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Narrative review investigating
the nephroprotective
mechanisms of sodium glucose
cotransporter type 2 inhibitors
in diabetic and nondiabetic
patients with chronic
kidney disease
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1Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern
Denmark, Odense, Denmark, 2Institute of Clinical Medicine, University of Southern Denmark,
Odense, Denmark, 3Department of Nephrology, Odense University Hospital, Odense, Denmark
Background and aims: Outcome trials using sodium glucose cotransporter

type 2 inhibitors have consistently shown their potential to preserve kidney

function in diabetic and nondiabetic patients. Several mechanisms have been

introduced whichmay explain the nephroprotective effect of sodium glucose

cotransporter type 2 inhibitors beyond lowering blood glucose. This current

narrative review has the objective to describe main underlying mechanisms

causing a nephroprotective effect and to show similarities as well as

differences between proposed mechanisms which can be observed in

patients with diabetic and nondiabetic chronic kidney disease.

Methods: We performed a narrative review of the literature on Pubmed and

Embase. The research string comprised various combinations of items

including “chronic kidney disease”, “sodium glucose cotransporter 2

inhibitor” and “mechanisms”. We searched for original research and review

articles published until march, 2022. The databases were searched

independently and the agreements by two authors were jointly obtained.

Results: Sodium glucose cotransporter type 2 inhibitors show systemic,

hemodynamic, and metabolic effects. Systemic effects include reduction of

blood pressure without compensatory activation of the sympathetic nervous

system. Hemodynamic effects include restoration of tubuloglomerular

feedback which may improve pathologic hyperfiltration observed in most

cases with chronic kidney disease. Current literature indicates that SGLT2i

may not improve cortical oxygenation and may reduce medullar oxygenation.
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Conclusion: Sodium glucose cotransporter type 2 inhibitors cause

nephroprotective effects by several mechanisms. However, several

mediators which are involved in the underlying pathophysiology may be

different between diabetic and nondiabetic patients.
KEYWORDS

diabetic chronic kidney disease, nondiabetic chronic kidney disease, sodium
glucose cotransporter type 2 inhibitors, nephroprotection, pathophysiologic
mechanisms
1 Introduction

Chronic kidney disease (CKD) affects around one in ten people

worldwide and is largely a contributor to mortality and reduced

quality of life (1–4). Because the number of people living with risk

factors for kidney disease increases, the number of patients suffering

from CKD and the number of patients dying from the disease,

continues to rise (1–4). The most common causes of CKD include

diabetes mellitus (DM), hypertension, and glomerulonephritis

(GN) (4). The definition of CKD includes structural or functional

changes with persistence of at least 3 months. The diagnosis is based

on either the presence of kidney damage markers, for example,

albuminuria, or a decreased glomerular filtration rate (GFR) (4).

Until recently, blockade of the renin angiotensin aldosterone system

(RAAS) with angiotensin converting enzyme inhibitors (ACEi) and

angiotensin receptor blockers (ARB) have been cornerstones to

slow progressive decline of kidney function (5). Several large

outcome trials have consistently shown the nephroprotective

potential of sodium glucose cotransporter type 2 inhibitors

(SGLT2i) in diabetic patients with CKD (6–9).

The recent KDIGO clinical practice guideline for diabetes

management in chronic kidney disease recommends treatment of

patients with type 2 diabetes mellitus, chronic kidney disease, and

an estimated glomerular filtration rate more the 20mL per 1.73m2

with SGLT2i (10). The authors noticed that start of SGLT2i

treatment may cause a reversible decrease in the eGFR and was

not an indication for discontinuation (10). Due to lacking evidence

administration of SGLT2i does not apply to kidney transplant

recipients (10). The EMPA-Kidney trial showed that

administration of SGLT2i, empagliflozin, to patients with kidney

disease for 2 years significantly reduced the composite endpoint,
inhibitor; ARB,

te; CKD, chronic

merular filtration

ose transporter 2;

RCT, randomized

renin angiotensin

type 2 inhibitor;

dback.

02
progression of kidney disease or death from cardiovascular causes.

The outcome was observed in 13.1% (432 of 3304 patients) in the

empagliflozin group and in 16.9% (558 of 3305 patients) in the

placebo group (hazard ratio, 0.72, 95% CI 0.64 to 0.82) (11). It is

important to mention that the results were consistent among

patients with or without diabetes (11). The authors also indicated

that SGLT2i, empagliflozin, was beneficial in patients with an eGFR

less than 30 ml per minute or a low urinary albumin-to-creatinine

ratio (11).

A recent publication presented the American Diabetes

Association (ADA) and Kidney Disease Improving Global

Outcomes (KDIGO) consensus statement that SGLT2i is

recommended for patients with diabetes mellitus type 2, chronic

kidney disease, and an eGFR more than 20 ml/min/1.73m2 (12).

This recommendation was based on strong evidence from large

outcome trials that SGLT2i may reduce the progression of chronic

kidney disease, heart failure and atherosclerotic cardiovascular

disease in these patients (12). The authors indicate that SGLT2i

reduce intra-glomerular pressure (12).

As shown in Figure 1, the reabsorption of filtered glucose from

the tubular lumen is caused by two transporters located apically on

the proximal tubule cells (13). SGLT2 is situated in the S1 segment,

whereas sodium glucose cotransporter type 1 (SGLT1) is situated in

the distal S3 segments of the proximal tubule located at the

corticomedullary junction (13). These transporters work in

conjunction with the basolateral sodium potassium pumps, which

uses energy in the form of adenosine triphosphate (ATP) to create

an electrochemical gradient. The transport of glucose to the

bloodstream is facilitated passively by glucose transporter type 2

(GLUT2). Since SGLT2 transporters are responsible for the uptake

of filtered glucose in cotransport with sodium in a 1:1 ratio,

inhibition of SGLT2 causes glucosuria and increases natriuresis

(14). Which mechanisms may link the increased loss of glucose and

sodium with kidney protection and lower mortality? Several

mechanisms regarding the nephroprotective effect in diabetic as

well as non-diabetic patients with CKD have been proposed. The

objective of this review is to describe the main mechanisms

underlying the nephroprotective effect of SGLT2i in patients with

diabetic nephropathy. The second aim is to demonstrate similarities

and differences in patients with diabetic and nondiabetic CKD
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regarding these mechanisms. We present the following article in

accordance with the Narrative Review reporting checklist.
2 Materials and methods

2.1 Search strategy, study selection and
eligibility criteria

The research strategy summary is given in Table 1. The

databases Pubmed and Embase were searched for original
Frontiers in Endocrinology 03
research and review articles from start until March, 2022. Based

on the objectives, relevant blocks were constructed and terms and

synonymous for each block were identified (Table 2). The main

words were “chronic kidney disease, sodium glucose transporter 2

inhibitor, and mechanism”. Synonyms were found from articles by

the initial unstructured research, and by selecting “show index” for

each word in the search function in Pubmed. Quotes were used to

ensure that the words were not searched for individually and

truncation was used to allow the word to have multiple endings.

