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Forkhead box O (FoxO) proteins are transcription factors that mediate many

aspects of physiology and thus have been targeted as therapeutics for several

diseases including metabolic disorders such as type 2 diabetes mellitus (T2D).

The role of FoxO1 in metabolism has been well studied, but recently FoxO1’s

potential for diabetes prevention and therapy has been debated. For example,

studies have shown that increased FoxO1 activity in certain tissue types

contributes to T2D pathology, symptoms, and comorbidities, yet in other

tissue types elevated FoxO1 has been reported to alleviate symptoms

associated with diabetes. Furthermore, studies have reported opposite effects

of active FoxO1 in the same tissue type. For example, in the liver, FoxO1

contributes to T2D by increasing hepatic glucose production. However, FoxO1

has been shown to either increase or decrease hepatic lipogenesis as well as

adipogenesis in white adipose tissue. In skeletal muscle, FoxO1 reduces glucose

uptake and oxidation, promotes lipid uptake and oxidation, and increases muscle

atrophy. While many studies show that FoxO1 lowers pancreatic insulin

production and secretion, others show the opposite, especially in response to

oxidative stress and inflammation. Elevated FoxO1 in the hypothalamus increases

the risk of developing T2D. However, increased FoxO1 may mitigate Alzheimer’s

disease, a neurodegenerative disease strongly associated with T2D. Conversely,

accumulating evidence implicates increased FoxO1 with Parkinson’s disease

pathogenesis. Here we review FoxO1’s actions in T2D conditions in metabolic

tissues that abundantly express FoxO1 and highlight some of the current studies

targeting FoxO1 for T2D treatment.
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1 Introduction

T2D is a global health concern. A recent study reported that T2D accounts for more

than 90% of the 529 million diabetes cases in 2021 (1). Moreover, the incidence of T2D is

expected to increase in adults and children over the next thirty years. T2D is characterized

by insulin resistance and hyperglycemia. Consequently, its treatments target these
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1286838/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1286838/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1286838/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1286838&domain=pdf&date_stamp=2023-10-23
mailto:ncyr@stonehill.edu
https://doi.org/10.3389/fendo.2023.1286838
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1286838
https://www.frontiersin.org/journals/endocrinology


Teaney and Cyr 10.3389/fendo.2023.1286838
metabolic states. FoxO1 is a transcription factor that mediates many

cellular functions including inflammation, oxidative stress (OS), cell

proliferation, apoptosis, and autophagy which contribute to the

regulation of insulin signaling and glycemia. However, whether

increased FoxO1 transcriptional activity exacerbates or alleviates

T2D appears to be tissue-type specific and may depend on cellular

conditions (2, 3). Recent studies have called attention to these

FoxO1 controversies (4, 5). The current review describes FoxO1’s

actions in T2D conditions in metabolic tissues that highly express

FoxO1 and highlights some of the current progress in this field.
2 FoxO1 structure, function,
and regulation

FoxO1 (also forkhead in rhabdomyosarcomam (FKHR)) is one

of four mammalian isoforms belonging to the FoxO transcription

factor family. The others include FoxO3, FoxO4, and FoxO6 (5–7).

These FoxO proteins are mainly localized in the nucleus and exert

their actions through their ability to regulate the transcription of

specific genes. However, they can also be found in the cytoplasm

where they are considered inactive. Although their primary action

occurs in the nucleus, new evidence indicates that FoxO proteins

can be localized to the mitochondria where they have varying effects

on mitochondrial function (8–10). FoxO1 structure, as depicted in

Figure 1, is similar to the other mammalian FoxO isoforms. For

example, FoxO1, FoxO3, FoxO4, and FoxO6 each contain a highly

conserved winged‐helix or forkhead DNA‐binding domain (DBD)

and bind to the consensus DNA sequence 5′‐TTGTTTAC‐3′ (11,
12). Their remaining functional domains consist of a nuclear

localization signal (NLS), a nuclear export signal (NES), and a

transactivation domain (TAD). FoxO amino acid composition

varies slightly among species. FoxO1 consists of about 655 amino

acids, FoxO3 has about 670 amino acids, Foxo4 has about 505

amino acids, and FoxO6 has about 490 amino acids with the

greatest amino acid differences among these proteins occurring in

the TAD (6). FoxO1, FoxO3 and FoxO4 are ubiquitously expressed

(13–17). For example, FoxO1 is predominantly expressed in
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adipose tissue but also abundantly found in other metabolic

tissues such as liver, skeletal muscle, pancreas, and brain. FoxO3

is primarily expressed in liver and FoxO4 is largely expressed in

muscle. In contrast, expression of FoxO6 is mostly concentrated in

the brain (18).

FoxO1, FoxO3, FoxO4, and FoxO6 control some of the same

cellular functions by regulating genes involved in the cell cycle, OS,

inflammation, glucose metabolism, and autophagy (6, 19).

However, whole-body knockout studies in mice reveal a unique

role in specific cellular functions for each FoxO isoform. For

example, lack of FoxO1 is lethal on embryonic day 10.5 due to

vasculature defects indicating an important role for FoxO1 in

angiogenesis during development (20). FoxO3 has been shown to

regulate reproduction as FoxO3 null female mice exhibit impaired

ovarian follicular development and infertility. While one study

reported no phenotypic differences between FoxO4 null mice and

wild-type mice (20), another showed that FoxO4 knockout mice

were at a higher risk of developing colitis when challenged with

increased inflammation due to elevated levels of NF-kB, which is a

transcription factor that mediates the immune response. These

results suggest that FoxO4 regulates gut inflammation and health

(21). Salih et al. (22) demonstrated that FoxO6 is a key mediator of

memory consolidation and controls the transcription of synaptic

proteins in hippocampal neurons involved in long-term memory.

