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Stem cells have self-renewal, replication, and multidirectional differentiation

potential, while progenitor cells are undifferentiated, pluripotent or specialized

stem cells. Stem/progenitor cells secrete various factors, such as cytokines,

exosomes, non-coding RNAs, and proteins, and have a wide range of

applications in regenerative medicine. However, therapies based on stem cells

and their secreted exosomes present limitations, such as insufficient source

materials, mature differentiation, and low transplantation success rates, and

methods addressing these problems are urgently required. Ultrasound is

gaining increasing attention as an emerging technology. Low-intensity pulsed

ultrasound (LIPUS) has mechanical, thermal, and cavitation effects and produces

vibrational stimuli that can lead to a series of biochemical changes in organs,

tissues, and cells, such as the release of extracellular bodies, cytokines, and other

signals. These changes can alter the cellular microenvironment and affect

biological behaviors, such as cell differentiation and proliferation. Here, we

discuss the effects of LIPUS on the biological functions of stem/progenitor

cells, exosomes, and non-coding RNAs, alterations involved in related

pathways, various emerging applications, and future perspectives. We review

the roles and mechanisms of LIPUS in stem/progenitor cells and exosomes with

the aim of providing a deeper understanding of LIPUS and promoting research

and development in this field.

KEYWORDS

stem cells, exosomes, low-intensity pulsed ultrasound, differentiation, proliferation,
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1 Introduction

Stem cells, found in various tissues and organs, are

undifferentiated cell populations originating from the early stages

of embryonic development. They possess a limited capacity for self-

renewal and demonstrate the ability to undergo multidirectional

differentiation, giving rise to diverse specialized cell types. They can

be classified into embryonic stem cells, induced pluripotent stem

cells, and adult stem cells, with adult stem cells exhibiting a more

limited differentiation potential. Stem cells undergo differentiation

into progenitor cells, which possess a greater potential for

differentiation but have limited self-renewal ability. Progenitor

cells are characterized as undifferentiated cells with a higher

proliferative capacity and the capability to differentiate into

specific cell lineages (1). Mesenchymal stem cells (MSCs) are

pluripotent tissue stem cells that can differentiate into a variety of

mesodermal tissue types and are present as a type of adult stem cell

in various mature tissues in vivo, such as the bone marrow, adipose,

umbilical cord, and teeth, and they represent the most widely

studied class of stem cells (2). Stem cells can exert paracrine

effects by secreting factors, such as cytokines and inflammatory

factors, and immunomodulatory effects by interacting with immune

cells. Their low immunogenicity makes them immune to rejection

at the time of transplantation (3). In some cases, inflammatory

stimuli cause MSCs to suppress or enhance the ability of the

immune response to localize to the site of inflammation, thus

exerting an anti-inflammatory effect (4).

Exosomes are extracellular vesicles with a bilayer membrane

structure, diameter of 40–100 nm, and density of 1.13–1.19 g/mL.

They contain proteins, mRNAs, miRNAs, and DNA. Exosomes are

present in nearly all cells and body fluids and are generally obtained

from various types of cells, such as stem cells. Exosomes are

important for intercellular communication, and they are involved

in the integration of cells in physiological and pathological states by

delivering biomolecules, thereby causing a series of biochemical

changes in receptor molecules. They function in immune regulation

(5), reproduction (6), tumor angiogenesis (7), cell differentiation

and regeneration (8), apoptosis (9), and inflammatory responses

(10). MiRNAs are endogenous non-coding single-stranded RNAs of
Abbreviations: ADSCs, adipose-derived stem cells; AKT, protein kinase B; ALP,

alkaline phosphatase; BDNF, brain-derived neurotrophic factor; BMDCs, bone

marrow dendritic cells; BMP-2, bone morphogenetic protein-2; BMSCs, bone

marrow- derived mesenchymal stem cells; CSCs, cancer stem cells; CXCR4, C-X-

C chemokine receptor type 4; ERK1/2, extracellular signal-regulated kinases 1/2;

GSCs, glioma stem cells; HSP, heat shock protein; HUVEC, human umbilical vein

endothelial cells; iPSC-NCSCs, pluripotent stem cell-derived neural crest stem

cells; JNK, Jun N-terminal kinase; LIPUS, low-intensity pulsed ultrasound; MSC-

EXO, mesenchymal stem cell derived exosome; MSCs, mesenchymal stem cells;

NF-kB, nuclear factor-kB; OA, osteoarthritis; OCN, osteocalcin; OPN,

osteopontin; PDLSCs, periodontal ligament stem cells; PI3K, phosphoinositide

3-kinases; PNI, peripheral nerve injury; POI, premature ovarian insufficiency;

Runx2, Runt -related transcription factor 2; SDF, stromal cell derived factor;

TNF, tumor necrosis factor; UTMD, ultrasonic targeted microbubble destruction;

YAP, Yes-associated protein.
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21–23 nucleotides that bind directly to the 3′-untranslated regions

(3′ UTRs) of target mRNAs and regulate post-transcriptional gene

expression negatively or positively (11). Most cells can secrete

miRNAs, as can MSC-derived exosomes (MSC-EXOs). MSC-

EXOs help restore dynamic cellular homeostasis by delivering

proteins, lipids, and other information and affect the proliferation,

differentiation, migration, and other behaviors of stem cells through

various mechanisms that lead to altered signaling pathways (12, 13).

All of these different types of stem/progenitor cells have

promising clinical applications in regenerative medicine (14).

MSC-EXOs have the same properties as stem cells but lower

immunogenicity, tumorigenicity, and infectivity, and they express

MSC surface molecules CD90, CD44, and CD73; moreover, MSCs

and extracellular vesicles have similar miRNA expression profiles

(15, 16). Therefore, MSC-EXOs are widely studied and applied in

regenerative medicine and various diseases (17). Studies have

elucidated the biological roles of miRNA-mediated MSC-EXO

effects in various tissues. A recent review concluded that MSC-

EXO miRNAs have a dual role in the cancer microenvironment,

where they significantly inhibit tumorigenesis and transfer between

donor and recipient cells, leading to cancer chemoresistance, thus

providing new ideas for identifying strategies for overcoming cancer

drug resistance (18).