The individual words within each block were combined with OR,

while each block was combined with AND. From this, a search
FIGURE 1

Proximal tubule cell with transporters relevant to the reabsorption of glucose. Blockade of SGLT2 results in increased delivery of glucose and sodium
to downstream segments and loss in the urine. ATP, adenosine triphosphate; GLUT2, glucose transporter 2; SGLT1, sodium glucose cotransporter
type 2. The sodium:glucose coupling ratio is 1:1 for SGLT2 and it is 2:1 for SGLT1. The different sodium:glucose coupling ratios may impact renal
energy expenditure with SGLT2i.
TABLE 1 Research strategy summary.

Items Specification

Date of Search (specified to date, month
and year)

March 4-15, 2022.

Databases and other sources searched Pubmed, Embase and reference lists.

Search terms used (including MeSH and
free text search terms and filters)
Note: please use an independent
supplement table to present detailed search
strategy of one database as an example.

Free text terms: chronic kidney disease, CKD, chronic kidney disease, “chronic impaired kidney function”, “chronic renal
dysfunction”, chronic renal impairment, chronic renal disease, chronic renal failure, chronic renal insufficiency, sodium
glucose transporter 2 inhibitor, SGLT2i, mechanism, physiology, hemodynamic, metabolic, molecular.
Keywords: chronic kidney failure, sodium glucose cotransporter 2 inhibitor, drug mechanism, physiology.

Timeframe Publications from 2005-2022.

Inclusion and exclusion criteria (study type,
language restrictions etc.)

Inclusion: title and abstract including words from all three blocks.
Exclusion: animal studies, population not relevant, outcome not relevant, study design not relevant, language foreign,
not available.

Selection process (who conducted the
selection, whether it was conducted
independently, how consensus was
obtained, etc.)

The databases were searched independently and the agreements by two authors were jointly obtained.

Any additional considerations, if applicable Population could be patients with various causes of chronic kidney disease, including patients with type 1 and type 2
diabetes mellitus and patients without diabetes mellitus.
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string for each database was constructed, including both free text

terms and keywords. The studies identified from the two databases,

were imported into the reference system Endnote (Clarivate

Analytics, Philadelphia, USA) and duplicates were removed

automatically. Then they were exported to the screening tool

Rayyan (Rayyan Systems Inc, Cambridge, England) and

additional duplicates were removed manually. The studies were

screened for title and abstract, and exclusion was done by the

authors if words from the three blocks were not included, or if the

study was made in animals only. The remaining full text articles

were screened and included if they did not meet the following

exclusion criteria: animal studies only, the population did not have

kidney disease, the article was a comment, the language was not
Frontiers in Endocrinology 04
Danish or English (Figure 2). Additional studies were identified

through included references.
3 Results

The nephroprotective effects of SGLT2i are summarized in

Table 3, and have been attributed to systemic, hemodynamic, and

metabolic mechanisms. The details extracted from references

included in this review are given in Table 4. Some of the

mechanisms may affect risk factors which are observed more

often in diabetic patients, whereas others may target features

common to all patients with CKD.
3.1 Systemic mechanisms

Due to glucosuria and natriuresis, a modest reduction in

hemoglobin A1c (HbA1c), bodyweight, as well as systolic and

diastolic blood pressure have been observed in several studies in

diabetic patients with CKD. In nondiabetic patients with CKD,

Cherney et al. showed a reduction in bodyweight, but no significant

changes in HbA1c or blood pressure (15). Since overweight as well

as increased blood pressure are known risk factors for progression

of CKD, these mechanisms likely confer nephroprotection by

SGLT2i. Heerspink et al. found, that a reduction in albuminuria

in patients with type 2 DM treated with a SGLT2i appeared to be

independent of changes in HbA1c, bodyweight and systolic blood

pressure (16). It should be noted that the effect on glucosuria is

attenuated in patients with reduced kidney function, while blood

pressure lowering is quite consistent across different levels of kidney

function (73). Large outcome studies showed that sodium glucose

cotransporter type 2 inhibitors (SGLT2i) reduce systolic/diastolic
FIGURE 2

Flow diagram showing the process whereby studies were identified, screened, and included. The exclusion criteria were predetermined before
the research.
TABLE 2 The table shows the tree blocks which were constructed based
on the objectives, with terms and synonymous relevant to each block.

Block:
population

Block:
intervention

Block:
outcome

Chronic kidney disease Sodium glucose
transporter
2 inhibitor

Mechanism

CKD SGLT2i Physiology

Chronic kidney failure Hemodynamic

Chronic impaired
kidney function

Metabolic

Chronic renal dysfunction Molecular

Chronic renal impairment

Chronic renal disease

Chronic renal failure

Chronic renal insufficiency
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blood pressure by approximately 4 mmHg/2 mmHg (83).

Compared to placebo mean reduction of 24-hour diastolic blood

pressure were 1.0 mmHg, 1.3 mmHg, and 4.8 mmHg in patients

with eGFRmore than 90 ml/min per 1.73 m2, eGFR between 90 and

60 ml/min per 1.73 m2, and eGFR between 60 and 30 ml/min per

1.73 m2, respectively (84). SGLT2i do not act as osmotic diuretics.

But low-level ketoacidosis which is observed after administration of

SGLT2i can reduce blood pressure (80). In the Dahl salt-sensitive

rat model of hypertension, the co-administration of b-
hydroxybutyrate reduced elevated blood pressure in a salt-rich

diet (85).