Activity of all FoxOs depends on post-translational

modifications. While processes such as ubiquitination,

methylation, and glycosylation can alter FoxOs, phosphorylation

and acetylation are the principal post-translational modifications

regulating FoxO activity (5, 6). Phosphorylation strongly regulates

FoxO activity as it affects FoxO’s cellular localization, thus

transcriptional capacity. There are several kinases that

phosphorylate FoxO proteins and cause these proteins to be

shuttled out of the nucleus into the cytoplasm where they are

inactive. These FoxO inactivating kinases include AKT (Protein

kinase B), extracellular signal- regulated kinase (ERK), and cyclin-

dependent kinase (CDK) 1/2 (23–26). In contrast, phosphorylation

by the FoxO activating kinases such as adenosine monophosphate-

activated (AMPK), Jun- N-terminal kinase (JNK), mammalian

sterile 20-like kinase (MST1), and Protein Kinase RNA-Like ER

Kinase (PERK) result in nuclear localization and nuclear retention

of FoxO proteins which increases their transcriptional activity

(27–30).

Many physiological conditions regulate FoxO activating and

inactivating kinases including conditions that are altered in the

pathogenesis and pathology of T2D. For example, JNK is a FoxO-

activating kinase known to increase in response to elevated

inflammation and OS, which are conditions that contribute to the

development of T2D (28, 31). JNK phosphorylates FoxO4

specifically at T447 and T451 which promotes its nuclear

transport and activity (28) . Although FoxO1 is also

phosphorylated and translocated into the nucleus by JNK the

exact mechanism has not yet been described (32). Activation of

FoxOs by JNK increases the transcription of certain antioxidants

like catalase and manganese superoxide dismutase (MnSOD, or

SOD2) to combat OS (28, 31). Therefore, the post-translational

phosphorylation of FoxOs by JNK helps to protect against OS and
FIGURE 1

FoxO1 structure and regulatory sites. FoxO1 structure is composed
of several functional domains, including DNA-binding domain (DBD),
nuclear location signal (NLS), nuclear export signal (NES), and
transactivation domain (TAD). The major regulatory sites discussed
in this review are also shown. Created with BioRender.com.
frontiersin.org
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T2D. In contrast to JNK, phosphorylation of FoxO1, FoxO3, and

FoxO4 by the active, phosphorylated AKT (pAKT) causes the

exportation and sequestration of these FoxO1 proteins into the

cytoplasm (33). In particular, AKT phosphorylates FoxO1 at T24,

S256, and S319 sites (23) (Figure 1). AKT phosphorylation of

FoxO3 occurs at T32, S253, and S315 (34, 35). T28, S193, and

S258 were identified as putative sites for AKT phosphorylation of

FoxO4, but studies indicate that insulin stimulated AKT

phosphorylates FoxO4 specifically at S193, and S258 (36, 37).

Unlike the other FoxO isoforms, FoxO6 is less sensitive to

AKT-mediated inactivation because it contains T26 and S184

as AKT phosphorylation sites (38). In fact, research indicates

that AKT suppression of FoxO6 activity is independent of

cytoplasmic translocation.

One cellular condition in which pAKT is enhanced is when

insulin levels are high postprandially. Insulin binding to its receptor

recruits insulin receptor substrate (IRS), which in turn, activates

PI3K (phosphatidylinositol-3 kinase) which activates AKT

(Figure 2). The phosphorylation of FoxO proteins by pAKT has

been well studied and shown to augment 14-3-3 protein binding to

phosphorylated serine and threonine residues on pFoxO, which

causes a conformational change that exposes a leucine-dense NES

and subsequently recruits nuclear export factor Exportin 1 to

shuttle FoxOs to the cytoplasm (39–44) (Figure 2). Furthermore,

14-3-3 binding covers the FoxO NLS, which inhibits nuclear reentry

(45, 46). Therefore, FoxO activity is reduced in the fed state. In

contrast, during insulin resistance conditions, insulin’s activation of

PI3K/AKT signaling is compromised. Consequently, AKT-

mediated FoxO inactivation is reduced and FoxO activity

increases in T2D (Figure 3).
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In addition to phosphorylation, acetylation is an important

post-translational modification that affects FoxO activity. Histone

acetyltransferases, like CREB-binding protein (CBP) and p300,

acetylate FoxOs at the K222, K245, K248, K262, K265, K274 and

K294 residues, which decreases DNA binding affinity and inhibits

transcriptional activity (47, 48) (Figure 1). Furthermore, acetylation

of FoxOs increases their sensitivity to inactivation via

phosphorylation and nuclear exclusion (47). Interestingly, FoxO

inactivation by CBP/p300 is enhanced during OS conditions which

can lead to a decrease in FoxO1 upregulation of antioxidants like

MnSOD and put the cell at risk for apoptosis (49, 50). However,

there are mechanisms to increase FoxO1 activity during OS. For

example, JNK activates FoxO proteins even under conditions of low

OS (28). Furthermore, the inactivation of FoxOs by CBP/p300

acetylation can be reversed by deacetylating and thus re-activating

FoxOs (49). Histone deacetylases like the NAD+-dependent

Sirtuins, including the mammalian Sirtuin 1 (SIRT1), deacetylate

FoxOs (51). Research reveals that SIRT1 deacetylation of FoxOs

during OS can reverse the CBP/p300 effects on FoxO inhibition. For

example, SIRT1 deacetylation and activation of FOXOs upregulates

antioxidants and genes involved in DNA repair to mitigate OS and

thus help to prevent the development of OS-related diseases like

T2D (49, 52, 53).

