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Bone health encompasses not only bone mineral density but also bone

architecture and mechanical properties that can impact bone strength. While

specific dietary interventions have been proposed to treat various diseases

such as obesity and diabetes, their effects on bone health remain unclear. The

aim of this review is to examine literature published in the past decade,

summarize the effects of currently popular diets on bone health, elucidate

underlying mechanisms, and provide solutions to neutralize the side effects.

The diets discussed in this review include a ketogenic diet (KD), a Mediterranean

diet (MD), caloric restriction (CR), a high-protein diet (HP), and intermittent

fasting (IF). Although detrimental effects on bone health have been noticed in

the KD and CR diets, it is still controversial, while the MD and HP diets have

shown protective effects, and the effects of IF diets are still uncertain. The

mechanism of these effects and the attenuation methods have gained attention

and have been discussed in recent years: the KD diet interrupts energy balance

and calcium metabolism, which reduces bone quality. Ginsenoside-Rb2,

metformin, and simvastatin have been shown to attenuate bone loss during

KD. The CR diet influences energy imbalance, glucocorticoid levels, and

adipose tissue, causing bone loss. Adequate vitamin D and calcium

supplementation and exercise training can attenuate these effects. The olive

oil in the MD may be an effective component that protects bone health. HP

diets also have components that protect bone health, but their mechanism

requires further investigation. In IF, animal studies have shown detrimental

effects on bone health, while human studies have not. Therefore, the effects of

diets on bone health vary accordingly.
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ketogenic diet (KD), Mediterranean diet (MD), caloric restriction (CR), high-protein diet,
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1 Introduction

Diet is an indispensable component of our daily life, and its

impact on the human body has been the subject of extensive

research. Over the years, different dietary interventions have been

considered as lifestyle interventions that can prevent or treat

various diseases such as obesity, cardiovascular disease, epilepsy,

and metabolic diseases (1–4). Nutrients participate in every

physiological process, regulate metabolism, and play critical roles

in each system of the human body, including the skeletal system (5).

Various types of diets have different effects on bone health. In this

review, we aim to summarize the influences and potential

mechanisms of several currently popular diets on bone health,

based on both animal and human studies. These diets include the

ketogenic diet (KD), the Mediterranean diet (MD), caloric

restriction (CR), a high-protein diet (HP), and intermittent

fasting (IF). Information about these diets can be found in Table 1.
2 Method

In this review, we conducted a search of Web of Science’s core

database from January 2012 to November 2022, to identify

published articles about the effect of different kinds of diets on

bone health. The topics were utilized when searching included

“ketogenic diet”, “Mediterranean diet”, “caloric restriction”, “high-

protein diet”, and “intermittent fasting”, combined with “bone” or

“calcium”. All relevant randomized controlled trials (RCTs),

observational studies, and reviews were screened and integrated.

Case studies, letters, and conference papers or reports were

excluded. Table 2 summarizes most of the cited human studies

and Table 3 summarizes most of the cited animal studies.
3 Ketogenic diets and bone health

3.1 The definition of ketogenic diets

KDs are characterized by a low intake of carbohydrates and a

normal to high intake of fat, leading to increased utilization of

ketones or fats in the body, similar to changes that occur during

periods of starvation. Typically, these diets recommend that only

5% of calories come from carbohydrates, while 75% come from fats

and 20% from protein, though the total calorie intake and ratio of

energy sources can be adjusted based on individual needs.
3.2 Effects of ketogenic diets on
bone health

3.2.1 Evidence from animal studies
Most studies have predominantly shown that the KD has an

unfavorable effect on bone health. In mice, Wu et al. used the

Micro-CT technique and a three-point bending test to assess the

bone quality of 8-week-old mice fed a 4:1 KD for 12 weeks. The
Frontiers in Endocrinology 02
results indicated that both the cancellous and cortical bone architecture

of long bones were compromised (6). A further study on the vertebrae

also found a decrease in bone quality (54). Aikawa et al. researched the

skeletal systems of agedmice that underwent exercise training and were

fed a KD during the experiment, reporting that KD impaired bone

mass, trabecular microstructure, and compromised the benefits

regarding bone health after exercise (7). Zengin et al. found that a 4-

week consumption of an “Atkin-style” KD diet or low protein KD

could impair the bone quality of adult male rats. Their femur trabecular

bone volume was relatively low, while this effect was not seen in female

rats (8). Ding et al. reported that the bone loss was more significant in
TABLE 1 Characteristics and examples of various types of diets.

Ketogenic diet

Characteristics
High fat intake, moderate
protein consumption, and
low carbohydrate intake

Macronutrient ratio
Fat:protein:carbohydrate =

55%–60%:30%–

35%:5%–10%

Type

Classic long-chain
triglyceride (LCT)
ketogenic diet

Medium-chain triglyceride
(MCT) ketogenic diet

Modified Atkins
diet (MAD)

Low glycemic
index treatment

Mediterranean
diet

Characteristics
Plant-focused, healthy

fat emphasis

Common food categories
Vegetable, fruit, bean,

whole grain, extra virgin
olive oil, nut

Caloric
restriction diet

Characteristics

Reduced daily caloric
intake, without
malnutrition or
deprivation of

essential nutrients

Calorie reduction ratio 20%

High-
protein diet

Characteristics

High protein focus,
elevated consumption,

varied sources,
balanced nutrition

Protein intake

More than 25% of calories
from protein, over 1.6 g
of protein per kilo of

body weight

Intermittent
fasting

Characteristics
Only eat during a

specific time

Type

Complete alternate-
day fasting

Modified fasting regimens

Time-restricted feeding

Religious fasting

Ramadan fasting
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TABLE 2 Summary of the animal studies.

Author Outcome consid-
ered and method for
evaluating diet and/
or bone
health parameters

Study
type

Model Findings

Wu
et al. (6)

Cancellous and cortical
bone architecture

RCT Forty female C57BL/6J mice randomly divided
into four groups: SD+Sham, SD+OVX, KD
+Sham, and KD+OVX; fed for 12 weeks.