Reduced plasma uric acid is a consequence of increased glucose

in the tubular lumen, which is taken up by the same glucose

transporter type 9, at the expense of uric acid. Results have been
Frontiers in Endocrinology 05
conflicting, as to whether lowering of plasma uric acid provides

nephroprotection. Some studies indicate that hyperuricemia is

associated with increased risk of kidney disease in patients with

type 1 DM (86, 87) and in patients with type 2 DM (74). Other

studies showed that interventions to reduce plasma uric acid could

retard the progression of CKD (88, 89). In contrast, other studies

indicated that uric acid may not be directly involved in the

development of CKD in diabetic patients, but is a downstream

marker of kidney damage (90), hence trials using febuxostat and

allopurinol failed to show a large nephroprotective effect (91, 92).

Zhao et al. found that the reduction of plasma uric acid is attenuated

with lower estimated glomerular filtration rate (eGFR) (33). These

studies concluded that uric acid lowering alone may not provide

nephroprotection, but they do not exclude that in a combination
TABLE 3 Parameters/markers/systems affected, changes from baseline, and the probable mechanisms of SGLT2 inhibitors.

Parameter/
marker/
system

Change
from
baseline

Probable mechanisms according to literature

Plasma
glucose levels

Reduced Glucosuria

Body weight Reduced Caloric loss results in reduced body weight.

Systolic and
diastolic
blood pressure

Reduced Natriuresis results in reduced extracellular volume and thus lowers systolic and diastolic blood pressure

Plasma uric acid Reduced Glucose and uric acid compete with the same GLUT9 transporter. When higher glucose levels are available in the tubular lumen,
the transport of uric acid into the blood is reduced.

Sympathetic
nerve system

Reduced No compensatory increase in heart rate despite reduction of extracellular volume. Mediators are only partly known.

Tubuloglomerular
feedback

Increased Increased delivery of sodium to macula densa cells, which is amplified by downregulation of the sodium-proton-exchanger 3
(NHE3), stimulates the release of vasoactive mediators. These affect the glomerular arterioles, thus ameliorating
glomerular hyperfiltration.

Renin-
angiotensin-
aldosterone-
system (RAAS)

Increased The increased release if renin is due to reduced effective vascular volume. In the presence of RAAS blockade with ACEi of ARB
several mediators are directed from the vasoconstrictive and pro-inflammatory classical pathway to the vasodilating and anti-
inflammatory alternative pathways.

Ketogenesis Increased Stimulation of starvation like stages induce transcription factors and decrease insulin secretion. This stimulates ketogenesis. Ketones
are energy efficient fuels producing more ATP from oxygen compared to free fatty acids.

Hematocrit Increased Partly due to reduced effective vascular volume and enhanced erythropoiesis. That causes compensatory upregulation of SGLT1 in
the medulla which results in local hypoxia and stimulates the transformation of erythropoietin-producing fibroblasts.

Renal
tissue oxygenation

Cortex: No
change.
Medulla:
Reduced

Reduced oxygen demand in the cortex may be due to reduced sodium transport and increased utilization of ketones. Increased
oxygen delivery is partly explained by elevated hematocrit. Furthermore, intensified medullary hypoxia due to reabsorption of
glucose and sodium and tubular segments downstream the location of SGLT2.

Autophagia Increased Ketones upregulate transcription factors which promote autophagia.

Cellular
inflammatory
response
and
inflammasome

Decreased Ketones inhibit histone deacylases and inflammasomes.

Renal fibrosis Decreased On one hand, improved renal cortical oxygenation results in decreased inflammation and fibrosis through downregulation of
hypoxia inducible transcription factors and others. On the other hand, there is enhanced medullary hypoxia. Enhanced medullary
transport leading to medullary hypoxia occurs in medullary thick limbs in the inner- and outer stripe of the outer medulla, with an
increased activity of sodium-potassium-ATPase in the basolateral membrane and sodium-potassium-2-chloride cotransporter at the
apical membrane.
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TABLE 4 Studies included in this narrative review.

A: Original research articles

Author (Ref) Publication year Study design Main findings

Cherney et al. (15) 2020 RCT
Dpagliflozin

No reduction in proteinuria. Reversible decline of eGFR.

Heerspink et al. (16) 2016 RCT
Dapagliflozin

Reduction in albuminuria independent of changes in HbA1c, systolic blood
pressure, bodyweight and eGFR.

Nojima et al. (17) 2020 RCT Tofogliflozin Lowered heart rate, improved insulin resistance.

Cherney et al. (18) 2014
Dapagliflozin

Attenuation of renal hyperfiltration.

Van Bommel et al. (19) 2020 RCT
Dapagliflozin

Reduction of GFR in patients with DM.

Li et al. (20) 2020
Canagliflozin

Reduced urinary pH indicate blockade of sodium-proton-exchanger 3

Rajasekeran et al. (21) 2018 Dapagliflozin Decreased expression of SGLT2 mRNA in patients with FSGS

Antlanger et al. (22) 2022 RCT
Empagliflozin

Empagliflozin on top of an Angiotensin-Converting-Enzyme-Inhibitor (ACEi)
induced activation of the vasodilating and anti-inflammatory alternative pathways
in diabetic patients.

Yoshimoto et al. (23) 2017 Case study Limited effect of SGLT2i to activate RAAS in diabetic patients.

Heise et al. (24) 2016 RCT
Empagliflozin

No changes in plasma renin or serum aldosterone.

Heerspink et al. (25) 2013 RCT
Dapagliflozin

Increase of hematocrit and hemoglobin.

Laursen et al. (26) 2021 RCT
Dapagliflozin

Reduciton of renal resistance.

Liu et al. (27) 2021 RCT Ertugliflozin Reduction of kidney injury molecule 1.

Dekkers et al. (28) 2018 RCT
Dapagliflozin

Reducito of kidney injury molecule 1.

Wang et al. (29) 2017 Case control Increased expression of SGLT2 mRNA and protein in biopsies from patients with
type 2 DM and CKD.

Rahmoune et al. (30) 2005 Case control Increased expression of SGLT2 mRNA and protein, in renal tubular cells in urine
samples from diabetic patients.

Solini et al. (31) 2017 Case control Increased expression of SGLT2 mRNA and protein in nondiabetic patients.

Sridhar et al. (32) 2019 Cross control Reduced renal SGLT2 mRNA expression in diabetic patients.