SIRT1 also plays a significant role in regulating glucose and lipid

metabolism (54, 55). Furthermore, SIRT1 is altered in metabolic

conditions like T2D. For example, studies have reported that SIRT1

levels are lower in serum and muscle cells of patients with T2D,

suggesting that loss of SIRT1 activity may contribute to T2D

pathology (56, 57). Consistent with this idea, other studies have

shown that increasing SIRT1 can alleviate T2D symptoms. For
FIGURE 2

Postprandial conditions lead to FoxO nuclear exclusion via PI3K/AKT pathway activation. Under healthy conditions in the postprandial state, insulin is
released from pancreatic B-cells and binds to insulin receptors in several different tissues. Activation of the receptor tyrosine-kinases leads to
recruitment of insulin receptor substrate (IRS) and initiation of the PI3K/AKT signaling cascade. PI3K phosphorylates phosphatidylinositol 4,5-
bisphosphate (PIP2), generating phosphatidylinositol-3,4,5-triphosphate (PIP3). Subsequently, PDK1 phosphorylates and activates AKT.
Phosphorylated AKT phosphorylates FoxO, which promotes recruitment of Exportin 1 and nuclear exclusion. 14-3-3 protein is also recruited and
covers FoxO's NLS, inhibiting nuclear reentry. Activation of the PI3K/AKT pathway causes cytoplasmic retention and decreases the transcriptional
capacity of FoxO. Created with BioRender.com.
frontiersin.org
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example, overexpression of SIRT1 in the liver of diabetic db/db mice

improves insulin resistance and glucose tolerance (58). SIRT1’s

actions are exerted in part by regulating FoxO1. Specifically, SIRT1

interacts with FoxO1 at its LXXLL motif located at amino acids

459–463 which enables deacetylation to occur (51) (Figure 1). One

mechanism through which SIRT1 improves T2D symptoms is by

deacetylating and thus activating FoxO1 in adipocytes and

increasing FoxO1’s interaction with its coactivator CCAAT/

enhancer-binding protein a (C/EBPa) to upregulate the

transcription of the insulin-sensitizing hormone adiponectin (59).

However, SIRT1 can also act to mitigate T2D by enhancing AKT-

mediated FoxO1 inactivation in tissues like liver and skeletal muscle

(60, 61). Therefore, increased SIRT1 can improve T2D symptoms

by either activating or inactivation FoxO1. The current review

focuses on FoxO1 regulation in T2D within specific metabolic

tissues, including liver, skeletal muscle, adipose tissue, pancreatic

b-cells, and brain (Figure 3).
3 FoxO1 and T2D – liver

FoxO proteins are known to mediate glucose metabolism. In the

liver, glucose is largely produced from glycogen, the stored form of

carbohydrates, by the process of glycogenolysis. However, glucose

can also be synthesized in the liver from other sources such as

pyruvate , g lycerol , lactate , and amino acids through

gluconeogenesis, especially during conditions when glycogen is

depleted such as a prolonged fast (62). Activation of FoxOs
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promotes hepatic glucose production by increasing the expression

of glucose 6-phosphatase (G6PC), fructose 1,6-bisphosphatase, and

phosphoenolpyruvate carboxykinase (PEPCK) which are enzymes

involved in gluconeogenesis (63, 64). The enzyme G6PC catalyzes

the conversion of glucose-6-phosphate to glucose in

gluconeogenesis as well as in glycogenolysis. Therefore, FoxOs

increase hepatic glucose levels via both pathways. FoxO’s control

of gluconeogenesis and glycogenolysis is mainly regulated by

insulin signaling. For example, in the fed state, insulin levels

increase and stimulate the PI3K/AKT pathway, which will export

FoxO out of the nucleus and reduce FoxO’s transcriptional activity

(Figure 2). Thus, FoxO inactivation contributes to insulin’s ability

to lower blood glucose levels by decreasing hepatic glucose

production and output. In contrast, during conditions when

insulin signaling is diminished, such as in fasting and insulin

resistance states, AKT-mediated nuclear exclusion of FoxO

decreases , which causes an overal l increase in FoxO

transcriptional activity to elevate hepatic glucose production and

output (Figure 3). The nutrient sensor SIRT1 has been shown to

facilitate AKT-mediated effects on FoxO1 and gluconeogenesis. For

example, liver-specific SIRT1 deficiency increases AKT which

suppresses FoxO1 causing the downregulation of G6PC and

PEPCK which decreases gluconeogenesis and lowers blood

glucose levels (60). Liver-specific genetic studies indicate that

while FoxO3 may contribute, FoxO1 is the predominant isoform

regulating gluconeogenesis (17). In addition, studies reveal that

hepatic FoxO1 plays a role in T2D since liver-specific FoxO1

activation in transgenic mice increases glucose levels and impairs
FIGURE 3

Insulin resistance affects many tissues via FoxO1 nuclear retention. Insulin resistance in T2D results in less activation of the PI3K/AKT pathway.
Decreased insulin induced PI3K/AKT signaling enhances FoxO1 nuclear retention and activity, which mediates many cellular responses across tissue
types, including liver, skeletal muscle, adipose, pancreas, and brain. Created with BioRender.com.
frontiersin.org
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glucose tolerance (65). Furthermore, loss of hepatic FoxO1 function

improves glycemia, mitochondrial function, and T2D symptoms in

diabetic mice (17, 64, 66, 67).

Insulin decreases hepatic glucose production via the AKT/

FoxO1 pathway and increases lipogenesis largely via activation of

mechanistic target of rapamycin complex 1 (mTORC1), which

activates the major lipid regulator sterol regulatory element

binding protein 1c (SREBP1c) (68, 69). However, evidence

indicates that FoxO1 also contributes to insulin’s control of lipid

metabolism in the liver. For example, microsomal triglyceride

transfer protein (MTP) and apolipoprotein apoC-III are proteins

that associate with very low-density lipoprotein (VLDL) and

regulate triglyceride transport. FoxO1 directly upregulates the

transcription of both MTP and apoC-III (70, 71) (see Figure 2).

Insulin stimulated AKT suppression of FoxO1 decreases MTP and

apoC-III. Conversely, reduced activation of the PI3K/AKT pathway

increases FoxO1 activity along with the production of MTP and

apoC-III. Moreover, FoxO1 overactivation was found to cause

VLDL accumulation in the liver, elevated plasma triglyceride

levels, and an increased the risk of atherosclerosis (70, 71).

