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biomarkers and mitochondrial
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Jiajia Wang4, Hongfan Ding1, Mujun Li3 and Huimei Wu3*

1Guangxi Medical University, Nanning, China, 2School of Computer Science and Cyber Engineering,
Guangzhou University, Guangzhou, China, 3Guangxi Reproductive Medical Center, The First Affiliated
Hospital of Guangxi Medical University, Nanning, China, 4Department of Obstetrics and Gynecology,
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Background: The metabolic characteristics of premature ovarian insufficiency

(POI), a reproductive endocrine disease characterized by abnormal sex hormone

metabolism and follicle depletion, remain unclear. Metabolomics is a powerful

tool for exploring disease phenotypes and biomarkers. This study aims to identify

metabolic markers and construct diagnostic models, and elucidate the

underlying pathological mechanisms for POI.

Methods: Non-targeted metabolomics was utilized to characterize the plasma

metabolic profile of 40 patients. The metabolic markers were identified through

bioinformatics and machine learning, and constructed an optimal diagnostic

model by classified multi-model analysis. Enzyme-linked immunosorbent assay

(ELISA) was used to verify antioxidant indexes, mitochondrial enzyme complexes,

and ATP levels. Finally, integrated transcriptomics and metabolomics were used

to reveal the dysregulated pathways and molecular regulatory mechanisms

of POI.

Results: The study identified eight metabolic markers significantly correlated

with ovarian reserve function. The XGBoost diagnostic model was developed

based on six machine learning models, demonstrating its robust diagnostic

performance and clinical applicability through the evaluation of receiver

operating characteristic (ROC) curve, decision curve analysis (DCA), calibration

curve, and precise recall (PR) curve. Multi-omics analysis showed that

mitochondrial respiratory chain electron carrier (CoQ10) and enzyme complex

subunits were down-regulated in POI. ELISA validation revealed an elevation in

oxidative stress markers and a reduction in the activities of antioxidant enzymes,

CoQ10, and mitochondrial enzyme complexes in POI.
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Conclusion: Our findings highlight that mitochondrial dysfunction and energy

metabolism disorders are closely related to the pathogenesis of POI. The

identification of metabolic markers and predictive models holds significant

implications for the diagnosis, treatment, and monitoring of POI.
KEYWORDS

premature ovarian insufficiency, metabolomics, transcriptomics, biomarkers, machine
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1 Introduction

Premature ovarian insufficiency (POI) refers to the failure of

ovarian reproductive and endocrine function in women before the

age of 40 (1). The most common clinical manifestations of POI are

menstrual disorders and infertility. Long-term complications include

cardiovascular disease, osteoporosis, and neurodegenerative diseases

(1), which are partly attributed to the lack of protective effects of

estrogen. The etiology of POI is highly heterogeneous, encompassing

genetic, immune-mediated, infectious and iatrogenic factors,

however, 60% of the etiology remains unknown (2). Decreased

ovarian reserve (DOR) is the initial stage of ovarian dysfunction,

which can develop into POI if it persists, and premature ovarian

failure (POF) is the final stage (3). Hormone replacement therapy

(HRT) is currently the most commonly utilized treatment for POI;

however, prolonged HRT use may elevate cancer risk (4). Given the

endocrine dyscrasia, absence of early diagnostic indicators, and

incurable nature of POI, it is imperative to identify novel effective

markers and therapeutic targets for POI diagnosis, treatment,

and monitoring.

Metabolomics utilizes advanced chemical analysis techniques to

characterize metabolites in cells, tissues, and body fluids in a high-

throughput manner, rendering it a powerful tool for studying

disease phenotypes (5). As downstream products of molecular

regulation, metabolites can directly reveal the functions of

upstream genes and proteins (5). Metabolomics has emerged as a

promising tool for predicting and improving reproductive

outcomes through biomarker identification (6). POI is

characterized by high gonadotropins and low estrogen levels,

which are closely related to metabolic disorders. Previous studies

demonstrated that POI is associated with glucose and lipid

metabolism disorders and an increased risk of metabolic

syndrome (7). Metabolic dysregulation may underlie the long-

term complications of POI; therefore, deciphering the molecular

network of POI may provide meaningful evidence for its

pathogenesis and the identification of key biomarkers.