KD adversely affects both cancellous and cortical
bone in long bones. Combining KD and OVX
may exacerbate bone loss.

Aikawa
et al. (7)

Bone mass, trabecular
microstructure and
lumbar BMC

RCT Male C57BL/6 mice randomly divided into four
experimental groups: control diet and sedentary,
control diet and exercise, LCHF diet and
sedentary, and LCHF diet and exercise; fed for
12 weeks.

The LCHF diet impairs bone mass and certain
trabecular microstructures in older mice, and
reduces the beneficial effects of exercise on
lumbar BMC.

Zengin
et al. (8)

Trabecular bone volume,
serum IGF-I, and the bone
formation marker P1NP

RCT Twelve-week-old male and female Wistar rats
randomly divided into three experimental
groups: CD, LC-HF-1, and LC-HF-2; fed for
4 weeks.

In male rats, LC-HF diets lead to a reduction in
trabecular bone volume, serum IGF-I, and the
bone formation marker P1NP, while no such
effects are observed in females.

Ding
et al. (9)

Bone density
and microstructure

RCT 14 male 6-week-old Sprague–Dawley rats
randomly divided into two experimental groups:
control and KD group; fed for 12 weeks.

The ketogenic diet negatively impacts bone density
and microstructure, primarily in appendicular
bones, with minimal effects on axial bones like the
L4 vertebrae.

Liu
et al. (10)

Spinal fusion, microstructures
and bone mass

RCT 32 Sprague–Dawley rats randomly divided into
two experimental groups: KD and SD; fed for
8 weeks.

KD delayed spinal fusion and decreased bone
mass in posterolateral lumbar spinal fusion in rats.

Zhou
et al. (11)

BALP, TRACP, OCN, PPAR-
g, cathepsin K, TRAP, bone
microstructure,
biomechanical properties.

RCT 30 female (aged 8 weeks) C57BL/6J mice
randomly divided into three experimental
groups: sham, KD, and KD + Rb2; fed for
12 weeks.

Ginsenoside-Rb2 reduced KD-induced bone loss
and improved biomechanics, increasing bone
volume fraction from 2.3% to 6.0%.

Tagliaferri
et al. (12)

Bone density, oxidative
stress, inflammation.

RCT Six-week-old female C57BL/6J mice randomly
divided into six experimental groups: 4 OVX
and 2 SH; fed for 30 days.

Virgin olive oil with vitamin D3 improved bone
density and reduced oxidative stress in OVX mice.

Puel
et al. (13)

BMD, spleen weight, plasma
fibrinogen levels.

RCT 98 rats randomly divided into seven
experimental groups: 20 SH, 26 OVX with
standard diet, and 4 additional OVX groups
receiving oleuropein at 2.5, 5, 10, or 15 mg/kg
body weight; fed for 100 days.

Oleuropein reduced bone loss and improved
inflammatory markers in OVX rats at all tested
doses except 5 mg/kg BW.

Shen
et al. (14)

Body composition, IGF-I,
leptin, adiponectin,
glutathione peroxidase, TNF-
a mRNA, bone volume,
BMD, bone strength.

RCT 30 Sprague–Dawley rats divided into HFD, RD,
and LFD groups based on weight gain; fed
various diets for up to 8 months.

Restricted diet improved body composition but
weakened bone structure and strength in
obese rats.

Behrendt
et al. (15)

Ct.BMD, Tb.BMD, BV/
TV, Tb.N.

RCT Mice divided into CR groups and AL control;
fed up to 74 weeks.

Lifelong caloric restriction (CR) worsened cortical
bone in young mice but improved trabecular bone
in older mice.

Colman
et al. (16)

OC, CTX, NTX, PTH, 25
(OH)D

RCT 30 male rhesus monkeys fed by CR divided into
C and R groups; R group reduced by 100
calories; fed for 3 months.

Long-term caloric restriction (CR) led to a decline
in bone mass and density compared to control
monkeys, but without pathological osteopenia.

Li
et al. (17)

BMAT alterations, BMD Observational
study

BMAd-specific Cre mouse model in which we
knocked out adipose triglyceride lipase (ATGL,
Pnpla2 gene)

Caloric restriction induced significant increases in
genes related to extracellular matrix organization
and skeletal development.

Takeda
et al. (18)

The BMD of tibia, femoral
breaking force and energy

RCT 47 male Wistar rats (5 weeks old) divided into
diet and exercise sub-groups; fed for 60 days.

Both inadequate and excessive protein intake can
affect bone strength, while a protein intake of
approximately 20% promotes bone mass and
strength development.

Nebot
et al. (19)

TV, BV, BMD RCT 88 male Sprague–Dawley rats (6 weeks old)
divided into 11 groups with SD and HFD diets;
fed for 21 weeks.

Caloric restriction resulted in significant
alterations in trabecular microstructure,
characterized by an increase in trabecular number

(Continued)
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TABLE 3 Summary of the human studies.

Author Population Diet Outcome considered and
method for evaluating diet

and/or bone
health parameters

Findings

Hahn
et al. (25)

33 children KD Bone mass, Serum 25-OHD levels KG patients showed vitamin D deficiency and
reduced bone mass; Vitamin D supplementation
increased KG bone mass by 8.1% in 12 months.

Simm
et al. (26)

29 patients KD DXA, BMD, BMAD, osteocalcin Patients on a KD showed a trend towards reduced
LS-BMD Z scores

Svedlund
et al. (27)

39 Children with intractable epilepsy,
glucose transporter type 1 deficiency
syndrome, or pyruvate dehydrogenase
complex deficiency

MAD Bone mass (total body, lumbar spine,
and hip)

MAD has no significant effect on bone mass

Gomez-
Arbelaez
et al. (28)

20 adult obese patients KD BMC and BMD via DXA KD leaves BMC and BMD statistically unchanged
via DXA.