B: Reviews including diabetic patients

Author (Ref) Publication year Main findings

Vallon et al. (14) 2021 Upregulation of SGLT2 in diabetic CKD.
Upregulation of Sodium-Hydrogen-Exchanger type 3 (NHE3).

Zhao et al. (33) 2018 Reduction of plasma uric acid.

Gillard et al. (34) 2020 Hyperglycemia increases urinary inflammatory markers and may lead to
RAAS activation.

Rocha et al. (35) 2018 Reduction of blood pressure reduction without compensatory increase in
heart rate.

Liu et al. (36) 2022 Restoration of TGF.

Kanduri et al. (37) 2020 Restoration of TGF. Downregulation of NHE3.

Packer (38) 2021 Upregulating of oxygen delivery and downregulation of oxygen demand.

Gnudi et al. (39) 2016 Restoration of TGF. Increased vasodilating and anti-inflammatory
alternative pathways.

(Continued)
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TABLE 4 Continued

B: Reviews including diabetic patients

Author (Ref) Publication year Main findings

Packer (40) 2020 Stimulation of transcription factors resulting in ketogenesis, erythropoiesis
and autophagia.

Brown et al. (41) 2019 Reduced blood glucose, reduced secretion of insulin and increased secretion
of glucagon.

Ito et al. (42) 2018 Reduced oxygen consumption due to ketogenesis.

Hesp et al. (43) 2020 Enhanced energy consumption through upregulation of SGLT2.

Packer (44) 2020 Reduction of blood and urine biomarkers of autophagic proteins.

Yaribeygi et al. (45) 2018 Reduction of the inflammatory response.

Packer (46) 2020 Downregulation of SGLT2 and NHE3. Activation of transcription factors
promoting autophagia.

Hattori (47) 2021 Restoration of TGF. Increased keton bodies. Inhibition of histone deacetylases
and inflammasomes.

Gilbert (48) 2014 Reduction of plasma uric acid.

Cherney et al. (49) 2014 Better blood pressure control.

Heerspink et al. (50) 2016 Elevated RAAS metabolites in urine and blood from the vasoconstrictive and
pro-inflammatory classical and vasodilating and anti-inflammatory
alternative pathways.

Satirapoj (51) 2017 Reduction of inflammatory, oxidative, and fibrotic markers.

Van Bommel et al. (52) 2017 Multiple mechanisms underlying the nephroprotective effects.

Thomas et al. (53) 2018 Changes in solute, water and energy balance in the proximal tubule following
SGLT2 inhibition.

Tsimihodimos et al. (54) 2018 Improvements in several pathways and metabolic variables.

Alicic et al. (55) 2019 Reduced glomerular hyperfiltration and hypertension.

Kuriyama (56) 2019 Attenuation of renal fluid congestion.

Sarafidis et al. (57) 2019 Amelioration of glomerular hyperfiltration.

Thomson et al. (58) 2019 Reduction of SGLT2 veractivity.

Hou et al. (59) 2020 Restoration of TGF. Arteriole constriction by adenosine and efferent arteriole
dilatation by prostaglandins.

Kashihara et al. (60) 2020 Multiple mechanisms.

Packer (61) 2020 Upregulation of “starvation” transcription factors with increased ketogenesis.

Schnell et al. (62) 2020 Restoration of TGF.

Zelniker et al. (63) 2020 Multiple hemodynamic and metabolic changes.

Lee et al. (64) 2021 Multiple mechanisms including hemodynamic and non-hemodynamic
mechanisms.

Onyali et al. (65) 2021 Benefits are independent of glycemic control.

Puglisi et al. (66) 2021 Increased angiotensin1-7.

Leoncini et al. (67) 2021 Multiple mechanisms.

Din et al. (68) 2021 Multiple mechanisms.

Provenzano et al. (69) 2021 Restoration of TGF.

Srinivas et al. (70) 2021 Reduction of interstitial fluid instead

Castañeda et al. (71) 2021 Attenuation of hyperfiltration.

Takata et al. (72) 2021 Pleiotropic effects.

(Continued)
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with other mechanisms offered by SGLT2i, the observed lowering of

plasma uric acid may have an additional beneficial effect (34).

Elevated concentrations of plasma uric acid have been

associated with increased risk of development and progression of

CKD in nondiabetic patients, and interventions to reduce uric acid,

may contribute to the nephroprotective effect in these patients (74).

A recent meta-analysis of 43 randomized controlled trials indicated

that SGLT2i reduced plasma uric acid levels in both diabetic and

nondiabetic patients (75). However, the effect may be smaller in

nondiabetic patients, because the concentration of plasma uric acid

is generally lower, and the uricosuric effect may be smaller due to

the lower filtered glucose, capable of competing with the glucose

transporter type 9 (74). The beneficial effects of SGLT2i may be due

to the fact that fractional uric acid excretion was strongly correlated

to fractional glucose excretion (93).

The sympathetic nervous system (SNS) is not activated upon

SGLT2 inhibition, which is proved by the ability of SGLT2i to

reduce systolic and diastolic blood pressure without a compensatory

increase in heart rate (35). That may be due to lower adipose tissue

insulin resistance (17). Furthermore, SGLT2i, dapagliflozin, may

directly attenuate the sympathetic response (94).
3.2 Hemodynamic mechanisms

The restoration of the tubuloglomerular feedback (TGF)

mechanism has been considered to be an outstanding explanation

why SGLT2i offers nephroprotection, because it targets common

steps in the pathogenesis of CKD, in particular the glomerular

hyperfiltration (76). Vasodilation of the afferent arteriole which can

be observed in patients with diabetes mellitus or in patients with

high protein intake causes glomerular hyperfiltration (95).

Activation of renin-angiotensin-aldosterone system leads to
Frontiers in Endocrinology 08
efferent arteriolar vasoconstriction which causes glomerular

hypertension (95). Furthermore, glomerular hyperfiltration is a

consequence of reduced number of nephrons in CKD, resulting

in a compensatory increase in glomerular filtration in the remaining

nephrons (4).

Large outcome trials consistently showed a significant initial

decline of eGFR following administration of SGLT2i (5–9). By

blocking the reabsorption of glucose and sodium, an increased

amount of sodium can be observed at the macula densa cells, which

leads to the release of nucleosides finally affecting the tone of the

afferent arteriole. Different mediators may contribute and different

effects on glomerular vascular tone have been proposed, depending

on the cause which resulted in hyperfiltration.