This study aimed to utilize ultra-high throughput liquid

chromatography-mass spectrometry (LC-MS) non-target

metabolomics to analyze plasma metabolites of POI. By combining

bioinformatics, weighted gene co-expression network analysis

(WGCNA), and Gaussian naive Bayes (GNB) algorithms, we

identified metabolic markers and pathways and constructed an

optimal diagnostic model through machine learning (ML). We also
02
integrated our previous full-length transcriptome data to elucidate the

molecular regulatory mechanism underlying POI and provided novel

insights into its pathogenesis, clinical diagnosis, and treatment.
2 Materials and methods

2.1 Inclusion and exclusion criteria
for participants

This study recruited 40 participants (20 POI and 20 control

patients) from the Reproductive Center of the First Affiliated

Hospital of Guangxi Medical University. Inclusion criteria for

POI included: (i) age < 40 years, (ii) oligomenorrhea or

amenorrhea for at least 4 months, and (iii) two basal follicle

stimulating hormone (FSH) levels > 25 IU/L with an interval > 4

weeks. The control group had to meet the following inclusion

criteria: (i) matching age and weight with the POI group, (ii)

infertility caused by male or tubal factors, and (iii) regular

menstrual cycles with normal basal sex hormones. Exclusion

criteria common to all participants included: (i) the presence

of other endocrine or autoimmune conditions, such as

hyperthyroidism, thyroiditis, and polycystic ovary syndrome

(PCOS); (ii) a history of pelvic surgery and chemoradiotherapy;

(iii) the use of hormones or drugs affecting endocrine metabolism

within three months before blood collection; (iv) severe systemic

illness; and (v) an abnormal chromosome karyotype. The clinical

data of all participants were collected, including age, body mass

index (BMI), anti-Mullerian hormone (AMH), FSH, luteinizing

hormone (LH), estradiol (E2), progesterone (P), and antral follicle

count (AFC). Informed consent was obtained from all participants

and this study was approved by the Ethics Committee of the

First Affiliated Hospital of Guangxi Medical University

(NO.2021KY-E-249).
2.2 Collection and pre-processing of
peripheral blood samples

Peripheral blood (3 ml) was collected in ethylenediamine

tetraacetic acid-anticoagulated tubes on days 2–4 of the menstrual

cycle, centrifuged at 3000 rpm for 10 minutes at 4°C within 1 hour,

and stored at -80°C until analyzed by ultrahigh-performance liquid
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chromatography-tandem mass spectrometry (UHPLC-MS/MS).

After thawing at 4°C, a sample of 100 mL was added to an

extraction solution containing internal standards (methanol:

acetonitrile = 1:1). The mixture was vortexed for 30 seconds,

placed in an ice water bath for 10 minutes, and centrifuged at

12000 rpm for 15 minutes at 4°C. After drying in an Eppendorf

tube, the resulting mixture was redissolved with 160 mL of extract

solution (acetonitrile:water = 1:1) and centrifuged again at the same

conditions. Finally, a supernatant of 120 mL was transferred into a 2

mL injection vial. To assess sample preparation repeatability and

instrument stability, equal amounts of each sample were mixed and

used as quality control (QC).

The LC-MS system used for metabolomics analysis consisted of

an Acquity I-Class PLUS UHPLC (Waters, Ireland) in tandem with

an Xevo G2-XS QTOF high-resolution mass spectrometer (Waters,

Ireland). Chromatographic separation was conducted on an

Acquity UPLC HSS T3 column at a flow rate of 400 ml/min using

a linear gradient of 15 min. The mobile phases A and B were

composed of aqueous solution containing 0.1% formic acid and

acetonitrile containing 0.1% formic acid, respectively. The mass

spectrometer was operated in both positive and negative polarity

modes, with the ion source parameters set as follows: capillary

voltage of 2500V (in positive ion mode) or -2000V (in negative ion

mode), cone voltage of 30V, ion source temperature of 100°C,

desolvation temperature of 500°C, backblowing flow rate of 50L/h,

and desolvation gas flow rate of 800L/h.
2.3 Data analysis

Statistical, bioinformatics, and ML analyses were performed. Data

were analyzed using SPSS version 24.0 (IBM, Armonk, NY, USA).