Endometrium-derived MSC-EXOs with high levels of miRNAs

are involved in the regulation of macrophage polarization, T-cell

activation, and inflammatory cytokine transcription by the immune

system (19). MSC-EXO miR-140-5p regulates the mTOR pathway

by targeting IGF1R (20), thereby inhibiting the osteogenic

differentiation of MSCs. In addition, exosomes and their secreted

miRNAs can serve as carriers for drug delivery and have been

applied in various disease treatments (21, 22). However, stem cell

and exosome therapies still have limitations, such as insufficient

sources, mature differentiation, low transplantation success, and

insufficient target organ homing, which limit their clinical

application (23, 24). In addition, the treatment mechanism is not

fully understood in many cases and the amount of treatment

required for different diseases has not been standardized (25). To

address these issues, methods to improve homing rates are

increasingly being explored.

Low-intensity pulsed ultrasound (LIPUS) is a special type of

ultrasound output in the form of pulsed waves with frequencies of 1

to 3 MHz and intensities less than 1 w/cm2, and it can be used as a

non-invasive physical stimulus for therapeutic applications (26).

LIPUS has a low thermal effect because of its low intensity and

pulsed output mode; thus, it presents limited thermal effects while

delivering acoustic energy to the target tissue. Its mechanical and

cavitation effects provide low-intensity mechanical vibrational

stimuli that interact with cells and trigger numerous intracellular

changes, such as the release of cytokines and signaling molecules.

These changes can alter the cellular microenvironment and affect

biological behaviors, such as cell proliferation, differentiation, and

migration, leading to tissue repair and regeneration (27). LIPUS is a

promising treatment modality that was initially used for skeletal

muscle disorders and has been shown to promote fracture healing,

cartilage repair in osteoarthritis (OA), and tendon ligament injury

recovery (28, 29). A recent review summarized the role and
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mechanism of LIPUS in the repair of peripheral nerve injury (PNI),

and as a non-invasive stimulation method, LIPUS is expected to be

a successful alternative treatment for PNI with great advantages and

application prospects (30). In recent years, studies have found that

LIPUS has important effects on stem/progenitor cells and

exosomesis emerging as an important tool for enhancing stem

cell therapy (Figure 1).

Herein, we review the research progress in the use of LIPUS for

stem/progenitor cell exosomes from three aspects: (1) the effects of

LIPUS on the biological functions of stem/progenitor cells and

exosomes; (2) the signal transduction pathways in stem/progenitor

cells and exosomes affected by LIPUS; and (3) the prospects of

clinical applications of LIPUS combined with stem/progenitor cells

and exosomes. This review aims to provide a deeper understanding

of LIPUS and promote research and development in this field.
2 Effects of LIPUS on the biological
functions of stem/progenitor cells

Studies have revealed that LIPUS can affect stem/progenitor cell

differentiation, migration, and proliferation and exosome functions

through mechanical stimulation (31–33). These biological functions
Frontiers in Endocrinology 03
are described in detail below and summarized in Figure 2 and

Tables 1–4.
2.1 Effects of LIPUS on the differentiation
of stem/progenitor cells

2.1.1 Bone marrow-derived MSCs (BMSCs)
BMSCs are multipotent stem cells. An et al. (36) stimulated rat

BMSCs with 100 mW/cm2 LIPUS and found increases in

mineralized nodules in the extracellular matrix and the expression

levels of osteogenic-related genes encoding the bone-bridging

protein osteopontin (OPN), osteocalcin (OCN), bone

morphogenetic protein-2 (BMP-2), alkaline phosphatase (ALP),

Runt-related transcription factor 2 (Runx2), and type 1 collagen,

suggesting that LIPUS promotes the osteogenic differentiation of

BMSCs on titanium surfaces. Zhang et al. (39) found that LIPUS

reverses the effects of radiation on the osteogenic differentiation of

rat mandible-derived BMSCs. Yao et al. (104) reported a cyclic

arginine-glycine-aspartate-modified nanobubble that could actively

target BMSCs via integrin receptors and was used in combination

with LIPUS to further enhance the osteogenic differentiation and

bone formation of BMSCs induced by LIPUS. He et al. (38) used
FIGURE 1

Stem cell and exosome injections are used to treat disease models, and further exposure to LIPUS can increase transplantation efficiency. The stem
cell source is shown in the upper left, the lower left shows the common parameters of LIPUS, which features an intensity of less than 1 W/cm2, a
frequency of 1-3 MHz, and a duty cycle of 20%. LIPUS, low-intensity pulsed ultrasound.
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LIPUS to irradiate BMSCs with a frequency of 0.6 MHz, a duty cycle

of 20%, and an intensity of 30 mW/cm2 and showed that LIPUS

treatment promoted the differentiation efficiency and rate of

BMSCs. Song et al. (40) and Li et al. (37) treated BMSCs with

hepatocyte growth factor and found that LIPUS significantly

upregulated the levels of the liver markers alpha-fetoprotein,

cytokeratin 18, albumin, and glycogen in the BMSCs, indicating

that LIPUS-induced BMSC differentiation towards hepatocytes.

Autophagy is involved in regulating BMSC differentiation into

chondrocytes. Xia et al. (34) and Wang et al. (35) found that

LIPUS inhibited autophagy in BMSCs by regulating the integrin

pathway and autophagy to promote the chondrogenic

differentiation of BMSCs.

In summary, these studies suggest that LIPUS can regulate the

differentiation of BMSCs towards osteogenic, hepatocytic, and

chondrogenic lineages. The effects of LIPUS appear to be

mediated through various cellular signaling pathways, gene

expression, and autophagy. However, further research is needed

to elucidate the mechanisms and potential applications of LIPUS-

induced BMSC differentiation.

2.1.2 Adipose-derived stem cells (ADSCs)
ADSCs from subcutaneous fat are more readily available than

BMSCs and have a greater capacity for proliferation and

differentiation (105). Yue et al. (42) and Zhang et al. (44) isolated
Frontiers in Endocrinology 04
mouse and human ADSCs in vitro and stimulated the cells in vitro

with a certain intensity of LIPUS. These authors performed protein

blotting analysis of osteogenic-related genes and found that LIPUS

promoted mineralized nodule formation and upregulated the

osteogenic-related genes Runx2, OCN, ALP, and OPN, bone sialo

protein, and heat shock protein (HSP) 70, HSP90, BMP-2, and BMP

proteins. These results suggest that LIPUS stimulation can enhance

the osteogenic differentiation of ADSCs by upregulating the

expression of HSP70 and HSP90 and activating the BMP

signaling pathway. Fu et al. (43) cultured mouse ADSCs in

medium containing adipogenic reagents and stimulated them

with 30 mW/cm2 LIPUS, and an analysis of adipogenic genes and

proteins revealed that LIPUS upregulated the adipocyte lipogenic

factors peroxisome proliferator-activated receptor g and

adiponectin, suggesting that LIPUS promotes the lipogenic

differentiation of ADSCs.