In patients with type 1 DM, Cherney et al. measured eGFR

using inul in clearance and renal p lasma flow using

paraaminohippurate clearance together with circulating levels of

RAAS and nitric oxide. These values were measured under clamped

euglycemic and hyperglycemic conditions at baseline and at the end

of treatment with SGLT2i. Cherney et al. observed that attenuation

of hyperfiltration was accompanied by decreased renal plasma flow,

increased renal vascular resistance and no changes of vasodilators,

including urinary prostaglandins and nitric oxide (18). They

suggested that SGLT2i affect TGF and afferent arteriole

constriction, and mentioned adenosine as a major vasoconstrictor

involved. In patients with type 2 DM, van Bommel et al. showed

that attenuation of hyperfiltration was associated with increased

levels of urinary adenosine and prostaglandins but no increase in

renal vascular resistance (19). That may point to high baseline

RAAS inhibition and high afferent arteriole constriction at baseline,

which may limit further vasoconstriction. Adenosine has several

receptors, and binding to adenosine A1 receptors on the efferent

arteriole likely causes vasodilation, which may be reinforced by

increased production of vasodilating prostaglandins (36).
TABLE 4 Continued

C: Reviews including diabetic and nondiabetic patients

Author (Ref) Publication year Main findings

Pollock et al. (73) 2021 Multiple mechanisms.

Bailey (74) 2019 Reduction of plasma uric acid. Glucose and uric acid compete with the
same transporter.

Yip et al. (75) 2022 Reduction of serum uric acid.

Dekkers et al. (76) 2018 Amelioration of glomerular hyperfiltration.

Nayak et al. (77) 2021 Inhibition of NHE3 plays an essential role in TGF activation in nondiabetics.
Increased plasma and urinary ketones in nondiabetic patients.

Dekkers et al. (78) 2020 Restoration of TGF in type 1 DM.

Rajasekeran et al. (79) 2017 Natriuretic effects extend to nondiabetic CKD.

Ekanayake et al. (80) 2022 Lipolysis and ketogenesis. Ketones improve renal tissue oxygenation and show
anti-inflammatory and antifibrotic properties.

Herrington et al. (81) 2021 Reduction of intraglomerular hypertension in CKD.

Oguz et al. (82) 2021 Amelioration of single nephron GFR.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1281107
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Speedtsberg and Tepel 10.3389/fendo.2023.1281107
In nondiabetic patients, Cherney et al. demonstrated the ability

of SGLT2i to attenuate hyperfiltration, as indicated by the initial

decline of eGFR during treatment (15). They did not detect a

reduction in albuminuria which has been shown in previous

studies in diabetic patients (15). One reason could be the short

duration of treatment. Another reason could be differences in

underlying disease pathologies because some sources of proteinuria

are less responsive to changes in eGFR (15). Finally, an explanation

could be a weaker activation of macula densa cells in comparison to

diabetic patients, because the amount of filtered glucose is already

lower in nondiabetic patients, and the initial decline of eGFR leads to

further lowering of glucose and sodium delivery to macula densa

cells. Hence TGF might not be activated sufficiently to reduce

proteinuria in nondiabetic patients who already have a low GFR

(15). They did not observe an association between the initial decline

of eGFR and changes in adenosine or prostaglandins. Therefore,

other vasoactive mediators, i.e., endothelin and nitric oxide could be

involved in nondiabetic patients (15).

Downregulation of sodium hydrogen exchanger type 3 and thus

reduced reabsorption of sodium may also contribute to restoration

of TGF (37). Downregulation of sodium hydrogen exchanger type 3

may occur because the activities of sodium hydrogen exchanger

type 3 and SGLT2 are closely linked, i.e., SGLT2 presumably

increases the activity of sodium hydrogen exchanger type 3 (96).

This was demonstrated clinically by reduced urine pH following

SGLT2i, due to the urinary loss of hydrogen (20). By using a

mathematical model of renal function and volume homeostasis in

combination with clinical data, it has been predicted that inhibition

of apical proximal tubule sodium hydrogen exchanger type 3 is

required for the natriuretic effect induced by SGLT2i in humans

(97). Since sodium and chloride remain the sole solute sensor for

macula densa cells, downregulation of sodium hydrogen exchanger

type 3 may also play an essential role in TGF activation in

nondiabetic patients (77).

Given the TGF mechanism, it is possible that several kidney

diseases might benefit from SGLT2i (78). Diseases like obesity

induced nephropathy, hypertensive nephropathy as well as several

types of GN are characterized by renal hemodynamic changes

including glomerular hypertension and hyperfiltration (79). They

therefore share a common step in the pathogenesis leading to CKD,

namely damage and loss of nephrons and thus hyperfiltration in

remaining nephrons, creating a vicious cycle. Kidney diseases

characterized by glomerular hyperfiltration will likely benefit from

SGLT2 inhibition via restoration of TGF, but the mediators

involved likely are different in various diseases.

Despite being an important and well-studied mechanism,

restoration of TGF may only partly explain the large

nephroprotective effect of SGLT2i. Rajasekeran et al. questions

whether this mechanism is central in all subtypes of CKD, as they

failed to observe any favorable renal hemodynamic alterations or

attenuation in albuminuria in patients with focal segmental

glomerulosclerosis (FSGS) after administration of an SGLT2i (21).

This could be due to the loss of transporters in these patients. In

addition, Heerspink et al. showed that in patients with type 2 DM, a

reduction in albuminuria was maintained even after adjustment for
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changes in eGFR, suggesting that other mechanisms may be

involved (16). To support the contribution from other

mechanisms, Packer claims that patients with very low filtration

rates still benefit from SGLT2i treatment, despite the fact that

amelioration of hyperfiltration by SGLT2i is probably limited in

these patients (38).

Blood pressure is affected by both natriuresis as well as the

Renin-Angiotensin-Aldosterone-System.

An increased sodium delivery to the macula densa activates the

tubuloglomerular feedback increasing the resistance in the afferent

arteriole (76). In contrast, the Renin-Angiotensin-Aldosterone-

System mainly affects the resistance in the efferent arteriole.

Furthermore, SGLT2i-induced activation of the tubuloglomerular

feedback may reduce glomerular filtration by affecting the afferent

arteriole thereby reducing excreted sodium.