However, conflicting results have been reported from studies

using transgenic mice with overactive FoxO1 expression in the

liver. For example, some studies show that elevated hepatic FoxO1

increases de novo lipogenesis and triglyceride levels, yet another

study found that constitutively active hepatic FoxO1 decreases

triglyceride and cholesterol levels (65, 72). Liver-specific knockout

of FoxO1 and FoxO3 independently indicates that FoxO3 is the

more substantial regulator of lipogenesis as FoxO3 deletion

increased the expression of lipogenic enzymes. However,

simultaneous deletion of FoxO1 and FoxO3 revealed a synergistic

increase in the transcription of the lipogenic enzyme glucokinase

(Gck), which lead to hepatic steatosis (17). Further research has

demonstrated that FoxO1 associates with the corepressor SIN3

Transcription Regulator Family Member A (SIN3A) to

downregulate Gck expression and decrease lipogenesis (73). These

results suggest that in conditions in which FoxO1 activity is

enhanced like during insulin resistance, FoxO1 should decrease

lipid synthesis. Given that insulin resistance is often associated with

hyperglycemia and hyperlipidemia, a pathogenic state termed

“selective insulin resistance”, researchers have suggested that

other regulators may play a more prominent role regulating lipid

metabolism in T2D (74, 75). While FoxO1’s role in regulating

gluconeogenesis is well established, more research is needed to

elucidate FoxO1’s role in lipid metabolism.

Since FoxO1 contributes to hyperglycemia in T2D, research has

focused on targeting drugs that inhibit hepatic FoxO1 as potential

T2D therapeutics (e.g. 76). For example, the selective FoxO1

inhibitor AS1842856 reduces fasting plasma glucose levels in db/

db diabetic mice. More recent studies have identified candidate

treatments that mitigate T2D symptoms by enhancing AKT-

mediated suppression of FoxO1. For example, the traditional

Chinese herbal medicine, Simiao Wan, lowers blood glucose levels

by enhancing AKT expression and decreasing FoxO1 expression

(77). The dietary fiber Oat b-D-glucan has been shown to decrease

blood glucose levels and enhance insulin sensitivity (78). Recently,

Guo et al. (79) demonstrated that Oat b-D-glucan exerts its actions
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in part by lowing gluconeogenesis via increased PI3K/AKT and

reduced FoxO1. Vitamin D deficiency has been associated with T2D

and Vitamin D supplementation improves insulin sensitivity in

insulin resistant individuals (80–83). Yuan et al. (84) demonstrated

that Vitamin D3 directly upregulates hepatic SIRT1 transcription

which activates AKT to inactivate FoxO1 to decrease

gluconeogenesis and improve glycemia. Similarly, the

nicotinamide metabolite N1-Methylnicotinamide (MNAM)

lowers blood glucose and hepatic lipid accumulation by

increasing SIRT1 and pAKT and decreasing FoxO1 activity (85).

The bioactive lipid, prostaglandin E2 (PGE2) also reduces

gluconeogenesis and ameliorates T2D symptoms by inhibiting

FoxO1 activity (86). SW03329 is a small molecule that enhances

PGE2 levels by inhibiting the PGE2-degrading enzyme 15-

hydroxyprostaglandin dehydrogenase. SW033291 reduces

gluconeogenesis, blood glucose, serum triglycerides and body

weight in diabetic mice. These actions of SW033291on

gluconeogenesis are mediated by increased AKT inactivation of

FoxO1. The role of n3-polyunsaturated fatty acids (n3-PUFAs) on

diabetes and nonalcoholic fatty liver disease (NAFLD) has received

considerable attention, and a recent meta-review analysis concluded

that n3-PUFAs act to prevent and treat T2D (87). Further research

demonstrated that n3-PUFAs reduce hepatic FoxO1 expression to

improve insulin sensitivity as well as glycemia and lipid profiles of

diabetic mice (88). This study also showed that metformin, the

popular first-line T2D drug, lowers FoxO1 expression in diabetic

mice. Guo et al. (89) described the mechanism by which metformin

acts on FoxO1 to reduce hepatic glucose production and blood

glucose levels, which was not by regulating insulin signaling, but

rather by affecting glucagon signaling. Glucagon is a hyperglycemic

hormone that activates Protein Kinase A (PKA) to elevate

gluconeogenesis and thus blood glucose levels. PKA acts as a

FoxO1 activating kinase importing and retaining FoxO1 in the

nucleus to increase gluconeogenesis (90). Metformin was found to

lower blood glucose by inhibiting glucagon induced PKA activity

causing a decrease in FoxO1 and gluconeogenesis. Altogether, these

results advocate for the use of hepatic FoxO1 inhibition in

T2D treatment.
4 FoxO1 and T2D – skeletal muscle

FoxO1 regulates muscle mass and glucose metabolism in

skeletal muscle. For example, FoxO1 overexpression in transgenic

mice results in reduced body weight and muscle mass as well as

impaired glucose tolerance (91). FoxO1 upregulates the ubiquitin

ligase atrogin-1 (also known as MAFbx) which enhances muscle

atrophy (92). Furthermore, insulin-like growth factor (IGF)

activation of the PI3K/AKT pathway suppresses FoxO1 and

FoxO3 action on atrogin-1, which promotes muscle mass.

Combined loss of FoxO1 and FoxO4 function in skeletal muscle

increases the expression of atrogin-1 and causes muscle

hypertrophy (93). Furthermore, evidence suggests that FoxO1

may also play a role in muscle atrophy during T2D.