Athinarayanan
et al. (29)

349 type 2 diabetes patients KD Spine BMD Diabetes resolution and no adverse effect on bone
health were observed in the experiment group.

(Continued)
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TABLE 2 Continued

Author Outcome consid-
ered and method for
evaluating diet and/
or bone
health parameters

Study
type

Model Findings

and a reduction in trabecular spacing, with no
changes in bone volume (BV).

Tirapegui
et al. (20)

Carcass, proteoglycan
synthesis, IGF-I
concentration, total tissue
RNA, protein concentration
and protein synthesis

RCT 16 newly weaned Wistar rats divided into G12
and G26 diet groups; fed for 3 weeks.

Compared to a low-protein diet, a high-protein
diet resulted in lower fat mass but showed no
significant changes in protein nutritional status.

Kamel
et al. (21)

Glucose, insulin, TGs,
cholesterol, PTH, OPG, DPD,
NTX-1, TRAP-5b,
BMD, BMC

RCT 40 male rats divided into control, control+IF,
DEX, and DEX+IF groups; treated for 90 days.

IF corrected GIO in rats by inhibiting
osteoclastogenesis and PTH secretion and
stimulating osteoblast activity.

Kamel
et al. (22)

Thyroid abnormality, bone
remodeling ability

RCT 8 pregnant Wistar rats divided into fasting and
normally fed groups; fed for 21 days after birth.

IF imposed on embryonic rats resulted in a
collapse of bone remodeling to some extent.

Shin
et al. (23)

BMD RCT Female Sprague–Dawley rats divided into four
groups: AD-AL, AD-IMF, Non-AD-AL, and
Non-AD-IMF; diets for 4 weeks post b-
amyloid infusion.

IF exacerbated bone density loss in Alzheimer’s
disease-induced estrogen-deficient rats.

Xu
et al. (24)

BMD, ALP, TRAP, BMSC RCT 30 male 6-week-old Sprague–Dawley rats
divided into Control, KD, and EODKD groups;
fed for 12 weeks.

Compared to KD, EODKD exhibited higher
ketone levels but also inhibited the bone
resorption process and early bone
formation differentiation.
BMD, Bone Mineral Density; BMC, Bone Mineral Content; IGF-I, Insulin-like Growth Factor I; P1NP, Procollagen Type 1 N-Terminal Propeptide; BALP, Bone Alkaline Phosphatase; TRACP,
Tartrate-Resistant Acid Phosphatase; OCN, Osteocalcin; PPAR-g, Peroxisome Proliferator-Activated Receptor Gamma; TRAP, Tartrate-Resistant Acid Phosphatase; Ct.BMD, Cortical Bone
Mineral Density; Tb.BMD, Trabecular Bone Mineral Density; BV/TV, Bone Volume per Total Volume; Tb.N, Trabecular Number; OC, Osteocalcin; CTX, C-Terminal Telopeptide; NTX, N-
Terminal Telopeptide; PTH, Parathyroid Hormone; 25(OH)D, 25-Hydroxyvitamin D; BMAT, Bone Marrow Adipose Tissue; TV, Total Volume; BV, Bone Volume; ALP, Alkaline Phosphatase;
BMSC, Bone Marrow Stromal Cells; TGs, Triglycerides; OPG, Osteoprotegerin; DPD, Deoxypyridinoline; NTX-1, N-Terminal Telopeptide of type I collagen; TRAP-5b, Tartrate-Resistant Acid
Phosphatase 5b; SD, Standard Diet; OVX, Ovariectomized; KD, Ketogenic Diet; AL, Ad Libitum; LCHF, Low-Carbohydrate High-Fat; CD, Control Diet; IMF, Intermittent Fasting; SH, Sham-
Operated; HFD, High-Fat Diet; RD, Restricted Diet; LFD, Low-Fat Diet; CR, Caloric Restriction; IF, Intermittent Fasting; DEX, Dexamethasone; ICV, Intracerebroventricular; EODKD, Every-
Other-Day Ketogenic Diet; RCT, Randomized Controlled Trial; LC-HF-1, “Atkins-Style” Protein-Matched Diet; LC-HF-2, Ketogenic Low-Protein Diet; G12, Libitum Diets Containing 12%
Protein; G26, Libitum Diets Containing 26% Protein.
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TABLE 3 Continued

Author Population Diet Outcome considered and
method for evaluating diet

and/or bone
health parameters

Findings

Bertoli
et al. (30)

3 adult patients with GLUT-1 DS KD BMD Long-term KD had no major negative effects on
body composition or bone health in adults with
GLUT-1 DS.

Vargas-Molina
et al. (31)

21 adult resistance-trained women KD BMD KD led to a significant reduction in systolic blood
pressure and a small favorable effect on BMD.

Carter
et al. (32)

30 obese patients KD BSAP, bone turnover ratio, and UNTx Dieters lost more weight than controls but no
significant change in bone turnover markers or
ratio was observed.

Heikura
et al. (33)

30 world-class race walkers KD CTX, OC, and P1NP Short-term LCHF diet impaired markers of bone
modeling/remodeling.

Draaisma
et al. (34)

38 epileptic children KD Lumbar Z-score, BMD Children on KDT have low normal BMD that
may further decrease. Intravenous bisphosphonate
therapy showed a statistically significant increase
in BMD.

Nestares
et al. (35)

59 children with celiac disease (CD), 40
non-celiac children

MD BMC, bone Z-score, and BMD MD adherence was associated with higher lean
mass and bone health in CD children.

Seiquer
et al. (36)

20 male adolescents MD Calcium absorption and retention MD led to increased calcium absorption and
retention, and decreased urinary
calcium excretion.

Julian
et al. (37)

492 Spanish adolescents MD BMD Fruits, nuts, cereals, and roots were associated
with higher BMC, but significance was lost when
adjusted for lean mass and physical activity.

Pérez-Rey
et al. (38)

442 premenopausal women MD Ad-SOS, BMD Higher adherence to the MD was positively
associated with better bone mass measurements in
Spanish premenopausal women.