Normally distributed continuous variables were compared using

Student’s t-test and presented as mean ± standard deviation. Non-

normal distributions were compared using the Mann–Whitney U test

and presented as median (interquartile range). Univariate (T test) and

multivariate statistical analysis, including principal component analysis

(PCA) and orthogonal partial least squares discriminant analysis

(OPLS-DA), were employed to identify differentially expressed

metabolites. PCA was primarily utilized for sample clustering trend

determination and quality control assessment, with the first principal

component PC1 and second principal component PC2 representing

the contribution proportion of each sample to the observed differences.

OPLS-DA was applied to compare dissimilarities between the two

groups. The interpretability of the model for categorical variable Y was

evaluated using R2Y, while predictability was assessed through Q2Y.

Permutation tests were conducted to mitigate potential risks associated

with overfitting. The criteria for identifying differentially expressed

metabolites (DEMs) between both groups were VIP >1, P <0.05, and

fold change (FC) ≥1.

The Kyoto Encyclopedia of Genes and Genomes (KEGG)

database was utilized for functional annotation and pathway

enrichment analysis of metabolites, and Fisher’s exact test was

employed to calculate the significance level of enriched pathways.

Co-expressed modules of metabolic profiles were identified through

WGCNA analysis, and key modules significantly associated with
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disease phenotypes were determined based on |r|≥0.5 and P < 0.05

thresholds. Within the metabolites of key module, further screening

was conducted to identify core metabolites using criteria of |module

member| > 0.8 and |gene significance| > 0.2. Finally, the top eight

metabolites screened by weight importance index of GNB algorithm

(Python sklearn 0.22.1) were identified as metabolic markers. The

diagnostic potential of metabolic markers was evaluated by the area

under the curve (AUC) of the receiver operating characteristic

(ROC). Clinical correlation was analyzed using Pearson correlation.

The analysis flow for this study is shown in Figure 1.
2.4 Construction and evaluation of
diagnostic models

Based on the characteristic variables screened by GNB, a

multimodel comprehensive analysis was performed to construct

the optimal diagnostic model. Python (sklearn 0.22.1, xgboost 1.2.1)

was used to build six prediction models: logistic regression (LR),

extreme gradient boosting (XGBoost), random forest (RF), support

vector machine (SVM), multilayer perceptron (MLP), and GNB.

Each model’s predictive ability was evaluated using the AUC value

under the ROC curve. The clinical applicability and diagnostic

performance of each model were evaluated using decision curve

analysis (DCA), calibration curve, and precision-recall (PR) curve.
2.5 Enzyme-linked immunosorbent assay
of plasma

To evaluate the antioxidant capacity andmitochondrial function of

POI, peripheral blood samples were obtained from 40 patients. The

levels and activities of superoxide dismutase (SOD), glutathione

peroxidase (GSH-PX), coenzyme Q10 (CoQ10), and mitochondrial

enzyme complexes were quantified using ELISA kits (Jiangsu Meimian

industrial Co., Ltd) in accordance with the manufacturer’s instructions.
2.6 Integrated transcriptome data revealed
pathways of metabolic dysregulation

KEGG enrichment analysis were conducted to identify the

dysregulated pathways of POI by integrating full-length

transcriptome with metabolomics data. Additionally, regulatory roles

of DEMs and DEGs in mitochondrial function and energy metabolism

disorders were further analyzed. Our RNA sequencing dataset can be

accessed at NCBI under bioproject (accession number: PRJNA964483).
3 Result

3.1 Clinical characteristics of
the participants

The clinical features of the participants in both groups are

presented in Table 1. No significant differences were observed
frontiersin.org
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between the two groups with respect to age, BMI, and serum P (P >

0.05). However, basal FSH and LH levels were significantly higher in

POI patients compared to controls while AMH, E2 and AFC levels

were significantly lower (P < 0.05). These findings suggest that

women with POI exhibit typical characteristics of elevated

gonadotropin levels and reduced estrogen production.
3.2 Multivariate analysis of metabolites

A total of 9,474 peaks were detected in both positive and negative

ion modes, which were annotated to 3,227 metabolites (Figure 2A).