Hyperglycemia in T2D increases the levels of Advanced Glycation

End Products (AGEs), which are toxic and exacerbate T2D
frontiersin.org
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symptoms (94). Du et al. (95) found that elevated AGE increases

skeletal muscle atrophy by increasing OS and endoplasmic

reticulum (ER) stress, which is caused by the accumulation of

unfolded or misfolded proteins. ER stress activates PERK, which

in turn activates FoxO1 to increase atrogin-1. SiRNA silencing of

FoxO1 rescued the AGE effect on muscle atrophy signifying that

AGE production in T2D may promote muscle wasting via FoxO1.

Additionally, FoxO1 has been shown to decrease muscle mass by

upregulating the ubiquitin ligase MuRF1 and the liposomal protease

cathepsin L (96, 97). Skeletal muscle specific knockout studies

further support a role for FoxOs in mediating muscle atrophy.

For example, one study showed that the collective deletion of

skeletal muscle FoxO1, FoxO3, and FoxO4 upregulates the

SMART (Specific of Muscle Atrophy and Regulated by

Transcription) group of ubiquitin ligases to protect against

fasting-induced muscle wasting (98). Likewise, another study

demonstrated that insulin and IGF act to increase muscle mass

through their negative regulation of FoxO activity (99). This study

showed that while insulin is the primary mediator of muscle protein

synthesis, insulin and IGF work synergistically to increase muscle

mass. Moreover, muscle specific knockout of both insulin and IGF

(MIGIRKO) depletes muscle mass in a FoxO-dependent manner as

simultaneous deletion of FoxO1, FoxO3, and FoxO4 in MIGIRKO

mice reversed the loss of muscle mass. Notably, ageing patients with

T2D have significantly reduced muscle mass, which is associated

with increased mortality (100–102). A recent study showed that

skeletal muscle specific knockout of AKT1 and AKT2 causes

sarcopenia, the progressive reduction in muscle strength and

mass, and insulin resistance both of which were largely reversed

by additional knockout of FoxO1 (103). Future studies should

determine whether targeting FoxO1 inactivation could treat T2D-

induced muscle wasting.

The increase in blood glucose that characterizes T2D is largely

caused by decreased insulin-stimulated glucose uptake into skeletal

muscle via GLUT4 glucose transporters (104, 105). Evidence

suggests that FoxO1 and FoxO3 play a role in insulin’s regulation

of GLUT4. For example, Lundell et al. (106) found that decreased

expression of either FoxO1 or FoxO3 in skeletal muscle reduces

GLUT4 protein levels and glucose uptake. Furthermore, attenuation

of FoxO3, and not FoxO1, decreased glycogen content indicating

that FoxO3 is important for the control of glucose storage in skeletal

muscle. Further studies suggest that both AKT and SIRT1 regulate

FoxO1’s effects on muscle mass and GLUT4 (107). Elevated SIRT1

during cardiac or skeletal muscle hypertrophy has been associated

with increased AKT levels and activity and decreased FoxO1 (61,

107–109). For example, Gombos et al. (61) found that

experimentally induced skeletal muscle hypertrophy enhances

SIRT1 and AKT levels, decreases FoxO1 levels, and increases

GLUT4 levels. Altogether, studies show that increased skeletal

muscle FoxO1 acts to elevate blood glucose by decreasing GLUT4

levels and thus reducing glucose uptake.

Reduced glucose uptake and increased lipid accumulation in

skeletal muscle contributes to the shift from glucose oxidation to

lipid oxidation observed in T2D (110–112). FoxO1 has been shown

to mediate lipid metabolism in skeletal muscle. For example, a study

using the C2C12 skeletal muscle cell line reported that FoxO1
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upregulates lipoprotein lipase (LPL), which is an enzyme that

hydrolyses triglycerides into fatty acids (113). In addition, FoxO1

alters the cellular localization of the fatty acid translocase CD36 to

enhance fatty acid uptake (111). Specifically, overactivation of

FoxO1, by impeding AKT-induced FoxO1 inactivation, increases

CD36 localization in the plasma membrane along with fatty acid

uptake into C2C12 skeletal muscle cells. Blocking AKT-mediated

FoxO1 inactivation also promotes fatty acid oxidation. In addition

to fatty acid oxidation, insulin activation of AKT regulates glucose

oxidation in skeletal muscle. For example, insulin augments glucose

oxidation by strongly suppressing pyruvate dehydrogenase kinase

(PDK) 4, which is an enzymes that inhibits the conversion of

pyruvate to acetyl-CoA thereby reducing glucose oxidation and

ATP production (114). However, low insulin signaling conditions

like fasting and diabetes increases skeletal muscle PDK4 (115). For

example, rats induced with diabetes present with increased PDK

activity in skeletal muscle as well as lower glucose oxidation, and

insulin reverses these effects (116, 117). FoxO1 mediates insulin’s

action on PDK4. For example, FoxO1 has been shown to directly

upregulate PDK4 transcription in skeletal muscle (118).

Furthermore, stimulation of acute insulin resistance in rats

increases PDK4 expression, decreases the active phosphorylated

form of AKT, and increases the inactive phosphorylated form of

FoxO1 (112). Overall, these results suggest that increased FoxO1

activity in insulin resistance contributes to the decrease in skeletal

muscle glucose uptake and utilization along with the increase in

fatty acid uptake and oxidation.

Recent studies demonstrate that pharmacological inhibition of

FoxO1 improves muscle mass (119). For example, treatment with

the FoxO1 specific inhibitor AS1842856 partially reverses the loss of

fast-twitch muscle mass caused by AKT1/2 deletion (103).

Furthermore, FoxO1 inhibition also mitigates insulin resistance.