Cervo
et al. (39)

794 community-dwelling men MD BMD and risk of incident falls MD was associated with lower incident fall rates
in older men. No association was found between
MEDI-LITE scores and BMD or physical
function parameters.

Feart et al. (40) 1,482 older French adults MD Risk of bone fractures Higher MeDi adherence was not associated with a
decreased risk of fractures in older
French persons.

Villareal
et al. (41)

218 non-obese, younger adults CR BMD, C-telopeptide, TRAP, BSAP CR led to significant bone loss at crucial sites for
osteoporotic fracture due to changes in body
composition, hormones, and nutrients.

Tirosh
et al. (42)

424 obese and overweight participants CR BMD at femoral neck and spine Weight loss diets had sex-specific effects on BMD:
men showed an increase in spine BMD, while
women had a decrease in BMD at all sites.

Pop et al. (43) 38 overweight and obese men CR Body weight, BMD, BMC, cortical
thickness, 25-OHD

CR in overweight and obese men did not decrease
BMD or alter bone geometry.

Von Thun
et al. (44)

42 postmenopausal women CR BMD People with CR lost BMD at the FN and
trochanter after 2 years, irrespective of weight
regain or maintenance.

Hinton
et al. (45)

40 overweight or obese women CR BMD Hip and lumbar spine BMD decreased with
weight loss due to CR and did not recover after
weight regain, regardless of exercise.

Armamento-
Villareal
et al. (46)

107 obese adults CR Thigh muscle volume, hip BMD In the population following CR, thigh muscle
mass is related to hip BMD, and a decrease in
muscle mass caused by the diet can lead to a
decrease in BMD

(Continued)
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the appendicular rather than axial bone of rats fed a 3:1 KD (9).

Meanwhile, Liu et al. found that a KD can delay the spinal fusion of rats

after surgery (10) and confirmed that the microstructures and

properties of cancellous bone deteriorated as a result of the

interrupted balance of bone resorption and formation (55). Rats fed

with KD had significantly lower alkaline phosphatase (ALP) activity

and higher tartrate-resistant acid phosphatase (TRAP) activity, and the

osteogenic ability of their bone marrow stromal cells was also found to

be impaired (56). By measuring TRAP, collagen type I (CoLI), and

osteocalcin (OCN) staining, mice fed a KD were found to have

upregulated osteoclast activities. When combined with ovariectomy,

the osteoblast activities were found to be downregulated (6).

Attention has been drawn to how to relieve the side effect of KD

on bone health. Liu et al. found that the bone quality loss induced by

KD can be relieved by ginsenoside-Rb2, which inhibits bone

resorption and osteogenic differentiation. Metformin can also

reduce bone loss by enhancing osteoblast proliferation and

inhibiting osteoclast differentiation (11, 57). Zhou et al.

demonstrated the protective effect of simvastatin on the bones of

mice that were compromised by KD, and the mechanism may be

the facilitation of osteoblast differentiation and inhibition of

osteoclast differentiation (58). Previous studies have reported that

simvastatin can induce the expression of bone morphogenetic

protein (BMP)-2, which improves bone formation (59).

3.2.2 Evidence from human studies
3.2.2.1 KD in epileptic children

The alteration of bone health in children treated with KD has

been studied since the 1970s. Five epileptic children treated with KD
Frontiers in Endocrinology 06
therapy were reported to have disordered mineral metabolism, and

their bone mass and serum 25-OHD levels were found to be

decreased compared to the normal control (25). In another

observational study, researchers investigated the bone health of 29

epileptic children aged 0.5–6.5 years who persisted with a KD for at

least 6 months. After measuring with dual-energy x-ray

absorptiometry (DXA), they reported a decrease of 0.16 units of

bone mineral density Z score per year relative to age-matched

children (26). In terms of the Modified Atkins Diet (MAD), the

intake of protein is not restricted and the KD ratio is 1:1–2:1. A

recent study reported that a 24-month MAD did not significantly

affect the bone mass and height of children who were diagnosed

with intractable epilepsy, glucose transporter type 1 deficiency

syndrome, or pyruvate dehydrogenase complex deficiency (27).

Most notably, the causes of damaged bone mineral status in

epileptic children can also include medication side effects,

seizures, and mobile ability (60); thus, more high-level evidence is

required to determine the extent of how much KD is to blame for

impaired bone growth in epileptic children.

3.2.2.2 KD in adults

The recent applications of the KD in adults were mainly focused

on the treatment of metabolic diseases including obesity, diabetes,

and glucose transporter 1 deficiency syndrome (GLUT-1 DS).

Regarding obesity, a study observed 20 adult obese patients who

were treated with the KD for 4 months, and with the measurement

of DXA, both their bone mineral content (BMC) and bone mineral

density (BMD) were statistically unchanged (28). In terms of

diabetes, a study enrolled 262 type2 diabetes patients who were
TABLE 3 Continued

Author Population Diet Outcome considered and
method for evaluating diet

and/or bone
health parameters

Findings

Antonio
et al. (47)

24 exercise-trained women HP Whole-body BMD, lumbar BMD, T-
scores, lean body mass, and fat mass.

Six months of an HP diet did not affect whole
body or lumbar BMD, T-scores, lean body mass,
or fat mass.

Lee et al. (48) 12,812 subjects in NHANES HP Femoral BMD, T-scores HP was associated with higher femoral BMD and
T-scores in subjects without CKD while CKD
patients did not benefit from an HP diet in terms
of femoral BMD

Gao et al. (49) 4,447 subjects in NHANES HP T-scores, BMD A high-protein, low-carbohydrate diet may benefit
bone health with a significant positive effect on T-
score and reduced the risk of low BMD.

Murphy
et al. (50)

7 patients with chronic kidney disease
and low energy availability

HP Leptin, IGF-1, P1NP, CTX-I HP did not mitigate the adverse effects of LEA on
bone turnover or leptin levels.