After noise removal, normalization and standardization
Frontiers in Endocrinology 04
T
ABLE 1 Baseline data and clinical characteristics of the participants.

Parameter Control (n=20) POI (n=20) P-value

Age (year) 33.40 ± 3.15 34.00 ± 2.90 0.535

BMI (kg/m2) 22.11 ± 0.46 22.58 ± 0.27 0.094

AMH (ng/mL) 3.62 ± 1.06 0.12 ± 0.12 <0.001*

FSH (mIU/mL) 5.35 ± 0.99 33.54 ± 8.12 <0.001*

LH (mIU/mL) 5.13 ± 0.63 18.95 ± 3.92 <0.001*

E2 (pg/mL) 45.23 ± 6.19 23.20 ± 4.91 <0.001*

P(nmol/L) 0.37 ± 0.09 0.33 ± 0.09 0.118

AFC (n) 14.25 ± 2.79 1.75 ± 1.02 <0.001*
fro
“*” indicated P value<0.05.
FIGURE 1

Flow chart of metabolomics analysis.
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procedures were applied, and the final dataset was obtained. The PCA

score plot showed a clear separation between QC and study samples,

indicating consistent processing and stable detection. While control

group samples clustered at the top, POI group samples primarily

grouped at the bottom. However, there was some overlap in the

first and second principal components, suggesting differences, but

not significant or absolute (Figures 2B, C).
Frontiers in Endocrinology 05
Therefore, we used OPLS-DA analysis, a supervised

dimensionality reduction method, to maximize the difference

between both groups. In the OPLS-DA model, R2Y represents

matrix interpretation probability, and Q2Y represents model

predictability. Higher values of these parameters indicate greater

reliability of our model. The analysis revealed significant metabolite

alterations in both groups, with a distinct separation pattern
A

B

D E

C

FIGURE 2

Multivariate statistical analysis of metabolomics. (A) Total ion current plots of metabolites. (B, C) PCA plots and three-dimensional plots of differential
grouping and QC. (D, E) OPLS-DA score plot and permutation test.
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observed (Figure 2D). The model exhibited high reliability

(R2Y=0.989) and good predictive performance (Q2Y=0.757). The

permutation test plot showed that the R2 value was higher than the

Q2 value (blue dots above red dots), and the intercept of the Q2

regression line with the Y-axis was <0, indicating no overfitting in

the OPLS-DA model (Figure 2E).
3.3 Identification of differential metabolites
and pathways

A total of 918 DEMs were identified, of which 409 were up-

regulated and 509 were down-regulated in the POI group

(Supplementary Table 1). The volcano plot and ANOVA scatter

plot were used to visualize expression differences and significance of

metabolites (Figures 3A, B). KEGG enrichment analysis showed that

the top five pathways enriched for DEMs were ascorbic acid and

aldarate metabolism, citric acid cycle (TCA cycle), biosynthesis of

various other secondary metabolites, biosynthesis of plant hormones,

and steroid biosynthesis (Figure 3C; Supplementary Table 2).
3.4 Identifying core metabolites
by WGCNA

WGCNA was conducted on the metabolic profiles to identify

co-expression modules, core metabolites, and correlations between

metabolites and specific phenotypes. The cluster tree of the sample

system was constructed using the class average method, suggesting

no deviated samples (Supplementary Figure 1). The optimal b value

was determined through a soft thresholding approach, and a power
Frontiers in Endocrinology 06
value of 4 yielded a scale-free network fit index R2 >0.85

(Figure 4A). Twenty-five modules were identified and visualized

using heat maps generated by dynamic shear mixing, with the gray

module representing unassigned metabolites to any particular

module (Figure 4B). Finally, two key modules (blue and turquoise

modules), including 756 core metabolites, were identified by |r| ≥0.5

and P <0.05. The blue module exhibiting a significant positive

correlation and the turquoise module displaying a significant

negative correlation with POI (Figure 4C; Supplementary

Table 3). Similarly, the blue module was significantly negatively

correlated with AMH, and the turquoise module was significantly

positively correlated with FSH. These core metabolites showed

opposite expression trends in the blue and turquoise modules

(Figure 4D). Within the metabolites of key module, a total of 152

core metabolites were identified as closely associated with key

modules and disease phenotypes based on the criteria of |module

membership|>0.8 and |gene significance|>0.2, (Figures 4E, F),

warranting further investigation.
3.5 Screening feature variables using the
GNB algorithm

The intersection of core and differential metabolites resulted in

79 differential core metabolites (Figure 5A; Supplementary Table 4).