For example, the traditional Chinese herbal treatment Geniposide,

which is an iridoid glycoside found in Gardenia fruits, improves

glucose utilization in skeletal muscle by downregulating FoxO1 and

PDK4 expression (120). Similarly, the Chinese herbal formula

Yunpi Heluo (YPHL) decoction was found to increase SIRT1 and

decrease FoxO1 in skeletal muscle of diabetic Zucker rats. YPHL

treatment in these rats also improves glycemia and insulin

sensitivity, and lowers cholesterol, triglyceride levels, and body

weight (121). Vitamin D is known to alleviate T2D symptoms

(80–83). Studies indicate that Vitamin D3 improves T2D by

targeting hepatic FoxO1 suppression (84). Recent work shows

that lack of the vitamin D receptor in skeletal muscle increases

FoxO1 activity and causes insulin resistance and glucose intolerance

(83). Thus, the beneficial effects of Vitamin D on insulin sensitivity

may also act via FoxO1 inactivation in skeletal muscle. Taken

together, these results suggest that FoxO1 inhibition in skeletal

muscle may help treat T2D.
5 FoxO1 and T2D – adipose tissue

FoxO1 is densely expressed in white adipose tissue (WAT), where

it controls adipocyte differentiation from preadipocytes. FoxO1

decreases adipogenesis by acting as a transrepressor of peroxisome
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proliferator-activated receptor gamma (PPARg) and as a

transactivator of the cell cycle inhibitor p21 (122–124). However,

siRNA silencing of FoxO1 as well as FoxO1 inhibition with the

selective antagonist AS1842856 inhibits adipogenesis (125, 126).

FoxO1’s complicated regulation of adipocyte differentiation is

timing dependent and reflects its role in regulating the cell cycle

(123). Despite this complexity, targeting FoxO1 in WAT for T2D

treatment has proven effective. For example, reducing FoxO1 activity

in insulin-impaired mice increases insulin sensitivity, and decreasing

FoxO1 activity specifically in WAT enhances insulin sensitivity and

glucose tolerance (122, 127, 128). Recent evidence reveals that

regulation of adipocyte FoxO1 by 3′-phosphoinositide-dependent
kinase 1 (PDK1) plays an important role in metabolic disease.

PDK1 is a kinase involved in insulin signaling. Insulin binding its

receptor activates PI3K, which phosphorylates AKT directly and

indirectly through facilitating AKT activation by other kinases like

PDK1. For example, PI3K increases phosphatidylinositol (3-5)-

trisphosphate (PIP3) which recruits PDK1 to the plasma

membrane and promotes the interaction between PDK1 and AKT

(129, 130). PDK1 phosphorylates AKT specifically at Thr308

(Figure 2). FoxO1 activity is decreased with increased PDK1/AKT

signaling. Adipocyte-specific PDK1 knockout (A-PDK1KO) mice

manifest symptoms of metabolic disease including insulin

resistance, glucose intolerance, and hepatic steatosis that resembles

the phenotype generated by knocking out the insulin receptor in

adipocytes (131). These results emphasize the importance of PDK1 in

insulin’s metabolic actions in WAT. Furthermore, these A-PDK1KO

metabolic changes were reversed in mice with a combined deletion of

PDK1 and FoxO1 indicating that FoxO1 activity was required for the

development of insulin resistance, glucose intolerance, and hepatic

steatosis in mice lacking PDK1 (132). These data suggest that

inhibiting FoxO1 activity during insulin resistance when PDK1

signaling is reduced may help to reverse T2D symptoms. Other

agents have been shown to mitigate T2D symptoms via FoxO1

inhibition in WAT. For example, the nonsteroidal anti-

inflammatory drug-activated gene-1 (NAG-1) exerts its anti-

diabetic effects by reducing adipocyte FoxO1 (133). Similarly,

serum- and glucocorticoid-inducible kinase 1 (SGK1) increases

AKT phosphorylation of FoxO1 which increases glucose uptake in

adipocytes, and thus improves insulin sensitivity (134).

Photobiomodulation (PBMT) is a non-invasive therapy that uses

light sources like low-level lasers to stimulate cell proliferation, alter

signaling pathways, decrease inflammation, and relieve pain in

conditions such as diabetes (135). PBMT may improve T2D by

inhibiting FoxO1. For example, a recent study demonstrated that

PBMT via abdominal laser treatment enhances AKT inactivation of

FoxO1 which decreases free fatty acid production and release from

adipocytes of obese and diabetic mice (136). Knockdown of prolyl 4-

hydroxylase subunit alpha 3 (P4HA3) with siRNA increases pAKT

and pFoxO1, which decreases the transcriptional capacity of FoxO1.

Consequently, P4HA3 inhibits adipogenesis, decreases fasting blood

glucose levels, improves insulin resistance, and decreases body weight

in diabetic mice (137). Altogether, these studies demonstrate that

FoxO1 inhibition in WAT may alleviate T2D symptoms.

FoxO1 also regulates lipolysis by directly upregulating the

lipolytic enzyme adipose triglyceride lipase (ATGL) (123).
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Deacetylation of FoxO1 by SIRT1 augments this response (138).

Adipose-specific knockdown of Sirtuin 6 increases the acetylated

form of FoxO1 causing an decrease in FoxO1 activity and

downregulation of ATGL, which results in adipocyte hypertrophy

(without hyperplasia), and promotes insulin resistance in obese fed

mice (139). Adipocyte hypertrophy has received attention as an

important factor inciting metabolic dysfunction via increased

inflammation which was also reported in this study (140).

Additionally, WAT ATGL is the first identified biosynthetic

enzyme of mammalian fatty acid esters of hydroxy fatty acids

(FAHFAs) some of which have anti-diabetic actions further

highlighting FoxO1 and ATGL as therapeutic targets for T2D

treatment (141). More research is needed to determine whether

FoxO1’s regulation of lipolysis and FAHFAs via AGTL could prove

effective in T2D treatment.