Reduced effective circulating volume, which may be a

consequence of SGLT2i, results in increased release of renin and

thus production of angiotensin I from angiotensinogen. In the

presence of RAAS blockade, by an ACEi or an ARB, angiotensin I

is converted to angiotensin 1-7 by angiotensin converting enzyme 2.

These are mediators of the vasodilating and anti-inflammatory

alternative pathways, and the importance of these mediators as

key opposing effectors to angiotensin II has been well established

(98). Antlanger et al. reported elevated plasma angiotensin I and

angiotensin 1-7 after administration of an SGLT2i on top of an

ACEi in patients with type 2 DM (22). They propose that ACEi

cannot fully reverse CKD progression due to normalization of

angiotensin II levels after long-term therapy, a phenomenon

termed “ACEi escape” (22). They conclude that suppression of

angiotensin II with RAAS blockade in combination with

stimulation of the vasodilating and anti-inflammatory alternative

pathways by SGLT2i could therefore be of importance (22). The

presumed theory is that angiotensin II induces vasoconstriction and

inflammation while angiotensin 1-7 promote vasodilatation and

have anti-inflammatory properties (39). In contrast, Yoshimoto

et al. conclude that the ability of SGLT2i to activate RAAS in

patients with type 2 DM is limited (23). They found no increase in

urinary angiotensinogen during treatment with different SGLT2i.

In addition, Heise et al. did not observe any changes in plasma renin

or serum aldosterone during SGLT2i (24).
3.3 Metabolic mechanisms

Continuous glucosuria, and thereby loss of calories through the

urine, simulates a starvation like state resulting in a metabolic shift

from glycolysis to lipolysis and ketogenesis (80). This is presumably

due to upregulation of several transcription factors normally induced

in the fasting state (40). In addition, the decline in blood glucose leads

to reduced secretion of insulin and an increased secretion of glucagon

(41). In addition, ketogenesis is associated to direct upregulation of

energy deprivation sensors like AMPK (adenosine monophosphate-

activated kinase) and SIRT1 (Sirtuin 1) (99).

Ketone bodies are an efficient fuel substrate because they

generate more ATP for the same amount of oxygen compared to
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free fatty acids (FFA) (80). Ketogenesis could therefore probably

contribute to improved renal tissue oxygenation, by reducing renal

oxygen consumption (42). Packer claims, that it is unlikely that the

ability of SGLT2i to increase ketone bodies, is responsible for the

nephroprotective effect in diabetic nephropathy, since circulating

levels of ketone bodies are already increased in diabetic patients in

the absence of treatment (38). During treatment with SGLT2i, a

doubling of ketone bodies in plasma has been observed in

nondiabetic patients similar to what is found in diabetic patients

(100). This is accompanied by increased levels of ketone bodies and

metabolites from ketogenesis in the urine (77). Because impaired

tissue oxygenation plays an equally crucial role in progression of

CKD of various subtypes, its reversal may be important (43). Due to

this, the beneficial effects from ketone bodies through reduced

consumption of oxygen, likely extends to nondiabetic patients (80).

SGLT2i elevates hematocrit through several pathways. First,

because of an increased delivery of glucose to the transporters

downstream in the medullary segments, a compensatory

upregulation of SGLT1 likely occurs, resulting in increased

oxygen demand, and thus a risk of hypoxia in this area (35). It

should be noted that that the sodium reabsorption independent of

glucose by transporters in the inner stripe of the outer medullar may

contribute to outer medullary hypoxia. SGLT2i may induce

erythropoietin due to increased hypoxia at the corticomedullary

junction, related to the translocation of tubular transport from

cortical segments to medullary thick ascending limbs (101). Studies

showed that this mechanism may stimulate erythropoietin (EPO)

producing fibroblasts (25, 77). Animal studies support the described

mechanisms for example determination of the intrarenal

distribution of tissue oxygenation following SGLTi with the use of

oxygen microelectrodes (102). Gullaksen et al. used Blood

Oxygenation Level Dependent Magnetic Resonance Imaging

(BOLD-MRI) for calculating an apparent relaxation rate in

patients with diabetes mellitus type 2. Administration of

empagliflocin for 32 weeks changed cortical oxygenation from

23.6 Hz (95%CI, 23.1-24.1) to 23.3 Hz (965% CI, 2.5-24.0;

p=0.231) (103). Administration of empagliflozin for 32 weeks

reduced medullary oxygenation from 24.5 Hz (95%CI, 23.9-24.9)

to 25.4 Hz (95%CI, 24.7-26.2; p= 0.003; where higher apparent

relaxation rate corresponds to a lower oxygenation) (103). They

indicated that apparent relaxation rate is not a direct measure of

oxygenation and is dependent on deoxyhemoglobin concentrations

(103). Furthermore, they observed that compared to baseline values

the estimated marginal means of both hematocrit and plasma

erythropoietin increased after administration of empagliflozin.

They concluded that on the contrary to their initial hypothesis

empagliflozin reduced medullary kidney oxygenation and

hypothesized that the hypoxia generated by empagliflozin

stimulates erythropoietin synthesis which may mediate kidney

protection (103). The complex association linking the impact of

SGLT2i to proteinuria at the glomerular and tubular level, to renal

oxygenation, and on the progression to chronic kidney disease has

recently been reviewed in-depth by Heyman et al. (104). Increased

transglomerular hydraulic pressure induces hyperfiltration and

increases the albumin leak across the filtration barrier (104). The
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reduction of transglomerular hydraulic pressure and hyperfiltration

by Angiotensin Receptor Blockers or SGLT2i may attenuate or

prevent albuminuria for the long-term (104).

Second, SGLT2 inhibition likely reduces the effective circulating

volume. Heerspink et al. showed that administration of a SGLT2i

increased hematocrit, hemoglobin, and transiently elevated

reticulocyte count and erythropoietin concentrations (25). They

suggest that both volume constriction and increased red blood cell

mass may contribute to that effect.