Martens
et al. (51)

64 healthy lean midlife/older adults TRF Lean mass, BMD TRF appears to be a feasible and safe dietary
intervention for healthy non-obese older adults
without negatively impact lean mass, bone
density, or nutrient intake.

Clayton
et al. (52)

16 lean participants IF with
energy
restriction

Serum level of CTX, PINP, PTH IF with energy restriction does not affect bone
metabolism markers like CTX, PINP, and PTH.

Papageorgiou
et al. (53)

10 eumenorrheic women CR P1NP, CTX, IGF-1, Leptin Low EA achieved through CR led to a decrease in
bone formation but no change in bone resorption.
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treated with a low-carbonate KD to achieve and sustain nutrition

ketosis (blood BHB level of 0.5–3.0 mmol/L). It was found that their

spine BMD remained stable from baseline to a 2-year follow-up

(29). In regard to GTUT-1 DS, the alteration of bone mass of three

adult patients who were treated with normocaloric 3:1 KD for 5

years was observed, and the BMD of all three patients decreased in

the first 3 years and remained stable thereafter. At the 5-year follow-

up, all patients’ BMDs were in the normal range (30). In a study

with healthy participants, 21 adult resistance-trained women were

randomly assigned to a non-KD or low-carbohydrate KD group for

8 weeks. The results revealed that the KD group displayed a

significant increase in BMD after 8 weeks, while the NKD group

showed no significant change. However, no statistical significance

was found between the 2 groups (31). In recent years, most studies

on adults proved that a KD could improve disease conditions and

reduce harm to bone health. However, detrimental effects on bone

quality especially in children should be given great consideration.

Additionally, because the proportion and type of fat in KD were not

always recorded and controlled in current studies, and the duration

of KD intervention varied among studies, more high-level studies

with standardized study methods and large sample sizes are

necessary to reach a final judgement.

Current research on the KD indicates that its effects on bone

metabolism vary among different age groups and genders. In

terms of obese patients, Carter et al. compared 15 obese patients

who underwent KD treatment with another 15 matched obese

patients without diet intervention for 3 months. No significant

difference was found in the comparison of their bone-specific
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alkaline phosphatase (BSAP) and urinary cross-linked N-

telopeptides of type I collagen (UNTx), indicating a negative

effect on bone turnover rate in obese patients (32). As to the

world-class athletes who underwent a short-term KD for 3.5

weeks, bone resorption markers (cross-linked C-terminal

telopeptide of type I collagen, CTX) increased, while the bone

formation marker (procollagen 1 N-terminal propeptide, P1NP)

decreased (33). Since bone is the major reservoir of calcium,

calcium metabolism can provide another perspective on how a

KD affects bone metabolism. Current studies have revealed that a

KD could decrease calcium digestibility, release calcium from

bone to blood, and promote abnormal excretion of calcium.

Hawkes et al. observed cases of epileptic children who were

treated with KD therapy and then expanded the research into a

multi-center study. In general, it was found that children

developed hypercalcemia after an average of 2.1 years.

Furthermore, moderately elevated urinary calcium excretion,

and low levels of serum alkaline phosphatase, PTH, and 1,25-

dihydroxyvitamin D were also noticed (Figure 1) (61, 62).

Since previous studies have noticed the compromised bone

quality of patients treated with KD, research on how to reduce or

reverse the side effect of a KD on bone were then conducted, and

several antiosteoporosis drugs were reported to be effective.

Draaisma et al. conducted a retrospective observational cohort

study on epileptic children treated with KD and bisphosphonate

for over 6 months; DXA scans were taken to assess the bone mass,

and the result showed that bisphosphonate may have a positive

effect on the bone mass (34).
FIGURE 1

The ketogenic diets may affect bone formation and resorption in multiple ways. Created with BioRender.com.
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4 Mediterranean diet and bone health

4.1 The definition of a Mediterranean diet

The MD was first defined as being low in saturated fat and high

in vegetable oils in the 1960s and has been continuously revised

since then. The modern concept of the MD describes it as a diet that

includes a high intake of extra virgin olive oil, vegetable, and fruit; a

moderate intake of fish and other meat, dairy products, and red

wine; and a low intake of eggs and sweets (63). The most recent

definition of the MD was released in 2010 by the Mediterranean

Diet Foundation (64) (Table 4). The MD has been shown to be

effective in a variety of diseases, like cardiovascular disease and

cancer, as well as in bone health. Its protective effect was due to its

antioxidant and anti-inflammatory active molecules such as

polyphenols (65, 66).
4.2 The Mediterranean diet and
bone metabolism

4.2.1 Evidence from animal studies
Until now, only a handful of animal studies have been

conducted to reveal the effect of the MD on bone health. Olive oil

and vitamin D, which are abundant in the MD, were proven to

resist the bone loss induced by estrogen deprivation by regulating

the inflammation and oxidative stress status in mice (12). A variety

of olive compounds have been studied and proven to have a

protective effect on bone. Puel et al. injected ovariectomized rats

with osteoporosis (15 mg/kg) with oleuropein, a common

component of the MD. After 100 days, the injected rats had a

doubled BMD compared with the untreated ovariectomized group.

Another study published in 2008 focused on tyrosol and

hydroxytyrosol, the main olive oil phenolic compounds. The

results showed that ovariectomized rats after 84 days of tyrosol
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and hydroxytyrosol treatment had higher blood concentrations of

osteocalcin and BMD than untreated ovariectomized rats (13, 67).