2.1.3 Other stem/progenitor cells
Kusuyama et al. (46) extracted periodontal ligament stem cells

(PDLSCs) from three healthy third molars and used LIPUS to

intervene with BMP9 to induce PDLSC differentiation, which was

found to be effective in promoting osteogenic differentiation under

inflammatory conditions. LIPUS with an intensity of 90 mW/cm2

and a frequency of 1.5 MHz promoted the osteogenic differentiation

of PDLSCSs both in vitro and in vivo (47, 50). Hu et al. (49)
FIGURE 2

Schematic representation of the effects and applications of LIPUS or combined with microbubble on stem/progenitor cells and exosomes. LIPUS
affects stem/progenitor cells and exosomes in the following areas: differentiation, proliferation, migration, homing, transplantation efficiency,
cytokine secretion, and angiogenesis regulation. These functions are closely related to therapeutic applications in regenerative medicine and often
used to promote fracture healing, anti-inflammation, nerve injury repair, soft tissue regeneration, and drug delivery. LIPUS, low-intensity pulsed
ultrasound.
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TABLE 1 The effect of LIPUS on the differentiation of stem cells.
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ng pathway
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B signaling
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PDLSCs – – – – – Osteogenic differentiation
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demonstrated that 50 mW/cm2 LIPUS promoted the endothelial

differentiation and angiogenesis of PDLSCs under inflammatory or

non-inflammatory conditions. Lee et al. (56) demonstrated for the

first time that intense dual-frequency LIPUS exposure promotes

neural stem/progenitor cell differentiation and growth factor

utilization more than single-frequency LIPUS owing to the

cavitation effect. Recently, they found that dual-frequency

ultrasound regulates calcium channels via the downstream

extracellular signal-regulated kinase 1/2 (ERK1/2) pathway,

thereby promoting the differentiation of functional neural stem/

progenitor cell neurons and the secretion of brain-derived

neurotrophic factor (BDNF) (58). Furthermore, they found that

dual-frequency ultrasound affects cancer stem cells (CSCs) by

inducing CSC differentiation and reducing drug resistance and

invasiveness; thus, it represents an alternative therapeutic option

for treating human tumors (57). Wu et al. (53) found that LIPUS at

an intensity of 69.3 mW/cm2 and a frequency of 1 MHz not only

reduced astrocyte differentiation but also stimulated neuronal

differentiation in vitro by modulating the Notch signaling

pathway. Xia et al. (55) applied a rat sciatic nerve injury model

and demonstrated that LIPUS may regulate the proliferation of

induced pluripotent stem cell-derived neural crest stem cells (iPSC-

NCSCs) via the focal adhesion kinase (FAK)-ERK1/2 signaling

pathway and neural differentiation, suggesting that LIPUS may be

a useful alternative approach in the field of neural regeneration. In

2022, Hua et al. (54) demonstrated for the first time that LIPUS

promoted osteogenic differentiation in iPSC-derived MSCs, and the

optimal parameters were an intensity of 40 mW/cm2, a frequency of

1.5 MHz, and a duty cycle of 50%.
2.2 Effects of LIPUS on the proliferation of
stem/progenitor cells

2.2.1 MSCs
Huang et al. (68) found that LIPUS at 30 mW/cm2 upregulated

the gene expression of proliferation-related proteins cyclin D1, c-

Myc, and stromal cell-derived factor (SDF)-1a in ADSCs, thereby

promoting their proliferation and extending their duration in an

undifferentiated state. The proliferative effect of LIPUS on ADSCs

has also been demonstrated by Min et al. (69). The effect of LIPUS

on the proliferation of PDLSCs has been demonstrated in several

studies. For example, Gao et al. (79, 80) found that LIPUS promoted

the proliferation of MSCs of different origins by activating different

MAPK pathways in an intensity- and cell-specific-dependent

manner and revealed that these odontogenic MSCs all had Piezo

membrane ion channels sensitive to mechanical stimulation,

suggesting that the proliferation of LIPUS-stimulated odontogenic

MSCs may involve piezoelectric regulation of ERK1/2 signaling.

Han et al. (67) treated rat MSCs with LIPUS at a power of 60 mW/

cm2 and a frequency of 1.5 MHz in combination with BMP-2 and

assessed relevant proliferation and osteogenic indicators. They

found that the combination more strongly promoted cell

proliferation, and they validated the effect of the combination

treatment in a rabbit distraction osteogenesis model. Ling et al.

(75) isolated MSCs from human placental amnion and stimulated
T
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TABLE 2 The effect of LIPUS on the other biological functions of stem/progenitor cells.
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Cell type

LIPUS parameters

Injection
method

effects on stem cells SignalinIntensity
(mW/
cm2)

Frequency
(MHz)

Duty
ratio
(%)

Time
(mins)

BMSCs 50/60 1.5 20 5 – Proliferation P13K/AKt s

BMSCs 100 1 10 10 –
Proliferation, adhesion, osteogenic

differentiation

BMSCs 30 0.25 20 20 tail vein Migration
FAK-ER

p

BMSCs 30 1.5 – – tail vein Migration, homing

BMSCs – 1.02 – 7.3 – Cell viability

BMSCs 50 1 – 3
injured epicenter

(invasive)
Cell viability, migration, nerve

growth factor expression

BMSCs 25 1.11 20 20 –
Influence of immediate early gene

(IEGs) expression
MAPK/ERK

MSCs 100 1.5 20 – –
Proliferation,

chondrodifferentiation

MSCs 30 1.5 20 20
intracardiac injection

(confirmed by
ultrasound)

Migration, recruitment
SDF-1/C

p

MSCs 50 3 20 20 intra-articular injection Migration

MSCs – 1 5 – tail vein Homing

MSCs 60 1.5 – 10 – Proliferation

ADSCs 30 1.5 20 5 – Proliferation

ADSCs 300 5 – 10 – Proliferation

ADSCs 70/210 0.5 – 1 – Cell viability, apoptosis

ADSCs 15.5 1 20 – – Angiogenesis

ADSCs 20 1 20 10 –
The myelination capacity of

Schwann cells (SC)

ADSCs 30 1.5 – 20
fibrin glue during the

operation
Bone healing
K

X
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TABLE 2 Continued

Signaling pathway Disease
Year of

publication
References

Piezo-ERK-VEGF signaling
pathway

erectile
dysfunction

2022 (74)

ERK1/2 and PI3K-Akt
signalling pathways

– 2017 (75)