Increased ketogenesis as well as elevated hematocrit may

improve renal tissue oxygenation, by compensating imbalances

between oxygen consumption and oxygen delivery (76). Because

tubular sodium reabsorption largely contributes to energy

utilization and thus oxygen consumption, reduced proximal

tubule transporter activity and thus workload may be important

(43). Laursen et al. were able to demonstrate that a single high dose

of the SGLT2i dapagliflozin improved renal cortical oxygenation

within six hours in patients with type 1 DM and albuminuria. They

did not observe changes in renal blood flow or blood oxygen

saturation. Therefore, they suggested that the improvement was

due to a reduction in tubular workload (26). Liu et al. showed that

treatment with the SGLT2i ertugliflozin was associated with

sustained lowering of kidney injury molecule 1, a biomarker

specific to proximal tubules in patients with type 2 DM (27). This

biomarker is sensitive and specific to kidney injury, with increased

secretion from tubular cells to the urine under hypoxic conditions,

and it correlates well with the onset and progression of CKD

(27, 105).
3.4 Antiinflammatory effects of SGLT2i

Fibrosis is likely the results of dysfunctional autophagia in

combination with inflammation, and it is characterized by fewer

number of functional nephrons. Autophagia is typically suppressed

in states of nutrient overabundance (44). The beneficial effect of

SGLT2i on fibrosis may be secondary to oxidative and organellar

stress (99). In diabetic patients, autophagic proteins are decreased,

and the levels correlate with the stage of CKD (106, 107).

Autophagia is important for the clearance of damaged proteins

and organelles, and thus the prevention of inflammation (106).

Inflammation has been proposed as being a prominent feature of

CKD (45, 108, 109). Treatment with SGLT2 inhibitors may

contribute to increased autophagia, decreased inflammation and

thereby prevent fibrosis through their actions regarding ketone

bodies. Ketone bodies upregulates transcription factors of the

starvation like stage which likely promote autophagia (46).

Because ketone bodies are not fully utilized, they may also work

as inhibitors of histone deacetylases and inflammasomes (47). The

improved tissue oxygenation may also contribute to reduced

inflammation and fibrosis, which may be enhanced by hypoxia

inducible transcription factors (38). Bessho reported that the

SGLT2i luseoglifozin inhibited hypoxia-induced hypoxia inducible

factor-1a protein expression in human renal proximal tubular

epithelial cells (110). Dekkers et al. showed a reduction in urinary
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markers of inflammation, including kidney injury molecule, in

diabetic patients upon SGLT2 inhibition (28). The reduction

correlated positively with the reduction in albuminuria and eGFR

(28). Due to several beneficial effects of SGLT2i this therapy has

been introduced together with other agents to maximally slow

CKD progression.
3.5 Regulation of the transporter

Most studies in humans reported an increased expression of

SGLT2 in diabetic patients compared to healthy controls. Wang

et al. found an increased expression of SGLT2 mRNA and protein

in biopsies from patients with type 2 DM and CKD compared to

healthy controls (29). Rahmoune et al. also found increased

expression of SGLT2 mRNA and protein in proximal tubular cells

from urine samples from patients with type 2 DM compared to

healthy controls (30). In contrast, Solini et al. observed reduced

expression of SGLT2 mRNA and protein in tissue from

nephrectomies obtained from patients with type 2 DM and renal

carcinoma (31). These conflicting results may be due to

methodological differences including the type of tissue obtained,

methods of measurement or sample bias. It could also be a

consequence of differences regarding the diseases. Furthermore,

the CKD stage may also be a crucial parameter since expression of

mRNA from tubular cells have been reported to correlate with

GFR (32).
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Regarding the expression of SGLT2 in nondiabetic patients,

results have been conflicting. On one hand, Raisekeran et al.

reported decreased expression of SGLT2 mRNA in biopsies from

patients with obesity related FSGS compared to control kidney

donors (21). This reduction may reflect proximal tubule cell injury

and the absence of stimulatory hyperglycemic milieu. On the other

hand, Sridhar et al. detected increased expression of SGLT2 mRNA

in biopsies from control kidney donors and patients with

nondiabetic nephropathy involving different subtypes of GN,

compared to patients with diabetic nephropathy (32). They

observed no differences across GN subtypes. Renal biopsies are

infrequent in diabetic patients with CKD and reserved for advanced

proteinuria or severe insufficiency, thus decreased SGLT2 mRNA

could reflect the more advanced stages of CKD in these patients.

Until recently, RAAS blockade using ACEi and ARB have been

the cornerstones for the treatment of diabetic and nondiabetic

patients with CKD. Several trials have demonstrated the efficiency

of these treatments compared to placebo. It should be noted that the

event rates were much higher in these trials, which yielded a

number needed to treat ranging from 4 to 23 (111–115). In most

trials investigating SGLT2i, the patients received SGLT2i on top of

RAAS blocking agents. In the placebo-controlled trials using

SGLT2i, the number needed to treat ranged from 9 to 93 (5, 7, 9,

116–118). Thus, comparing the different trial designs may indicate

that blocking both, RAAS and SGLT2, may be necessary to prevent

progression of kidney disease (Table 5). Different mechanisms

observed in patients with diabetes mellitus type 1, diabetes
TABLE 5 Effectiveness of treatment with SGLT2 inhibitors compared to placebo as observed in major clinical outcome studies in diabetic and
nondiabetic patients.

Author and title Publication
year Study
design
Population
Follow-
up period

Event
description

Treatment
groups: events
and
total subjects

Event rate
Numbers
needed to
treat (NNT)

Heerspink et al.:
Dapagliflozin in Patients with Chronic Kidney Disease (5)

2020
RCT
Diabetic and
nondiabetic
nephropathy
2.4 years

Composite endpoint Dapagliflozin: 197
events out of 2152
subjects
Placebo: 312 events out
of 2152 subjects

Dapagliflozin:
0.092
Placebo: 0.145
NNT= 19

Wiviott et al.:
Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes (7)

2019
RCT
Diabetic
nephropathy
4.2 years

Composite endpoint Dapagliflozin: 127
events out of 8582
subjects
Placebo: 238 events out
of 8578 subjects

Dapagliflozin:
0.015
Placebo: 0.028
NNT= 77

Perkovic et al.:
Canagliflozin and Renal Outcomes in Type 2 Diabetes and
Nephropathy (9)

2019
RCT
Diabetic
nephropathy
2.6 years

Doubling of
serum creatinine

Canagliflozin: 118 events
out of 2202 subjects
Placebo: 188 events out
of 2199 subjects