Brown adipose tissue (BAT) is a target for T2D treatment

because of its ability to increase basal metabolic rate and decrease

body weight. FoxO1 impedes BAT function by downregulating

PPARg coactivator (PGC)-1a and uncoupling protein 1 (UCP1)

(128). FoxO1 also blocks the conversion of WAT to BAT by

upregulating transcription factor EB (TFEB) (142) (Figure 3). The

role of FoxO1 in regulating WAT and BAT depends on timing and

insulin signaling. For example, Homan et al. (143) showed that

knocking out FoxO1, FoxO3, and FoxO4 in adipocytes during early

development of mice lacking the insulin and IGF receptors

increases BAT mass and function, partially increases WAT,

intensifies hyperinsulinemia, and improves hepatic insulin

sensitivity. Future research should characterize the specific roles

of each FoxO and determine whether these changes are dependent

on developmental timing. Pharmacological intervention with the

FoxO1 inhibitor AS1842856 decreases TFEB and increases UCP1 to

increase brown adipocyte differentiation and function.

Furthermore, Zhuang et al. (137) demonstrated that metformin

inhibits autophagy and promotes BAT differentiation in adipose-

derived stem cells by FoxO1 inactivation. Taken together, evidence

supports FoxO1 inhibition in BAT as an attractive target for

T2D therapeutics.
6 FoxO1 and T2D – pancreatic b-cells

Pancreatic b-cells produce and secrete insulin. These cells are

particularly sensitive to the development of insulin resistance. Indeed,

early insulin resistance induces a compensatory response in which

insulin production and secretion is enhanced in part due to b-cell
hyperplasia. Enhanced insulin signaling during compensatory

hyperinsulinemia increases the activity of pancreatic duodenal

homeobox 1 (PDX1) which is a transcription factor that augments

b-cells proliferation (144). Kulkarni et al. (144) showed that PDX1

deficiency impairs insulin’s compensatory response on b-cell mass.

Further work demonstrated that FoxO1 links insulin and PDX1

action on b-cells proliferation (145). FoxO1 suppresses the

transcriptional activity of PDX1 (146, 147). Mechanistically,

compensatory hyperinsulinemia increases pancreatic PI3K/AKT

signaling, which decreases FoxO1 activity and causes an increase in

PDX1 activity and b-cell mass (145). However, if this response fails to
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compensate and insulin resistance persists, b-cell proliferation will

decrease along with insulin secretion and T2D will develop. In this

state of advanced insulin resistance, the decrease in insulin lowers

PI3K/AKT signaling and increases FoxO1 activity which impairs

PDX1-mediated b-cell growth further reducing insulin secretion and

contributing to T2D pathogenesis.

In addition, microRNA (miRNA) studies have signified a role

for FoxO1 in T2D. For example, FoxO1 upregulates miR-802,

which is elevated in diabetic mouse pancreatic islets and

contributes to b-cell dysfunction by decreasing insulin secretion

(148). Li et al. (149) showed that miR-233 is upregulated in

pancreatic cells of diabetic mice and humans and improves b-cell
proliferation and function via FoxO1 suppression. Similarly, an

irisin-induced increase in miR-133a-3p downregulates FoxO1 to

protect b-cells from pyroptosis (150). Pharmacological inhibition of

b-cell FoxO1 also ameliorates T2D symptoms. For example, the

anti-allergic drug and FoxO1 inhibitor tranilast improves glucose

tolerance in diabetic mice and reverses palmitic acid (PA)-induced

reduction in b-cell insulin secretion (151). Similarly, glucagon-like

peptide-1 receptor agonists (GLP-1RA) mimic incretin hormones,

which increase insulin secretion and b-cell proliferation through

PI3K/AKT-mediated nuclear exclusion of FoxO1 (152, 153). For

example, the GLP-1RAs liraglutide and EXf inactivate FoxO1

causing increased b-cell proliferation in a PI3K-dependent

manner (154, 155). Additionally, the isoflavone puerarin increases

GLP-1R activation of AKT, decreases FoxO1 activity, and improves

glucose tolerance (156, 157). Vitamin D also improves insulin

secretion via reduced FoxO1 protein levels which reduces b-cell
ferroptosis (158). Furthermore, Zhang et al. (159) reversed the

negative effects of b-cell senescence using the Saccharina japonica

derivative fuco-manno-glucuronogalactan (SFGG) in insulin

secreting MIN6 cells. SFGG anti-senescence effects are regulated

by pAKT-mediated FoxO1 suppression suggesting that FoxO1

contributes to the T2D pathogenesis by accelerating b-cell ageing.
FoxO1 deficiency may also contribute to b-cell senescence and T2D
as knockout of the proliferation mediator SMAD7 reduced FoxO1

which enhanced b-cell ageing and caused diabetes suggesting that

there may be an optimal range of FoxO1 activity (160).

FoxO1 may help to prevent T2D under conditions like OS and

inflammation which are associated with T2D pathogenesis. For

example, FoxO1 protects b-cells from OS by upregulating

antioxidants and by interfering with Carbohydrate Response

Element-binding Protein (Chrebp) to combat DNA damage and

apoptosis (2, 5, 19, 161, 162). In contrast to AKT, phosphorylation

of FoxO1 by inflammatory pathways like c-Jun N-terminal kinase

(JNK) augments nuclear entry of FoxO1 to increase insulin

transcription via upregulation of NeuroD and MafA transcription

factors (163, 164). Moreover, studies indicates that as insulin

resistance and OS progresses, FoxO1 acts to combat these conditions

but over time its protein levels decline causing b-cell dedifferentiation
and marking a molecular switch to T2D pathology (165, 166).

Furthermore, the GLP-1RA exenatide decreases inflammation and

boosts b-cell function by improving the balance between CD4+ T-

helper 17 (Th17) cells and regulatory T-cells (Tregs) (167). The FoxO1

inhibitor AS1842856 reversed these effects indicating that FoxO1

activity may be important for T17/Treg balance and reduced
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inflammation. FoxO1 also safeguards b-cells during hypoxia by

regulating autophagy (168). For example, liraglutide protects INS-1

cells from PA-induced injury by enhancing autophagy and cell survival

through elevated FoxO1 activity (169). Similarly, Liang et al. (170)

demonstrated that FoxO1 stimulates autophagy and enhances survival

in cells under T2D-induced hypoxia.