4.2.2 Evidence from human studies
A study about the MD in children with celiac disease found that

it could improve bone health. It was found that both bone mineral

content and bone mineral density in these children were

significantly increased with high MD adherence than those with

low MD adherence. The adherence to the MD was evaluated using

the Mediterranean Diet Quality Index in Children and Adolescents

(KIDMED) survey. Participants are classified into three categories:

(1) high MD adherence (≥8 points), (2) mediumMD adherence (4–

7 points), and (3) low MD adherence (≤3 points) (35). Another

study revealed that compared to a basal diet, male adolescents who

adopted an MD as the main meal had a significant improvement in

calcium absorption and retention (36). In the meantime, Julian et al.

showed that the MD was not associated with BMD (37). Several

studies have demonstrated that perimenopausal women with MD

had more BMD and trabecular density (38) and less probability of

osteoporosis (68–72) than women without. Meanwhile, several

studies have indicated that the MD was associated with a reduced

risk of fracture, especially in hip fracture (73–75). A case–control

study in 2014 that included nearly 700 elderly Chinese persons

conducted from 2009 to 2013 with hip fracture showed that a high

score in diet-quality scales such as aMed was significantly associated

with a decreased risk of hip fractures (76), and a high score in diet-

quality scales was often associated with the MD. Other studies

revealed that high compliance with the MD was associated with

higher BMD and less risk of incident falls (39, 77–79). The

protective effect of this diet may be related to the intake of

vitamin D3, calcium ions, and the elevated levels of parathyroid

hormone in the body (80). However, not all studies found benefits

in the MD for bone health. A study conducted from 2000 to 2010 on

elderly French persons found no link between the diet and the risk

of bone fractures, possibly due to race or environment (40). In the

study, individuals with an incident fracture at any of the three sites

had a higher mean MeDi score, which assesses MD adherence, at

baseline than those who remained free of fracture. Specifically,

greater fruit consumption (i.e., >14 servings/week) was significantly

associated with a doubled 8-year risk of hip fracture, and a lower

intake of dairy products (i.e., <17.0 servings/week in men and <17.9

servings/week in women) was associated with a doubled risk of

wrist fracture. It has also been suggested that the olive oil in the MD

may reduce the risk of osteoporosis by reducing chronic

inflammation (81).
5 Caloric restriction diet

5.1 The definition of a caloric
restriction diet

Caloric restriction (CR) diet is classically defined as a diet with

reduced caloric intake, which is approximately 20%–30% below

average and does not cause malnutrition during the diet
TABLE 4 The definition of the Mediterranean diet.

Food Frequency

Sweets ≤2 servings weekly

Potatoes ≤3 servings weekly

Red meat <2 servings weekly

Processed meat ≤1 servings weekly

Dairy (preferably low fat) 2 servings daily

Olives/nuts/seeds 1–2 servings daily

Olive oil Every main meal

Fruits 1–2 servings every main meal

Vegetables (variety of color/textures) ≥2 servings every main meal

Bread/pasta/rice/couscous/other cereals 1–2 servings every main meal
Serving sizes specified as 25 g of bread, 100 g of potato, 50–60 g of cooked pasta, 100 g of
vegetables, 80 g of apple, 60 g of banana, 100 g of orange, 200 g of melon, 30 g of grapes, 1 cup
of milk or yoghurt, 60 g of meat, and 100 g of cooked dry beans.
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intervention. CR was reported to have the ability not only to reduce

weight (82) but also to improve aging-related outcomes (83).

However, CR was previously considered as a risk factor for

compromising bone quality, and the mechanism behind this

phenomenon might be the alteration in bone metabolism,

hormones, and weight bearing. Consequently, researchers have

tried to introduce a number of remedies to reduce dietary bone

damage, including vitamin D intake, high-protein intake, and

exercise training (84). Studies in the last decade have gained more

results on this topic, which will be reviewed below.
5.2 Effects of a caloric restriction diet on
bone mass

5.2.1 Evidence from animal studies
Most of the recent animal studies on CR and bone health have

once again confirmed the degraded bone mineral condition in rats,

mice, and rhesus monkeys. A study on obese female rats

implemented a −35% CR diet for 4 months; the BMD, trabecular,

and cortical bone volume and bone strength were found to be

decreased (14). Another study researched the effect of CR on bone

and discovered that the starting age of CR application was found to

be crucial to determine its effects. Younger mice showed a more

significant loss under CR in terms of cortical bone, cortical BMD,

and thickness, compared to senile mice. Long-term CR showed

beneficial effects on vertebrae trabecular BMD and BV/TV, which

were considered as a reorganization and compensation for the bone

loss in cortical bone (15). Issues have also been proposed on

whether the decrease of BMD was a pathological process or an

adaptation to weight loss. The study on rhesus monkeys indicated

that the alteration might be an adaptation process. It was reported

that despite the fact that BMD was lower after CR, the alteration of

bone turnover markers was not significant; thus, the decreased

BMD may be associated with the lower mechanical load generated

by a smaller body size, rather than pathological osteopenia (16).

Regarding the mechanism of how CR affects bone health, recent

studies focused most on CR-induced bone marrow adipose tissue

(BMAT) alterations. BMAT could respond to CR-induced energy

imbalance, cause volume expansion and metabolic or endocrinal

change (17), and then cause bone loss. The trigger factors of the
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alterations in BMAT have been widely studied, and the roles of

corticoid have been clarified the most. The uprising of serum

glucocorticoid as a result of CR was considered to be relevant

(85). The effect of leptin was still unclear, and low serum leptin level

was found to be insufficient for BMAT expansion (85).

Additionally, despite daily leptin supplementation suppression of

BMAT formation in CR mice, it does not attenuate BMD loss or the

impairment of bone microstructure; thus, the roles of leptin in

bone–fat interaction remain unclear (86). Development of insulin

resistance during CR was also found to coincide with BMAT

expansion (87). Another study revealed that the preservation of

BMAT during CR might be related to its characteristics of beta-

adrenergic stimuli resistance compared to white adipose tissue

(WAT) (88). Furthermore“, it was proposed that bone–

hypothalamus–pituitary–adrenal crosstalk might occur, which

may regulate BMAT during CR (89). The alteration of BMAT

affected bone health in multiple ways. The expansion of BMAT

stored fat, which might take up space in bone marrow, and

BMAT released biotic factors that modulated bone turnover.

However, whether or not BMAT expansion itself was necessitated

in bone loss remains controversial since the amount of expansion

might not always be related to the extent of bone loss (87, 90, 91).

