation

(73). The relationship between courtship intensity and sperm

expulsion suggests the possibility that the neural pathways

regulating sperm retention are affected by molecules and circuits

implicated during courtship or copulation. Such neural pathways

could be connected to reward circuits involving dopamine, which

may regulate female decisions during mate choice either by

promoting mate search and/or acceptance of mating after

evaluation of males (137). Neural circuits promoting mating and

courtship in male Drosophila have been identified, but female

neural responses to courting males are poorly studied.

Nonetheless, the transition from rejection to mate acceptance in

virgin females may be controlled by the ellipsoid body (EB), a

structure of the central complex (138). The interconnected ring

neurons (R) in the EB receive input from the PPM3 clustered

dopaminergic neurons situated in the superior medial

protocerebrum. In the EB, Cholinergic R4d neurons promote

rejection behaviors, while the activation of GABAergic and

glutamatergic R2/R4m neurons promotes mating acceptance.

Additionally, inhibiting R2/R4m neurons leads to an increase in

mating latency (138, 139). Although this finding aligns with reports

in various vertebrate dopaminergic circuits (137), further research

on female neural responses is crucial and may be fruitful

considering the possibilities for manipulating the Drosophila

system (138, 139).
4.3 Control of oviposition

Even after fertilization has occurred, it is possible that females

exert some control of oviposition, influencing which eggs are laid

(121). Octopamine regulates oviposition in insects (140–142), ticks

(143) and nematodes (144, 145) by controlling the contraction

rhythms of the oviduct. In Drosophila, the Octb2R and OAMB

receptors present in octopaminergic and glutamatergic neurons in

the abdominal ganglia project to the epithelial and reproductive

cells of the oviducts (29, 142, 146). Recent studies indicate that

activation of the Octb2R receptor causes relaxation, while activation

of the OAMB receptor causes contraction (146). Additional

neuromodulators, such as glutamate, tyramine, and other

biogenic amines, may alter the impact of octopamine on the
frontiersin.org

https://doi.org/10.3389/fendo.2023.1291635
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Cordero-Molina et al. 10.3389/fendo.2023.1291635
aforementioned neurons. However, their effects remain poorly

comprehended and may vary among species (140–146).
4.4 Other behaviors of postcopulatory
female choice

There are several exciting behaviors to study in postcopulatory

female choice for which there is not yet an approach to study the

possible neural mechanisms behind them, for example:

Activation and inactivation of spermatozoa. In several

invertebrate species, females may influence fertilization through

substances secreted in their reproductive tract that either activate or

disable sperm transferred by their partners. For instance, the female

reproductive tract of Drosophila pseudoobscura provides a

spermicidal environment that contributes to sperm competition

(32). Another intriguing example comes from spiders, where

glandular secretions activate and maintain the sperm stored

within spermathecae (31, 147). It has been proposed that the

female nervous system regulates the secretion of these glands

(148), which may act as a mechanism to bias fertilization towards

preferred males, such as those with higher courtship intensity (149).

Selective uptake of sperm in the spermatheca. Paternity may be

biased by controlling the reception of sperm in the spermatheca (25).

There is some research into the mechanism involved in the release of

sperm stored in the spermatheca, but the mechanism controlling the

uptake of sperm into the spermatheca remains unknown.
5 Female choice issues that have yet
to be explored in invertebrates

5.1 Sexual cannibalism

One of the most extravagant behaviors in sexual selection is

sexual cannibalism, when the female consumes the partner during or

after mating and sometimes during courtship without mating. This

behavior has only been documented in spiders and mantids. Sexual

cannibalism might increase male reproductive success and, in many

cases, results from female choice based on the quality of their partners

(31, 150, 151). The neural mechanisms of this behavior are yet to be

addressed. Based on descriptions of the behavior, it can be

hypothesized that the visual sensory system as well as circuits and

systems related to foraging and aggression are involved (31), but how

these systems relate to mate choice is an open question.