–

primary
ovarian

insufficiency
2017 (76)

SDF1/CXCR4 signaling
pathway

– 2018 (77)

– – 2012 (78)

MAPK signaling pathway – 2016 (79)

Piezo-mediated regulation of
ERK1/2 MAPK signaling

pathway
– 2017 (80)

– – 2022 (81)

– – 2017 (82)

– – 2018 (83)

– – 2022 (84)

PI3Ka/AKT/mTOR signaling
pathway

– 2022 (85)

– – 2022 (86)

-derived mesenchymal stem cells; hAD-MSCs, Human amniotic mesenchymal stem cells; PDLSCs,
, Embryonic stem cells; GBMCSCs, Glioblastoma cancer stem cells; GSCs, Glioma stem cells.
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Cell type

LIPUS parameters

Injection
method

effects on stem cellsIntensity
(mW/
cm2)

Frequency
(MHz)

Duty
ratio
(%)

Time
(mins)

ADSCs 200 1.7 20 5
intracavernosal

injection
Proliferation, secretion of

cytokines

hAD-MSCs – 0.25 20 30 – Proliferation

hAD-MSCs 30 0.25 20 30 tail vein
Growth factor secretion, improved

ovarian function

PDLSCs 90 1.5 20 30 – Migration

PDLSCs 30 – – 10 – Anabolic effects

DPSCs 、
PDLSCs、
BMSC

250/750 1 – 5/20 – Proliferation

DPSCs 、
PDLSCs

250/750 1 – – – Proliferation

hUC-MSCs – – 20 – – Proliferative, secretory activity

SSCs – – – – – Proliferation

C2C12
mesenchymal
precursors

44.5 3.6 27.8 5 – Proliferation

ESCs 10~30 1.5 20 – –

Proliferation, osteogenic
differentiation, mineralized tissue

formation

GBMCSCs 500 1 20 1 – Cell viability

GSCs 300 1.5 20 20/5 –
Increased sensitivity of GSC to

temozolomide

LIPUS, Low-intensity pulsed ultrasound; mins, minutes; BMSCs, Bone marrow-derived mesenchymal stem cells; MSCs, Mesenchymal stem cells; ADSCs, Adipos
Periodontal ligament stem cells; DPSCs, Dental pulp stem cells; hUC-MSCs, Human umbilical cord mesenchymal stem cells; SSCs, Spermatogonial stem cells; ESC
e
s
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TABLE 3 The effect of LIPUS combined with microbubbles on the biological function of stem/progenitor cells.

effects on stem cells Signaling pathway Disease
Year of

publication
References

Migration, homing – – 2018 (87)

Homing – acute liver injury 2018 (88)

Cellular Viability –
acute myocardial

infarction
2020 (89)

Homing –
acute myocardial

infarction
2021 (90)

Migration, homing –
acute kidney

injury
2016 (91)

Homing –
chronic bacterial

prostatitis
2016 (92)

Migration – – 2020 (93)

Proliferation, chondrogenic
differentiation

– – 2016 (94)

Proliferation, osteogenic
differentiation

– – 2019 (95)

Migration, homing
SDF-1/CXCR4 signaling

pathway
myocardial
infarction

2015 (96)

Neural differentiation
Piezo1-Ca2+ -BMP2/Smad

signaling pathway
– 2022 (48)

, Mesenchymal stem cells; NSCs, Neural stem cells.
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Cell
type

LIPUS parameters
Injection
methodIntensity

(mW/cm2)
Frequency

(MHz)
Duty

ratio (%)
Time
(mins)

BMSCs 2000 1 – – –

BMSCs 1500 1 20 10 tail vein

BMSCs 2000 1 50 2 tail vein

BMSCs 2000 1 – 2 tail vein

BMSCs 600 1 10 – –

BMSCs 23 – 10 5 tail vein

MSCs – – – – –

MSCs 30 1.5 20 1-5 tail vein

MSCs 30 1.5 20 3 –

MSCs 600 1 10 0.5 tail vein

NSCs – 18 – 30 –

LIPUS, Low-intensity pulsed ultrasound; mins, minutes; BMSCs, Bone marrow-derived mesenchymal stem cells; MSCs
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TABLE 4 The effect of LIPUS on the biological function of stem/progenitor cells or exosomes.

Injection
method

effects
Signaling
pathway

miRNA Disease
Year of

publication
References

intraarticular
injection

Cartilage regeneration
NF-kB signaling

pathway
– osteoarthritis 2021 (97)

intraarticular
injection

Promotion of
exosome release

– – osteoarthritis 2022 (98)

–
Enhancement of
exocrine secretion

NF-kB signaling
pathway

miR-16, miR-21 – 2019 (99)

–
Signal transduction,

osteogenesis
HIF-1a Signaling

pathway
miR-31-5p – 2019 (100)

– miRNA delivery – miR-let7b – 2018 (101)

–
Osteogenic

differentiation
– miR-182 – 2019 (102)

dripped on the
wound

Generation of EV
MAPK signaling

pathway
miR-328-5p,
miR-487b-3p

allogeneic skin
transplantation model

2023 (103)

esenchymal stem cells; EXO, Exosome; MSCs, Mesenchymal stem cells; BMDCs, Bone marrow dendritic cells; OCSCs, Ovarian cancer stem cells; hPDLCs, Human primary
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Cell
type

LIPUS parameters

Intensity
(mW/cm2)

Frequency
(MHz)

Duty
ratio (%)

Time
(mins

BMSC-
EXO

30 1.5 20 20

MSC-
EXO

50 3 20 20

BMDCs-
EXO

30 1.5 – –

hMSCs 30 1.5 – –

OCSCs 1000 1 10 1

hPDLC 90 1.5 – –

BMSCs 300 1 20 15

LIPUS, Low-intensity pulsed ultrasound; mins, minutes; BMSCs, Bone marrow-derived m
periodontal cells.
)

https://doi.org/10.3389/fendo.2023.1286900
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


He et al. 10.3389/fendo.2023.1286900
them with LIPUS at 30 mw/cm2 and found that LIPUS promoted

the transition of MSCs from the G0/G1 phase to the S and G2/M

phases and the proliferation of cells. Recently, Ren et al. (81)

isolated MSCs from human umbilical cord and found that LIPUS

was effective in stimulating cell proliferation and secretory activity

in vitro; moreover, LIPUS-treated MSCs effectively reduced thyroid

cell apoptosis and excessive autoimmune antibody accumulation,

and improved thyroid function in a rat experimental autoimmune

thyroiditis model.