Adiponectin, secreted by WAT and BMAT, was found to be

increased in mice and non-obese adults in CR situations, and

overexpression of adiponectin might interfere with glucose

metabolism and sympathetic tone, which further affects bone cells

and induces bone loss (41, 92). Regarding bone metabolic status, a

human study revealed the bone metabolic responses to CR, and

based on the evaluation of blood samples, P1NP concentration

decreased while CTX concentration remained unchanged, and IGF-

1 and leptin levels were decreased, which suggested that CR might

induce bone loss and decrease bone formation rather than increase

bone resorption (53) (Figure 2).

5.2.2 Evidence from human studies
Regarding the determination of whether CR impairs bone

quality, while several 2-year studies in non-obese patients,

including an RCT study, kept the affirmative opinion (41, 93),

other studies found that whether the loss of bone quality existed or

not was related to gender differences and the extent of weight loss.

An RCT study observed 424 obese and overweight participants, and
FIGURE 2

The mechanism of bone–fat interaction during CR.
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found decreased BMD in the femoral neck in all patients, while

postmenopausal women also showed decreased BMD in the spine.

Male patients showed increased BMD in the spine. All participants

also underwent regular exercise, which may influence the analysis of

the results (42). Another study that investigated 38 men showed

that moderate weight loss (−7.9 ± 4.4%) using CR would not

decrease BMD at any site or decrease cortical and trabecular bone

and geometry (43). Meanwhile, studies have also focused on

determining the timing of bone loss during CR. A study on

postmenopausal women has shown that the BMD loss did not

recover in 2 years after a 6-month CR intervention (44). Moreover,

evidence has also shown that bone mineral loss and bone turnover

would not recover even after weight regain (45). Furthermore,

regarding the assessment tools for the evaluation of BMD in

humans who underwent CR diet intervention, aside from the gold

standard of DXA, other new predictive tools were investigated. A

multiple regression analysis study collected data from 107 obese

adults with CR. The researchers selected the changes in thigh

muscle volume, lean body mass, osteocalcin, P1NP, CTX, and

one-repetition maximum strength as variables. After stepwise

multiple linear regression analysis, they demonstrated that

changes in thigh muscle volume were positively correlated with

changes in hip BMD and were its independent predictor (46).
5.3 Methods for attenuating CR-induced
bone loss

Considering the potential side effects of CR on bone, researchers

have recently focused on interventions that might attenuate such

effects, including exercise, vitamin D and calcium supplementation,

and other nutrient supplementation.

In terms of exercise, more recent literature confirmed the

positive effect of exercise during CR, while a few animal studies

disagreed with this opinion. In studies with positive opinions on the

subject, RCTs involving overweight/obese adults have found that

aerobic training (AT) for 3 months (94) and resistance training

(RT) for 5 months (95) were beneficial to weight-bearing bones’

BMD during CR. However, RT might be more effective in bone

quality reservation than AT according to the comparison between

the BMDs of RT+CR and AT+CR. The potential mechanism needs

to be discussed in the future (95). The level of serum sclerostin was

found to be higher in participants with exercise training during CR,

which might positively influence bone quality (96, 97). In contrast

with human studies, animal studies have revealed varying results.

Five-month-old female rats that were fed with CR with exercise for

12 weeks have better BMD, BMC, and lean mass compared to rats

only fed with CR (98, 99). Another study found that obese rats fed

with CR and subjected to exercise for 3 months can attenuate bone

volume decrease at the distal femur (100). Nebot et al. proposed a

mixed exercise-training protocol with CR and reported that it

induced weight loss while preserving bone quality (19). A few

studies also pointed out the negative effects of exercise on bone

during CR. Hitori et al. conducted a study that randomly divided

14-week-old mature male rats into a control group, a CR group, an

exercise group, and a CR+exercise group, and found no significant
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difference in femur and tibia BMD and trabecular bone volume

between groups after 13 weeks (101). They then conducted a similar

study on 4-week-old rats; the results indicated that 13-week exercise

with CR was detrimental to bone microstructure and strength (102).

A more recent study fed 10-week-old rats with CR and subjected

them to exercise for 6 weeks. Bone quality was found to be

compromised with increased cortical porosity. Exercise also

suppressed MAT formation, interrupting its function as an energy

supply source to bone formation during CR (103).

In terms of nutrient supplementation, vitamin D and calcium

supplementation provided the most significant findings. Over the

last 10 years, four RCT studies have revealed different results. A 6-

month supplementation of 400 IU vitamin D and 800 mg calcium

per day can improve tibial bone properties, which was measured by

quantitative CT in young male jockeys who usually undertake CR

and high volumes of physical activities (104). Another RCT study

observed that a 6-week intake of 1,200 mg calcium and 400 IU

vitamin D supplementation in healthy or obese participants during

CR could elevate their osteocalcin level and improve insulin

sensitivity, which might benefit bone formation (105). Regarding

the dose of vitamin D supplementation, an RCT double-blind study

found that when calcium intake is 1,200 mg per day, either 10 or 63

mg of vitamin D per day is sufficient to maintain the calcium balance

during CR. Calcium balance was evaluated with the parameter of

true fractional calcium absorption (TFCA) (106). However, another

RCT study revealed that a 12-month vitamin D supplementation

(2000 IU/day) did not result in different changes in BMD from

placebo in women participating in a weight loss program with CR.

It is worth noting that all participants also took part in 225 min/

week of aerobic exercise (107). Other nutrient supplementation

researched by recent studies included special protein regimens (soy

or casein) and Omega-3 polyunsaturated fatty acid (n-3 PUFA)

supplementation. However, both of them could not improve bone

quality during CR according to the study results (108, 109).
6 The effect of high-protein diets on
bone health

According to the Recommended Dietary Allowances (RDA)

published by the National Research Council (US) in 1989, 0.8 g/kg

body weight/day of protein is sufficient for adults, while high-

protein (HP) diets refer to diets that contain more than 0.8 g/kg

body weight/day of protein. HP diets have gained attention since

they have been widely used in the treatment of obesity and diabetes.