The GBN algorithm can effectively prevent overfitting by utilizing

prior probability and assuming feature independence. Finally, the

top eight characteristic variables screened using the GNB algorithm

were defined as candidate metabolic markers, including:

8,12-Octadecadiynoic acid, Ubiquinone, Retinol (Vitamin

A), N-Stearoyl Threonine, 15(S)-HpEDE, PA (13:0/20:5
A

B

C

FIGURE 3

Identification of differential metabolites and KEGG enrichment analysis. (A) Volcano plot. (B) ANOVA scatter plot. (C) KEGG pathway
enrichment analysis.
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(5Z,8Z,11Z,14Z,16E)-OH (18R)), 16,16-dimethyl-PGA1, 11-deoxy-

16,16-dimethyl-PGE2 (Figure 5B). The violin plot indicated a

down-regulation of all metabolic markers in the POI group

within the metabolic profile (Figure 6B). The clinical correlation

analysis revealed significant positive correlations between metabolic

markers and AFC, AMH, and E2 (r > 1, P < 0.05), as well

as significant negative correlations with FSH and LH (r < 1,

P < 0.05) (Figure 6A). Additionally, the ROC curve demonstrated

that these metabolic markers had AUC values ranging from

0.83 to 0.9, indicating high diagnostic potential (Figure 6C;

Supplementary Table 5).
Frontiers in Endocrinology 07
3.6 Construction of the optimal diagnostic
model using multi-model analysis

Based on the metabolic markers, six ML algorithms were used

for classified multi-model comprehensive analysis to construct the

optimal diagnostic model. The ROC curves demonstrated that the

XGBoost model exhibited superior performance in discriminating

POI from controls, with an AUC of 0.980 and 0.927 for the training

and validation sets, respectively (Figures 5D, E). The forest plot

further demonstrates that XGBoost exhibits a smaller standard

deviation of AUC (SD=0.019), indicating a higher level of model
A B

D

E F

C

FIGURE 4

Identification of core metabolites by WGCNA. (A) identification of the optimal soft threshold. (B) classification of metabolite cluster modules.
(C) correlation analysis of modules and traits. (D) Heat map of metabolites expression in key modules. (E, F) scatter plot of module attribution and
metabolite significance.
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stability (Figure 5C). However, the AUC value alone cannot fully

evaluate the clinical utility of the model, and we conducted DCA,

calibration curve and PR curve analysis. The DCA curves showed

superior clinical applicability of both XGBoost and LR models

(Figure 5F). Furthermore, calibration curves indicated that GNB

(0.015), RF (0.017), and XGBoost (0.023) achieved better Brier

scores with smaller differences between predicted and observed

values, suggesting higher prediction accuracy (Figure 5G). The

XGBoost and RF models showed superior AP values in PR curve

within train and validation sets, resulting in higher precision and

recall rates for more accurate identification of true positives

(Figures 5H, I). A comprehensive analysis confirmed that the
Frontiers in Endocrinology 08
XGBoost model represents the optimal diagnostic tool in terms of

discrimination, calibration, and clinical applicability.
3.7 Results of plasma ELISA

The ELISA results indicated that the levels of SOD, ATP and

CoQ10 were significantly lower in the POI group compared to the

control group. Similarly, the enzymatic activities of mitochondrial

complexes IV and V were significantly lower in the POI group (P <

0.05). However, ROS levels were significantly higher in the POI group

(P < 0.05). There was no significant difference in MDA and GSH-PX
A B

D E F

G IH

C

FIGURE 5

Construction of the diagnostic model by multi-model analysis. (A) Venn diagram of DEMs and core metabolites. (B) Identification of feature variables
by GNB algorithm. (C) Forest plot of multi-model AUC scores. (D, E) ROC curve of multi-model based on training and validation sets. (F) Decision
curve analysis. (G) Calibration curve analysis. (H, I) Precision-recall curve of multi-model based on training and validation sets.
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between both groups (P > 0.05). These findings further support the

notion that oxidative stress and mitochondrial dysfunction may play

an important role in POI pathogenesis (Figure 6D).
3.8 Integrated metabolomics and
transcriptomics revealed dysregulated
pathways and mitochondrial dysfunction