2.2.2 Other stem/progenitor cells
Salgarella et al. (52) exposed C2C12 myogenic cells to different

regimens of LIPUS and found that stimulation at 1 W/cm2 and 3

MHz maximized cell proliferation. Puts et al. (83) found that

stimulation of mouse C2C12 mesenchymal precursors with

LIPUS at 44.5 mW/cm2 and 3.6 MHz promoted cell proliferation.

Detection of Yes-associated protein (YAP), which acts as a

mechanosensor in C2C12 cell fate, revealed increased levels of

YAP in the nucleus, whereas silencing of YAP expression

eliminated the beneficial effects of LIPUS, suggesting that LIPUS

enhances cell proliferation potential by regulating YAP function,

which is essential for tissue regeneration processes. The installation

of LIPUS modules in a bioreactor for large-scale production of 3D

tissue structures based on embryonic stem cells promoted stem cell

proliferation, osteogenic mineralized tissue formation, and cavity

filling in a rabbit cranial defect model (84). Moghadam et al. (82)

found that LIPUS with a mechanical index of 0.4 was effective in

increasing the proliferation rate of spermatogonial stem cells within

7 days of culture while a higher mechanical index was detrimental

to the cells, suggesting that LIPUS may be an option for the

treatment of male oligospermia.
2.3 Effects of LIPUS on the migration of
stem/progenitor cells

The effect of LIPUS on stem/progenitor cell migration has been

confirmed by many studies. Wang et al. (77) isolated PDLSCs from

premolar teeth and found that LIPUS at an intensity of 90 mW/cm2

promoted PDLSCmigration based on wound healing and Transwell

assays. Subsequently, they injected BMSCs via the tail vein,

irradiated the defective areas in rats directly with 30 mW/cm2

LIPUS, and assessed alveolar bone regeneration using micro-

computed tomography and found that LIPUS promoted

periodontal alveolar bone regeneration based on the BMSCs,

suggesting that LIPUS provided treatment by improving the

homing and migration of BMSCs (60). Chen et al. (59) applied

LIPUS at 30 mW/cm2 to stimulate BMSCs in vitro and then injected

the BMSCs into rats with femoral defects followed by LIPUS

intervention. Their study revealed that LIPUS promoted BMSC

migration in vitro and in vivo, which was possibly associated with

FAK-ERK1/2 pathway activation. In 2021, Xia et al. (65) also

demonstrated that LIPUS promoted MSC migration using in vivo

and in vitro experiments and found that LIPUS at 50 mW/cm2

activated autophagy, which could be inhibited by the use of
Frontiers in Endocrinology 11
autophagy inhibitors. In a rat knee OA model, the combined

application of LIPUS and BMSCs significantly promoted OA

cartilage repair, and this effect was attenuated by autophagy

inhibitors, suggesting that LIPUS promotes BMSC migration and

OA cartilage repair through autophagy regulation.
2.4 Effects of LIPUS on other biological
functions of stem/progenitor cells

In addition to its effects on stem/progenitor cell differentiation,

proliferation, and migration, LIPUS affects other biological

functions, such as cell viability, cytokine secretion, and tissue

homing. In recent years, the optimization of MSC homing and

their secretion of therapeutic molecules have been explored, with

LIPUS representing an emerging technology (106). One study

revealed that LIPUS increased the survival rate of rat BMSCs by

19.57%, with a further 5.36% increase after the optimization of

LIPUS parameters to 6.92 V, 1.02 MHz, and 7.3 min (61). LIPUS-

stimulated BMSCs showed increased BDNF expression and cell

viability in vitro, and better functional recovery was found in a rat

spinal cord injury model treated with LIPUS combined with

BMSCs, suggesting a possible application of LIPUS in the

treatment of spinal cord injury (62). Song et al. (86) stimulated

glioma stem cells (GSCs) with LIPUS at 300 mW/cm2 and 1.5 MHz,

and showed that LIPUS resulted in diminished expression of GSC

biomarkers and promoted GSC escape from G0 quiescence. They

further performed experiments on nude mice and confirmed that

LIPUS enhanced the sensitivity of GSCs to temozolomide both in

vivo and in vitro. To promote angiogenic tissue regeneration, Kang

et al. (71) prepared a scaffold composed of collagen and acetyl

hyaluronate for coculture of human ADSCs and umbilical vein

endothelial cells (HUVECs). Under LIPUS stimulation at 15.5 mW/

cm2 in vitro, 1.85-fold and 1.5-fold increases in collagen and cell

growth were observed, respectively. These effects were validated in a

rat angiogenesis model, indicating that LIPUS can promote the

angiogenic capacity and therapeutic potential of scaffold-based

cocultured ADSCs/HUVECs.
2.5 Effects of LIPUS combined with
microbubbles on stem/progenitor cells

Ultrasound targeted microbubble destruction (UTMD) is a

promising technique for non-invasive targeted therapy.

Microbubbles are an ultrasound imaging contrast agent that are

injected to trigger microbubble cavitation combined with low

frequency ultrasound to increase biofilm permeability in the

vicinity of the microbubble, thereby facilitating the delivery of

biomolecules to cells through blood vessels and achieving targeted

therapeutic effects. In recent years, numerous studies have

confirmed the effects of UTMD on stem/progenitor cells,

particularly in improving their homing ability and transplantation

efficiency, effectively addressing the limitations of inadequate

homing of seed cell target organs and low transplantation success.
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Osborn et al. (95) used 30 mW/cm2 LIPUS in combination with

microbubbles to intervene in hMSCs and found that it significantly

enhanced the proliferation of cells in 3D-printed scaffolds. The

effects of LIPUS combined with microbubbles on the homing,

migration, and survival of stem/progenitor cells have also been

demonstrated in many studies. In animal models of chronic

bacterial prostatitis, acute liver injury, and acute myocardial

infarction, LIPUS combined with microbubbles promoted the

homing of BMSCs to damaged tissues, thus enhancing treatment

efficacy (88–90, 92). Cui et al. (93) injected microbubbles and MSCs

into rats with brain defects and subjected them to LIPUS

transcranial irradiation of the cerebral ischemic zone. They found

that the MSCs attached to and crossed the blood-brain barrier of the

cerebral vasculature to reach the brain parenchyma to improve

neurobehavioral functions. As an excellent delivery vehicle,

microbubbles not only protect biomolecules from endogenous

clearance during transport but also allow for controlled release

in target organs through inertial cavitation and have

promising applications.
3 Effects of LIPUS on exosomes

The effects of LIPUS on MSC-EXOs have also been

demonstrated. MiRNAs are closely related to various

physiological and pathological processes in humans, and the effect

of LIPUS on miRNAs has been confirmed in numerous studies.
3.1 Effects of LIPUS on stem/progenitor
cell-derived exosomes