Furthermore, it is believed that HP diets may improve athletes’

performance and body posture by increasing muscle mass (110–

112). However, controversial topics of whether and how HP diets

influence bone health still remain. During HP diets, serum IGF-1

and bone matrix collagen synthesis were upregulated, while PTH

secretion was downregulated. These factors were beneficial to bone

formation. On the other hand, HP diets could also produce more

acid during protein metabolism, which could impair bone

formation. Overall, the protective effect appears to outweigh the

detrimental effect (113).
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Animal studies on a moderate-high protein diet showed its positive

effect on bone, while even higher protein diets did not seem to further

improve bone quality. In a study involving 5-week-old rats fed with

different levels of dietary protein and that underwent different levels of

exercise, it was found that the BMD of tibia and femoral breaking force

were lower in the low-protein-diet group (18). Another study examined

6-week-old obese Zuker rats for 2 months, showing that the

combination of an HP diet (25% protein) and exercise enhances the

trabecular bone microarchitecture and BMD, while leaving the bone

turnover markers unchanged (114). However, a study that tracked 3-

week-old rats for 3 weeks did not find any improvement in bone length

and bone formation biomarkers in the high-protein group (26%

protein) compared with the low-protein group (12% protein) (20). In

another study, the HP diet (40% protein) did not improve bone quality

more than the moderate-protein diet (20% protein) in rats with high-

level exercise (18).

In human studies, no detrimental effects on bone health were

found during an HP diet. Researchers compared the HP diet with

habitual diets in 24 exercise-trained women for half a year. The

results proved that neither the whole-body BMD nor lumbar BMD

were significantly different after intervention (47). In another large-

sample study, the protein intake of 12,812 subjects with femoral

BMD and T scores from the National Health and Nutrition

Examination Survey (NHANES) were analyzed. It was

demonstrated that BMD and T-scores were positively correlated

with the amount of protein intake (48). Another analysis also

studied the NHANES database and extracted data from 4,447

subjects. The result showed that diets with a higher percentage of

energy from protein were associated with higher T-scores (49).

However, the two studies did not record the duration of HP diets. In

another aspect, there are studies that have shown that HP diets do

not attenuate bone loss in patients with chronic kidney disease and

low energy availability (48, 50).
7 Intermittent fasting and bone health

Intermittent fasting (IF) is defined as dieting with periodic

fasting and non-fasting (115), which includes complete alternate-

day fasting, modified fasting regimens, time-restricted feeding

(TRF), religious fasting, and Ramadan fasting, thus improving

metabolic profiles and reducing the risk of obesity and related

diseases (116). Although the intake of calcium was reported to be

relatively lower in IF (117), the actual effects of IF on bone health

were unclear.

In animal studies, evidence showed the detrimental effects of IF

on bone mass and bone remodeling. A study that researched 16

pregnant female rats reported that rats fed with an IF regimen

showed a decrease in cortical thickness of the vertebra and the

ability of bone remodeling according to the osteoclast count (21).

They further observed the offspring of eight pregnant rats fed with

IF and found thyroid abnormalities that may be associated with the

decrease in bone remodeling ability (22). Another study observed

Alzheimer’s disease-induced estrogen-deficient rats, showing that
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IF could aggravate BMD loss (23). It was also determined that IF

may attenuate the detrimental effects of KD on bone. The

combination of IF and KD was named Every-other-day ketogenic

diet. It was reported that this diet would not impair bone

microstructure and strength compared to a normal KD in a rat

study (56).

Current human studies showed no detrimental effects in either

BMD measurement or bone turnover markers. In terms of IF

without energy restriction, a randomized study enrolled 24

healthy lean midlife/older adults, while 10 participants were

randomized to stick to their normal feeding pattern for 6 weeks

and then transition to a 6-week TRF. The other 14 participants were

randomized to stick to the 6-week TRF and then transition to their

normal diet pattern; the TRF required participants to consume all

meals within a 8-h time window, and the caloric intake was within a

regular range to avoid weight loss. In the study results, researchers

did not find significant differences between the normal feeding

group and the TRF group (51). In terms of IF with energy

restriction, another study investigated 16 lean participants for 3

days; on day 1, they consumed a 24-h diet with or without energy

restriction (25% of the estimated energy requirement), followed by a

standardized breakfast and ad libitum lunch and dinner on day 2,

and fasting overnight and return on day 3. Their CTX, PINP, and

PTH levels were measured on all 3 days, with no differences found

between the groups, which indicated that a 24-h severe energy

restriction did not affect bone metabolism (52).
8 Conclusion

This review presents an overview of the current knowledge on

the effects of a KD, an MD, an HP diet, IF, and CR on bone health.

We suggest that several problems should be solved first before

further addressing the following: (i) Related studies lack

standardization of the dietary intervention, which includes the

proportion and type of fat in a KD, the energy restriction rate

and the nutrition structure of CR, the proportion and resources of

protein in HP, the types of IF, the duration of the intervention, and

whether calcium supplementation can meet the minimum daily

requirement. (ii) The method used for measuring bone quality also

lacks standardization, which includes the bone site of measurement

and the selection of the assessment tool such as x-ray, computed

tomography (CT), or DXA. (iii) Sometimes, studies displayed

conflicting results in human and animals; further explanation is

needed to address this. (iv) More high-level evidence studies, such

as an RCT and meta-analysis of different forms of dietary

interventions, should be carried out with a standardized protocol

and long-term follow-up. In summary, in a KD and CR, detrimental

effects on bone quality were more significant, and attenuation

methods were proposed. In contrast, most of the relevant studies

on MDs and HP diets showed a positive or non-effective impact on

bone health. In IF, recent human studies and animal studies showed

different results. Although numerous researchers have been

working on this topic for a long period of time, current lines of
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evidence on human and animal studies were still not sufficient to

reach a final solid conclusion.
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