Another example of sexual cannibalism is the mutual “partial”

cannibalism of the cockroach Salganea taiwanensis. In this

monogamous species, both sexes reciprocally consume the wings

of their mate. The hypotheses for the evolutionary causes of this

behavior propose that consumption of the wings promotes

monogamy since, without wings, it is dangerous to leave the nest

to look for another mate (152). Because this type of cannibalism

promotes pair bonding and does not end in complete consumption

of the partner, the neural mechanisms behind this behavior may

differ from the aggression mechanisms proposed for sexual

cannibalism in spiders and mantids.
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5.2 Female neural responses to
male manipulation

Sexual conflict arises when some of the following circumstances are

in place (reviewed in: 147): 1) males try to overcome filters imposed by

the females during mate choice, while the females respond with

counter-adaptations to male strategies (153); 2) males exert sensory

exploitation of pre-existing circuits in females (154); 3) females resist

exploitation or manipulation by males (154, 155). However, sexual

conflict is mostly detected through observation of behavior, and most

of the conclusions do not address how the female’s nervous system

responds to male manipulation. The investigation of the neural

responses of females during sexual conflict would advance the

comprehension of how sexual selection is taking place across species.

For instance, in species where male manipulation occurs, analyzing

behavior and reproductive success may not reflect females’ resistance to

manipulation. However, looking through the nervous system of females

could offer a different perspective. By exploring their neural responses, a

“physiological attempt” of resistance may be revealed. While these

responses are not yet considered counter-adaptive mechanisms, they

have an evolutionary potential to develop and empower females to

confront manipulation.

Some of the male manipulative behaviors are truly extreme, and

studies on the neural responses of females when they occur are limited.

One species where such a conflict occurs is the true bug Gerris

gracilicornis. In this species, males attract predators via special leg

movements when females they attempt to mount refuse their

advances, leading to coercive copulation (156). How females decide to

allow or deny copulation in the context of potentially being preyed on,

and if the mechanisms of aggression and flight are coordinated and

connected to those of sexual receptivity are interesting questions.

Another extreme case of sexual conflict during mating is the traumatic

insemination observed in the bed bug Cimex lectularius. In this species,

males pierce the cuticle of females and inseminate themdirectly into their

body cavity without penetrating their genitalia (157, 158). It is unknown

whether the circuits connecting the female genitalia to the nervous

system are active or inactive in such cases, or if other circuits are involved

during insemination orwhen sperm is released from their storage organs.

Comparison of this behavior with closely related species that do not

display extra-genital copulation may provide insight into whether and

how the neural response of these females to this type of male behavior

has evolved.

In ants of the species Hypoponera opacior, some males mate

with young nestmate queens even before they eclose from their

cocoons (159, 160). It would be interesting to study any behavioral

response to this in either the inseminated queens as pupae or post

eclosion or in their egg-laying mother.

Mating plugs are another example of male manipulation, and it

is not known what happens inside female brains when a mating

plug prevents copulation with subsequent males in some species of

arachnids (161–163); insects (164); and even nematodes (165). A

mating plug could do more than just physically block copulation; it

could also mechanically stimulate neurons of the reproductive tract

resulting in inhibition of receptivity (166). Mating plugs are also

utilized by male vertebrates (167, 168), however, research on the

neural responses of females to this behavior is scarce.
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5.3 Possible costs of neural processes
of female choice

Sexual differences in reproductive strategies are usually

explained as arising from different reproductive costs for each sex

(5, 169), but could this same argument be applied to neural

mechanisms? In numerous species, females select mates using a

cognitive process that may incur ecological costs (17, 107, 170, 171);

however, males may not face equivalent consequences because of

the absence of neural elements that enable females to be more

selective in their mates. Nevertheless, if there is male choice, they

too may experience comparable costs. One such cost is intoxicating

male sperm in Drosophila females (172, 173). In this case, the role of

the female detoxification systems is unknown. It is certainly possible

to address these questions in vertebrates, but simpler nervous

systems, shorter generation times and faster metabolic rates may

make invertebrates better candidates.
4 Conclusions

Study of the neural mechanisms of mate choice is essential

for a comprehensive understanding of the unusual behaviors we

observe in nature. There are an increasing number of studies on

the neural mechanisms of mate choice. However, those on

female choice are less common and usually have a broad

descriptive approach and not under the theoretical framework

of sexual selection. Females of various species display a broad

diversity of mate choice mechanisms, and it is possible that this

variety in mechanisms corresponds to variation in mating

system, life history and evolutionary history. For this reason, it

is essential that models used to study female mate choice are

equally diverse.

As with other social behaviors, the mechanisms behind female

choice are complex and difficult to study because several often

occur simultaneously. As techniques, including single-cell

sequencing, genome and epigenome sequencing, proteomics,

and access to invertebrate genomes advance, it will be possible

to disentangle mate choice behaviors with careful experimental

design. Working together to understand the immediate causes

behind the behaviors will complete the picture of the evolution of

mate choice.
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