Xia et al. (98) recently isolated MSCs from rat bone, cocultured

them with OA chondrocytes, and intervened with an inhibitor of

exosome release. They then stimulated the cells with LIPUS and

detected exosome release and other autophagy markers by

transmission electron microscopy. The results suggested that

LIPUS promotes exosome release from MSCs via autophagy

activation. In a rat knee OA model, they observed that LIPUS

significantly enhanced the positive effect of MSCs on OA cartilage,

which was significantly blocked by the exosome release inhibitor

GW4869. In vitro and in vivo experiments showed that LIPUS

enhances the therapeutic effect of MSCs in OA cartilage repair by a

mechanism related to the promotion of autophagy-mediated

exosome release. The study revealed that LIPUS did not impact

the shape and size of exosomes, but it increased the release of

exosomes from MSCs for the appropriate duration of stimulation.

However, the authors did not investigate how LIPUS enhances

autophagy in MSCs to increase the number of exosomes within

them, and how LIPUS affects interactions and communication

between MSCs and OA chondrocytes through the exosome

release pathway to further promote cartilage repair. Future

research should delve into these areas to provide valuable insights

and guidance for utilizing LIPUS in cartilage repair applications.

Li et al. (103) found that LIPUS stimulation resulted in a 3.66-

fold increase in exosome release from BMSCs, and they
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demonstrated the enhanced anti-inflammatory effects of LIPUS-

stimulated BMSC-EXOs both in vivo and in vitro. BMSC RNA-Seq

analysis revealed that LIPUS enhanced the cytoskeletal activity of

BMSC, leading to increased secretion of bioactive factors, including

exosomes. Small RNA-Seq analysis of LIPUS-stimulated BMSC-

EXOs identified differentially expressed miRNAs mainly involved in

cellular activities. LIPUS-stimulated BMSC up-/down-regulated

genes may inhibit inflammation through different mechanisms,

whereas miR-328-5p and miR-4876-3p up-regulated in LIPUS-

stimulated exosomes target the MAPK signaling pathway to

regulate inflammatory responses. However, these mechanisms

require further experimental validation. Investigating the

interactions between LIPUS-stimulated BMSC-derived exosomes

and target cells such as immune cells or damaged tissues is essential

to understand their anti-inflammatory effects. This study may

involve exploring the uptake mechanisms and downstream

signaling pathways activated by LIPUS-stimulated exosomes in

recipient cells.

Liao et al. (97) stimulated BMSC-EXOs with LIPUS at 30 mW/

cm2 and 1.5 MHz and found that it promotes the anti-

inflammatory properties of BMSC-EXOs in OA. This

enhancement effect further improved the synthesis and

proliferation of extracellular matrix in chondrocytes, thereby

promoting the regeneration of articular cartilage. This study

suggests that LIPUS may exert its effects by inhibiting the nuclear

factor-kB (NF-kB) pathway activated by IL-1b. However, further

studies are needed to explore the specific targets, doses, and intrinsic

mechanisms of LIPUS-mediated BMSC-EXOs. In addition, this

study was conducted in 6-week-old pups. Young rats have a greater

capacity for regeneration and their skeletal system is not yet fully

developed. Therefore, it may be worth considering whether it is

necessary to conduct experiments on adult animals. Li et al. (99)

treated bone marrow dendritic cells (BMDCs) with LIPUS using the

same parameters and incubated HUVECs with their secreted

exosomes and found that the exosomes from the LIPUS-treated

BMDCs were enriched in miR-16 and miR-21 and phagocytosed by

the HUVECs, prevented tumor necrosis factor (TNF)-a-induced
HUVEC activation, and downregulated the expression of cell

adhesion molecules. These changes prevented TNFa-induced
activation of the NF-kB signaling pathway and ultimately

suppressed endothelial inflammation. However, this study was

limited to cellular level investigations and further studies are

needed to explore the conditions required for in vivo experiments.

Moreover, investigating the effects of LIPUS stimulation on

exosome uptake by HUVECs and the subsequent modulation of

cell adhesion molecule expression to inhibit endothelial cell

activation would deepen our understanding of the potential of

LIPUS-stimulated exosomes for the treatment of relevant diseases.
3.2 Effect of LIPUS on miRNAs

MiRNAs are involved in various physiological and pathological

processes in humans, and the effect of LIPUS on miRNAs has been

confirmed in numerous studies. Costa et al. (100) first investigated

the role of LIPUS as a promoter of miRNA expression, identified
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miR-31-5p as a LIPUS-inducible miRNA through bioinformatics

analysis, and confirmed these findings by gain- and loss-of-function

experiments. In vitro studies showed that miR-31-5p is capable of

inducing hypoxia and cytoskeletal responses. Conversely, combined

treatment with LIPUS and miR-31-5p inhibitors eliminated the

hypoxic response, suggesting that miR-31-5p may be a LIPUS-

mechanosensitive miRNA. Thus, LIPUS may be a novel therapeutic

option to promote or eliminate the hypoxic response and

cytoskeletal organization of hMSCs during bone regeneration.

Chen et al. (102) stimulated periodontal ligament cells with

LIPUS at 90 mW/cm2 and 1.5 MHz and found that it promoted

the accumulation of cellular forkhead box O1 (FOXO1) protein and

upregulated the expression of the osteogenic-related genes ALP and

Runx2 . MiR-182 downregulated FOXO1 through post-

transcriptional regulation. Overexpression of miR-182 reversed

LIPUS-induced FOXO1 expression and osteogenic differentiation,

whereas LIPUS repressed miR-182 expression, which played a

crucial role in promoting osteogenic differentiation, thus

providing insights for applying LIPUS to periodontal bone defects.

Yang et al. (101) used the UTMDmethod to transfect miR-let7b

into ovarian CSCs. Flow cytometry revealed that UTMD increased

the transfection rate of miR-let-7b and the late apoptosis rate of

CD133+ ovarian CSCs and decreased surface marker expression of

CD133-expressing stem cells. These findings suggest that UTMD-

mediated miRNA delivery may be a promising platform for the

treatment of CSCs.