KEGG enrichment analysis showed that pathways enriched by

DEGs and DEMs included cell senescence, insulin resistance,

AMPK signaling pathway, biosynthesis of amino acids, arginine

and proline metabolism, and other pathways (Figure 6E). Our

previous transcriptome study showed that the down-regulation of

mitochondrial respiratory chain enzyme complex subunits play a
Frontiers in Endocrinology 09
crucial role in the pathogenesis of POI (Supplementary Figure 2)

(8). The metabolic markers identified in this study were involved in

antioxidant capacity and energy metabolism, among which CoQ10

as MRC electron carrier was downregulated in POI. Hence, it is

plausible to hypothesize that the malfunction of mitochondrial

respiratory chain electron carriers and enzyme complexes

collectively results in an energy metabolism imbalance within the

oxidative phosphorylation pathway, which may be intricately linked

to the pathological mechanism of POI (Figure 7).
4 Discussion

POI is a reproductive endocrine disorder characterized by

pathological sex hormone imbalances and follicular depletion. It
A B

D

E

C

FIGURE 6

Metabolic marker analysis and multi-omics KEGG enrichment analysis. (A) Heat map of clinical relevance of metabolic markers. (B) Violin plot of
metabolic markers expression in metabolic profile. (C) ROC curves of metabolic markers. (D) Plasma ELISA validation of CoQ10, MDA, GSH-PX, SOD,
ROS, ATP, complex VI and V in both groups. ** indicated P <0.01 and **** indicated P < 0.0001. (E) top10 pathway was enriched by differential
genes and metabolites.
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is closely associated with metabolic disorders, which often underlie

the pathogenesis of long-term complications in POI. However, the

pathogenesis and metabolic changes underlying POI remain

unclear. In this study, the plasma metabolites of POI were

characterized using UHPLC-MS/MS, and 918 metabolites were

identified (409 up-regulated and 509 down-regulated). Using

multivariate statistical analysis, WGCNA, and ML, eight

metabolite markers were identified, involved in unsaturated fatty

acids (UFAs), antioxidants, and amino acids. Based on a

comprehensive evaluation of AUC, DCA, calibration curve, and

PR curve, the XGBoost model was identified as the optimal

diagnostic tool. This finding provides promising prospects for

individual prediction and clinical application, contributing to the

improvement of the POI diagnostic system and offering valuable

guidance for clinicians.

In this study, UFAs and their derivatives constituted the

majority of metabolic markers. Some metabolomics studies have

shown that POI is closely related to lipid metabolism disorders

(9, 10). 15(S)-HpEDE and prostaglandins are both metabolites of

arachidonic acid catalyzed by cyclooxygenase. Recent metabolomics

revealed that 11,12-epoxyeicosatrienoic acid, 9(S)HPETE, and 20-

hydroxyeicosatetraenoic acid were downregulated in ovarian tissue

of POI mice. However, these metabolites returned to normal levels

after mesenchymal stem cell treatment (10). These findings suggest

that abnormal lipid metabolism in ovarian tissue closely related to

POI (10). Another follicular fluid lipid metabolomics study also

supported our results, showing that 15 differential lipid metabolites

enriched in the tetraenoic acid metabolic pathway were down-

regulated in DOR, including ±20-HDoHE, 12S-HHTrE, 8S, PGA1,

and PGE2 (9). 11-deoxy-16,16-dimethyl-PGE2 is a derivative of

prostaglandin E2 (PEG2), which serves as a crucial regulator in

germ cell development during ovarian maturation (11). Moreover,

PEG2 has been demonstrated to play pivotal roles in ovulation,

fertilization, embryonic growth and early implantation associated

with female reproduction (12). More evidence suggests that PEG2
Frontiers in Endocrinology 10
mediates gonadotropin-stimulated cumulus expansion and oocyte

maturation (13), and plays a key role in protecting oocytes from

oxidative stress during this process (14). 8, 12-octadecadiynoic acid

is an unsaturated fatty Acid. Studies have shown that 9, 12-

octadecadiynoic acid positively regulates neuronal activity by

affecting antioxidant genes (15), and has been identified as a

potential marker for rheumatoid arthritis (16). In summary, fatty

acids and their derivatives regulate follicular development, oocyte

maturation and embryonic development by participating in energy

metabolism as well as synthesizing precursors for steroid hormones

and prostaglandins (17).