FoxO1 knockout studies have examined its dual role in T2D.

For example, FoxO1 deletion in mouse b-cells causes mitochondrial

dysfunction, cell dedifferentiation, and hyperglycemia (171, 172).

Kobayashi et al. (173) showed that knocking out FoxO1 in the

pancreas increases b-cell mass, but this was not the case when

FoxO1 was deleted specifically from b-cells. Furthermore, glucose

intolerance in db/db diabetic mice was worsened when FoxO1 was

knocked out in the pancreas as well as when FoxO1 was knocked

out explicitly in b-cells. These data show that while FoxO1 inhibits

b-cell proliferation, it can also improve glucose tolerance.

Therefore, activating FoxO1 could prove effective. For example,

L-Methionine (L-Met) regulates FoxO1 by altering the bivalent

domain histone methylation marks H3K27me3 and H3K4me3 to

increase FoxO1-mediated upregulation of the insulin transcription

factor MafA and mitigate type 1 diabetes mellitus in rats (174).

Given that Obex®, a supplement containing L-Met, caused weight

loss and improved insulin homeostasis in overweight and obese

participants of a double−blind, randomized, controlled phase III

clinical trial, future studies should explore how altering bivalent

domain controls FoxO1 regulation of b-cells during T2D (175).
7 FoxO1 and T2D – brain

FoxO1 mediates the hypothalamic control of metabolism by

integrating signals from peripheral regulators like ghrelin, insulin,

and leptin (176). Ghrelin-activated FoxO1 in the hypothalamic

arcuate nucleus (ARC) induces hyperphagia by upregulating the

orexigenic peptide Agouti-related protein and downregulating

proopiomelanocortin (POMC) from which the anorexigenic

peptide alpha melanocyte stimulating hormone (a-MSH) is

derived (177). FoxO1 also decreases the POMC processing

enzyme Carboxypeptidase E (Cpe) further reducing a-MSH

(178). FoxO1 ablation in POMC neurons increases CPE and a-
MSH resulting in reduced food intake and protection from diet-

induced obesity (DIO) weight gain. In contrast, FoxO1

overexpression in hypothalamus and pancreas increases food

intake and impairs glucose tolerance and insulin secretion (179).

Leptin and insulin reverse FoxO1 action by enhancing AKT

inactivation of FoxO1 (33, 180). However, leptin and insulin

signaling is compromised in obesity and T2D in the ARC (181).

Therefore, pharmacologically inactivating hypothalamic FoxO1

could treat these conditions. Indeed, central inhibition of FoxO1

directly or via SIRT1 inhibition reduces body weight and improves

insulin sensitivity in DIO rodents (182, 183). Furthermore, actions

of the orexigenic melanin-concentrating hormone (MCH) in the

ARC that promote hyperphagia, adipocyte lipid storage, and

glucose intolerance are dependent on SIRT1 and FoxO1

activation (184). Overall, evidence suggests that FoxO1 inhibition

in the hypothalamus has the potential to treat obesity induced T2D.
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Because of FoxO1’s role in regulating brain metabolism, it may link

metabolic dysfunction and neurodegenerative disease (185). For

example, neurodegenerative diseases like Alzheimer’s disease (AD),

Huntington’s disease (HD), and Parkinson’s disease (PD) are worsened

by T2D (186–188), and FoxO1 expression is elevated in each of these

conditions (189–193). Furthermore, increased FoxO1 has been shown

to reduce pathological AD features such as tau hyperphosphorylation

and amyloid beta (Ab) plaques (190, 194–196). A recent study screened

FoxO1 activators as potential therapeutics and demonstrated that one,

Compound D, decreases Ab1-40 and Ab1-42 in SH-SY5Y cells (197).

Additionally, exercise, an AD intervention, increases circulating FoxO1

in African American men with mild cognitive impairment (198), and

upregulates FoxO1 to improve AD symptoms in early-onset AD mice

(199). Interestingly, the ani-aging protein klotho improves AD

symptoms by either activating (200, 201) or inactivating FoxO1

(202). Conflicting results of FoxO1 have also been reported in HD

studies. For example, Li et al. (203) showed that AKT-mediated FoxO1

inactivation increases pathogenic mutant Huntington (mHtt) protein

aggregates, yet another study showed that increasing FoxO1-dependent

expression of autophagy, mitochondrial, and antioxidants genes

improves HD symptoms including increased neuronal survival and

enhanced motor control (204). Most studies of PD demonstrate that

increased FoxO1 contributes to its pathology via increased

inflammation and apoptosis (205, 206). Evidence also suggests that

FoxO1 mediates the depressive symptoms of PD (207). More research

is needed to better understand FoxO1’s role in the pathology of

neurodegenerative diseases.
8 Conclusion and prospective

Insulin resistance in T2D increases FoxO1 activation in

metabolic tissues including liver, skeletal muscle, adipose tissue,

pancreas, and brain, which underscores FoxO1’s potential clinical

relevance. However, recent evidence in these tissues and others like

heart and kidney (208, 209) highlights controversy and indicates

that inactivating FoxO1 could either mitigate or exacerbate T2D

pathology (2–5). Knowing a patient’s history and risk for certain

diseases may be critical. For example, FoxO1 appears to play

opposing roles in AD and PD pathology at least under certain

conditions. Furthermore, FoxO1 can act as a tumor suppressor and

thus activating FoxO1 may help treat certain cancers, yet FoxO1

activation worsens stroke pathology (210, 211). Therefore, targeting

the optimal tissue for activation or inhibition of FoxO1 and

developing strategies for tissue-specific delivery of FoxO1
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therapeutics could effectively treat T2D and minimize adverse

side effects. Likewise, this approach could extend to targeting

FoxO1 for treatment of other diseases.
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