Canagliflozin:
0.054
Placebo: 0.085
NNT= 31

Lewis et al.:
The effect of angiotensin-converting-enzyme inhibition on diabetic
nephropathy (110)

1993
RCT
Diabetic
nephropathy
3 years

Doubling of
serum creatinine

Captopril: 25 events out
of 207 subjects
Placebo: 43 events out
of 202 subjects

Captopril: 0.121
Placebo: 0.213
NNT= 11

(Continued)
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TABLE 5 Continued

Author and title Publication
year Study
design
Population
Follow-
up period

Event
description

Treatment
groups: events
and
total subjects

Event rate
Numbers
needed to
treat (NNT)

Maschio et al.:
Effect of the angiotensin-converting-enzyme inhibitor benazepril on
the progression of chronic renal insufficiency (111)

1996
RCT
Nondiabetic
nephropathy
3 years

Doubling of serum
creatinine and dialysis

Benzepril: 31 events out
of 300 subjects
Placebo: 57 events out
of 283 subjects

Benzepril: 0.103
Placebo: 0.201
NNT= 10

GISEN group:
Randomised placebo-controlled trial of effect of ramipril on decline
in glomerular filtration rate and risk of terminal renal failure in
proteinuric, non-diabetic nephropathy (112)

1997
RCT
Nondiabetic
nephropathy
3.3 years

Doubling of
serum creatinine

Ramipril: 18 events out
of 78 subjects
Placebo: 40 events out
of 88 subjects

Ramipril: 0.231
Placebo: 0.455
NNT= 4

Brenner et al.:
Effects of losartan on renal and cardiovascular outcomes in patients
with type 2 diabetes and nephropathy (113)

2001
RCT
Diabetic
nephropathy
3.4 years

Doubling of
serum creatinine

Losartan: 162 events out
of 751 subjects
Placebo: 198 events out
of 762 subjects

Losartan: 0.216
Placebo: 0.260
NNT= 23

Lewis et al.:
Renoprotective effect of the angiotensin-receptor antagonist
irbesartan in patients with nephropathy due to type 2 diabetes (114)

2001
RCT
Diabetic
nephropathy
2.6 years

Doubling of
serum creatinine

Irbesartan: 98 events out
of 579 subjects
Placebo: 135 events out
of 569 subjects

Irbesartan: 0.169
Placebo: 0.237
NNT= 15

Hou et al.:
Efficacy and safety of benazepril for advanced chronic renal
insufficiency (115)

2006
RCT
Nondiabetic
nephropathy
3.4 years

Doubling of serum
creatinine, end stage
renal disease, death

Benzepril: 44 events out
of 108 subjects
Placebo: 65 events out
of 107 subjects

Benzepril: 0.407
Placebo: 0.607
NNT= 5

Wanner et al.:
Empagliflozin and Progression of Kidney Disease in Type 2
Diabetes (116)

2016
RCT
Diabetic
nephropathy
3.2 years

Doubling of
serum creatinine

Empagliflozin: 70 events
out of 4645 subjects
Placebo: 60 events out
of 2323 subjects

Empagliflozin:
0.015
Placebo: 0.026
NNT= 93

Wheeler et al.:
A pre-specified analysis of the DAPA-CKD trial demonstrates the
effects of dapagliflozin on major adverse kidney events in patients
with IgA nephropathy (117)

2021
RCT
IgA nephropathy
2.4 years

Composite endpoint Dapagliflozin: 6 events
out of 137 subjects
Placebo: 20 events out
of 133 subjects

Dapagliflozin:
0.044
Placebo: 0.150
NNT= 9

Wheeler et al.:
Safety and efficacy of dapagliflozin in patients with focal segmental
glomerulosclerosis: A prespecified analysis of the DAPA-CKD
trial (118)

2021
RCT
FSGS
2.4 years

Composite endpoint Dapagliflozin: 4 events
out of 45 subjects
Placebo: 7 events out of
59 subjects

Dapagliflozin:
0.089
Placebo: 0.119
NNT= 34
F
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For comparison, the effectiveness of treatment with ACEi and ARB are also shown.
TABLE 6 Different mechanisms observed in patients with diabetic mellitus type 1, diabetes mellitus type 2, and nondiabetic chronic kidney disease.

Reference Proposed different mechanisms

Liu et al.:
Cardiorenal protection with SGLT2 inhibitors in patients with diabetes
mellitus: from biomarkers to clinical outcomes in heart failure and diabetic
kidney disease (36)

Afferent vasoconstriction and efferent vasodilatation. Inflammation markers in
patients with type 2 DM treated with SGLT2 inhibitors.

Yoshimoto et al.: Effects of sodium-glucose cotransporter 2 inhibitors on
urinary excretion of intact and total angiotensinogen in patients with type 2
diabetes (45)

Angiotensin converting enzyme 2 causing stimulation of the vasodilating and
anti-inflammatory alternative pathways, i.e., different balance between angiotensin I
(promoting vasoconstriction) and angiotensin 1-7 (promoting vasodilatation)

Hou et al.:
Molecular Mechanisms of SGLT2 Inhibitor on Cardiorenal Protection (59)

Arteriole constriction by adenosine and efferent arteriole dilatation
by prostaglandins

(Continued)
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mellitus type 2, and nondiabetic chronic kidney disease are

summarized in Table 6.
4 Discussion

This narrative review is written in accordance to the principles

stated by Green et al. (119). This review highlights the beneficial

effects of sodium glucose cotransporter type 2 inhibitors in patines

with kidney diseases. The effects can be attributed to systemic,

hemodynamic, and metabolic effects. SGLT2i show beneficial effects

on blood pressure and restoration of tubuloglomerular feedback.
5 Conclusions

Nephroprotection offered by SGLT2i can be attributed to

systemic, hemodynamic, and metabolic mechanisms, with

restoration of tubuloglomerular feedback likely being most

important. Diabetic and nondiabetic patients with CKD share

common features which are targeted by SGLT2i. These include

similar steps in the pathogenesis , namely glomerular

hyperfiltration, as well as final common pathways involving

imbalances in tissue oxygenation, inflammation, and fibrosis. The

main mechanisms underlying the nephroprotective effects in

diabetic patients seem transferable to nondiabetic patients.

According to current literature, the underlying mediators may be

different. The underlying disease may affect the cellular expression

of SGLT2 and may therefore determine the benefit from the

SGLT2i treatment.
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