MiRNAs in exosomes are often mediators of the ultimate

biological effects during LIPUS-promoted secretion. One study

revealed that LIPUS remarkably increased the secretory and anti-

inflammatory effects of BMSC-EXOs. RNA-sequencing analysis

revealed significant upregulation of miR-328-5p and miR-487b-

3p, thereby inhibiting the MAPK signaling pathway (103). This

result suggests an important role for these two miRNAs in the

mechanism underlying the enhancement of the anti-inflammatory

effect, which provides insights into inflammation-related

disease treatment.
4 Mechanisms involved in the
biological effects of LIPUS on stem/
progenitor cells and exosomes

Themechanisms by which LIPUS affects the biological functions of

stem/progenitor cells and exosomes are complex and not fully

understood, although they are likely related to its mechanical and

cavitation effects. The mechanical vibrations produced by LIPUS allow

for micromechanical interactions with cells, triggering a series of

intracellular biochemical events, such as the release of cytokines and

signaling molecules, which in turn alter the cellular microenvironment

and lead to changes in signaling pathways that affect a range of cellular

biological behaviors (27). Currently known signaling pathways

regulated by LIPUS include the MAPK, ERK, phosphoinositide 3-

kinases (PI3K)/protein kinase B, stromal cell-derived factor 1 (SDF-1)/

C-X-C chemokine receptor type 4 (CXCR4), and NF-kB signaling

pathways, as shown in Figure 3.
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4.1 MAPK signaling pathway

The MAPK signaling pathway plays an important role in

regulating physiopathological processes, such as cell growth,

differentiation, stress, and inflammatory responses, and its three

important downstream components are ERK, Jun amino-terminal

kinase (JNK), and p38. Tabuchi et al. (63) exposed mouse BMSCs to

25 mW/cm2 LIPUS and found a significant increase in immediate

early gene expression, whereas the use of MAPK/ERK inhibitors

prevented LIPUS-induced expression of FOS and EGR1. Wang

et al. (70) investigated the changes in cell viability and apoptosis of

ADSCs after different doses of LIPUS irradiation and found that a

high dose of LIPUS (210 mW/cm2) promoted ADSC apoptosis

while a low dose (70 mW/cm2) increased ADSC viability. The use of

p38 MAPK activity inhibitors rescued the apoptotic effect of high

doses of LIPUS, suggesting that p38 MAPK plays a key role in the

effect of LIPUS on ADSCs. The effect of LIPUS on stem/progenitor

cell proliferation and its mechanisms have been demonstrated in

several studies. Using different pathway blockers, Gao et al. (79, 80)

found that LIPUS promoted the proliferation of different types of

MSCs via different MAPK signaling pathways and activated JNK

MAPK signaling in BMSCs, ERK1/2 signaling in dental pulp stem

cells (DPSCs), and JNK and p38 signaling in PDLSCs. They later

demonstrated that LIPUS-stimulated proliferation of DPSCs

involved Piezo-mediated regulation of ERK1/2 MAPK signaling.

Xia et al. (55) found that LIPUS promoted the proliferation and

neural differentiation of iPSC-NCSCs in rats with sciatic nerve

injury, probably via the FAK-ERK1/2 signaling pathway.

Lee et al. (58) recently found that dual-frequency ultrasound

could precisely regulate calcium channels via the downstream

ERK1/2 signaling pathway, thereby promoting neuronal

differentiation and BDNF secretion in NSCs. Another study

revealed that the combination of LIPUS and ADSCs applied to

rats with diabetes mellitus and erectile dysfunction significantly

improved the treatment efficacy and promoted vascular endothelial

growth factor secretion by ADSCs via the Piezo-ERK pathway (74).
4.2 PI3K/AKT signaling pathway

LIPUS has been shown to promote the proliferation of amniotic

MSCs. Ling et al. (75) demonstrated that this proliferative effect

induced by LIPUS was significantly reduced when ERK1/2 and

PI3K inhibitors were used, suggesting the involvement of the ERK1/

2 and PI3K/AKT signaling pathways. Specifically, PI3K, which is

generally activated by upstream signaling, triggers a signal upon

activation that not only alters the AKT protein structure but also

activates downstream substrate alterations. These changes

ultimately regulate crucial cellular processes such as proliferation,

differentiation, migration, and other functions. These findings were

further supported by a study conducted by Xie et al. (33),

confirming the important role of the ERK1/2 and PI3K/AKT

signaling pathways in LIPUS-mediated cell proliferation. In

addition, the PI3K/AKT signaling pathway is involved in the

effect of LIPUS on the survival of CSCs. The PI3K/AKT/mTOR
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pathway is often active in glioblastoma, and suppressing the cell

survival of glioblastoma CSCs plays a key role in tumor therapy.

Tutak et al. (85) found that high doses of anticancer drugs

combined with LIPUS inhibited mTOR expression and reduced

cell viability, and they concluded that the combined action of the

drugs and LIPUS was achieved via the PI3K/AKT/mTOR

signaling pathway.
4.3 SDF-1/CXCR4 signaling pathway

In regenerative medicine, stem cells are recruited to areas of

injury to perform their biological functions, and cell migration,

homing, and chemotaxis play an important role in this process. The

chemokine SDF-1 and its receptor CXCR4 are key factors in

regulating stem cell migration. Wei et al. (32) demonstrated that

LIPUS upregulated the expression of SDF-1 and CXCR4 in rat

MSCs and promoted the migration of MSCs to fracture sites, which

could be attenuated by pathway blockers. Li et al. (96) found that

the combined application of LIPUS and microbubbles increased the

expression of SDF-1 in ischemic myocardium and upregulated

CXCR4 expression on the surface of MSCs in vitro and in vivo,

suggesting that their combined application may promote MSC

homing to repair ischemic myocardium via the SDF-1/CXCR4
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signaling pathway. Ling et al. (107) recently found that LIPUS

promoted SDF-1-induced migration of human amniotic MSCs via

the SDF-1/CXCR4 axis. In the ovaries of rats with chemotherapy-

induced premature ovarian insufficiency (POI), SDF-1 levels were

significantly elevated and LIPUS-treated MSC homing to the

ovaries increased, thereby reducing ovarian damage and

improving ovarian function. Conversely, CXCR4 antagonists

reduced the number of MSCs homing to POI ovaries, reducing

their effectiveness in POI treatment.
4.4 NF-kB signaling pathway

The NF-kB signaling pathway plays an important role in

immune regulation, inflammatory and stress responses, and

apoptosis. Liao et al. (97) investigated the mechanism by which

LIPUS stimulates BMSC-EXOs to promote cartilage regeneration in

OA and found that LIPUS-mediated BMSC-EXOs promoted

chondrocyte proliferation and extracellular matrix synthesis and

inhibited interleukin-1b-induced activation of the NF-kB signaling

pathway, thereby suppressing inflammation. However, this study

was conducted in 6-week-old mice, which are known to possess

enhanced regenerative capacities and have immature skeletal

systems. Therefore, this study limits the direct applicability of the
FIGURE 3

Schematic diagram of signaling pathways that can be activated by LIPUS in steam/progenitor cells for regulating cell biological functions, including
proliferation, differentiation, migration, survival, apoptosis, vitality and inflammation. These pathways include the NF-kB, PI3K/AKT, MAPK, BMP/Smad,
SDF-1/CXCR4, and Piezo-mediated signaling pathways. LIPUS, low-intensity pulsed ultrasound.
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results to adult humans or skeletally mature individuals. Another

study identified the role for LIPUS in immunomodulation and

osteogenesis in hPDLSCs and showed that LIPUS enhanced the

immunomodulation and osteogenic differentiation of hPDLSCs by

inhibiting the NF-kB signaling pathway in a dose-dependent

manner (48).
4.5 Other signaling pathways

In addition to the above pathways, various other pathways

have been investigated in relation to the biological functions

of LIPUS in stem/progenitor cells and exosomes, such as the

Piezo1-Ca2+-BMP2/Smad (108) and Notch (53) signaling

pathways. Although these signaling pathways have been

elucidated, the mechanisms underlying their interaction and the

most important pathways for disease treatment remain unclear. In

the future, in vivo implantation models can be used to validate their

involvement and investigate their mechanisms of action. For

example, in vivo models could be utilized to assess the effects of

LIPUS on activation of stem/progenitor cell signaling pathways and

subsequent functional outcomes. In addition, investigating the

crosstalk between these pathways and other known pathways

involved in disease processes would help to elucidate their

interconnected roles.

LIPUS stimulation modulates signaling and cellular processes,

thereby influencing the synthesis and release of exosomes and the

composition, quantity, and cargo of bioactive molecules. This

enhances the role of exosomes in intercellular communication

and disease therapy. However, further validation of its

mechanisms and a comprehensive understanding of its role are

needed as research in this area is still in its early stages. Although

existing studies suggest that LIPUS has therapeutic potential in

exosome production, more research is needed to fully elucidate its

detailed mechanisms and clinical applications.

By gaining a comprehensive understanding of these signaling

pathways and their interplay, researchers can identify key targets for

therapeutic intervention and develop more effective strategies for

the treatment of various diseases.
5 Prospects and limitations of LIPUS
for clinical applications

LIPUS is an attractive modality for treatment because it is non-

invasive and has many advantages, including no risk of infection or

tissue damage and no known adverse effects; thus, it is increasingly

being explored in basic research and clinical applications. LIPUS

has achieved promising results in the treatment of disorders of the

skeletal muscular system. Clinical studies have revealed that LIPUS

contributes to accelerated bone healing (109), joint function

restoration in OA (110), rapid motor recovery in patients with

lumbar spondylolisthesis (111), and spinal fusion (112). In addition,

studies in preclinical animal models have shown that LIPUS can

promote recovery and improve functional outcomes in PNI (30)
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and holds great potential in the prevention and recovery of

traumatic encephalopathy (113–115). Du et al. (116) constructed

a first-order characteristic model based on an apparent diffusion

coefficient map to evaluate the therapeutic effect of LIPUS on acute

craniocerebral injury, and it may be valuable in predicting the

therapeutic effect of LIPUS in clinical practice.

The effects of LIPUS on stem cell proliferation, differentiation,

migration and the associated signaling pathways have been

previously discussed. When combined with stem cells, it can

alleviate the problems of insufficient stem cell sources, maturity

differentiation, low transplantation success, and insufficient target

organ homing. Encouragingly, a large body of evidence suggests that

LIPUS combined with stem cell and exosome therapies has positive

effects in skeletal muscle system disorders and neurological injury and

promising potential in suppressing inflammation and ovarian ageing

recovery. In addition, LIPUS combined with microbubbles is often

used for drug delivery or gene transfer, where small molecules such as

miRNAs are loaded on microbubbles and act on the target organ

under the effect of LIPUS cavitation. Compared to conventional

methods, LIPUS cavitation can achieve superior therapeutic effects,

such as increased sensitivity to chemotherapeutic agents and reduced

resistance of CSCs.

Studies have shown satisfactory synergistic effects of LIPUS on

stem/progenitor cells, although such methods are still in their

infancy. A study registered in the Chinese Clinical Trials Registry

in 2019 represented the first clinical study to comprehensively

investigate the safety and efficacy of LIPUS for stem cell therapy

in OA patients, thus representing the first breakthrough in

translating combined LIPUS and stem cell therapy from animal

models to clinical practice applications (117). Based on present

studies, we recognize that the impact of different LIPUS parameters

varies and that the transition from basic to clinical requires

additional parameter optimization. Hopefully, a standard report

of parameters will be established to help researchers explore this

field in depth. Extensive further study is required for basic science

research on LIPUS to move towards large-scale clinical

dissemination and application.
6 Conclusion and future perspectives

New technologies to enhance the efficacy of stem/progenitor cells

are of increasing interest to researchers. The effects of LIPUS on stem/

progenitor cells and exosomes and the signaling pathways related to the

mechanism have been confirmed by numerous studies. The

combination of LIPUS with stem/progenitor cells and exosomes may

improve the efficacy of treatment for certain diseases, although it is still

in its preliminary stages. This review focused on basic experiments,

most of which were cellular experiments. For the translation from basic

research to clinical application, the number of animal studies should be

increased in the future, with a shift from small animal models to large

animal models and then to clinical trials. It is worth noting that in most

animal experiments involving the use of stem cells and their

extracellular vesicles for therapeutic purposes, tail vein injection or

invasive local injections are commonly employed. However, we
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advocate for non-invasive local injections guided by ultrasound, which

offer higher accuracy, safety, and reduced trauma. In addition, different

LIPUS parameters have different effects on stem/progenitor cells and

exosomes; therefore, identify appropriate therapeutic parameters must

be identified. Hopefully, a standardized parameter reporting system

will be established to promote more in-depth exploration. Efforts must

be made to develop a convenient and inexpensive method to address

the bottleneck of low graft success rates in the field of stem cell

transplantation. In the future, we hope that more research results will

support the positive therapeutic effect of LIPUS combined with stem/

progenitor cells and exosomes and the popularization of this method in

clinical practice. LIPUS is expected to be an important auxiliary tool to

improve the therapeutic effect of stem/progenitor cells and exosomes.
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