Phosphatidic acid (PA) is the primary product of lipolysis

activated by phospholipase D. It plays a crucial role in regulating

various biological processes, including cell growth, proliferation,

reproduction, and signal pathway activation (18). PA (13:0/20:5

(5Z,8Z,11Z,14Z,16E)-OH (18R)) indicates that the first and second

fatty acid chains consist of 13 and 20 carbon atoms respectively with

a hydroxyl group (OH) located at the 18th carbon atom. PA is

closely related to mitochondrial function and morphology, playing

a crucial role in mitochondrial membrane biogenesis, energy

metabolism, and signal transduction pathways. Moreover,

phospholipids regulate both membrane fluidity and permeability,

which are key parameters for the survival of sperm, oocytes and

embryos after cryopreservation (19, 20). An age-related lipid

metabolomic showed that PA, phosphatidylinositol, and

phosphatidylserine were significantly down-regulated in oocytes

from aged-mice and H2O2-treated mice compared with young

mice, suggesting that these phospholipids are essential for

maintaining plasma membrane integrity and related to

fertilization and developmental potential of oocytes (21).

Similarly, PA levels were higher in the follicular fluid of pregnant

women than in non-pregnant groups, indicating that these lipids

are involved in steroidogenesis, cellular responses, signal

transduction, cell cycle regulation and protein kinase C activation

during pregnancy (22). Therefore, we speculated that PA could be
FIGURE 7

Integrated transcription and metabolomics revealed the pathological mechanism of impaired mitochondrial energy metabolism in POI. Red indicated
upregulation, blue indicated downregulation, and green indicated pathological mechanisms.
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involved in the pathophysiology of POI by affecting mitochondrial

and oocyte membrane structure and function and activation of the

PI3K/AKT/mTOR signaling pathway.

Retinol, also known as vitamin A (VA), is an antioxidant that

plays a crucial role in reproduction. Previous studies have

demonstrated the regulatory effects of VA on follicular

development, oocyte maturation, ovarian steroid hormone

production and luteal formation (23, 24). VA levels in follicular

fluid are closely related to human oocyte quality, fertilization

potential, and embryonic development (25), which benefit from

the antioxidant properties of VA itself and the anti-apoptotic effect

of enhanced transcription of other antioxidant enzymes, such as

SOD and GSH-PX (23). Recent metabolomics studies have also

shown that retinol and its metabolites are downregulated in

follicular fluid and peripheral blood of women with DOR and

POF (26, 27). Previous case-control studies have shown that retinol-

binding protein 4 (RBP4) reflects blood retinol concentrations and

is downregulated in DOR (28, 29). Overexpression of RBP4

upregulates FSH receptors of granulosa cells and thus improving

ovarian response to hormones (30), which indirectly reflects the

positive effect of VA on ovarian function. Interestingly, dextran

sodium sulfate-induced colitis and intestinal flora dysbiosis in mice

lead to impaired VA absorption and metabolism, affecting follicle

development and steroid hormone secretion (31). This suggests that

VA plays an important role in gonadal-intestinal axis homeostasis

in female animals.

Threonine is a non-essential amino acid, while N-Stearoyl

threonine is a lipoamino acids (LAs) formed by combining

threonine with fatty acids. Previous research has shown that LAs,

including N-Stearoyl Threonine, have neuroprotective properties

possibly due to the presence of the fatty acyl group and the carboxyl

and hydroxyl groups on the amino acid side chain (32). Studies have

shown that the glycine-serine-threonine metabolic axis is a key

metabolic center related to aging and longevity, and many related

pathways are provided by mitochondria to provide energy in the

form of ATP (33). In the aging rat model, anthocyanins improve

aging and exert liver protection by regulating amino acid metabolic

pathways such as L-Threonine (34). The ability of threonine to

deliver glycine and acetyl-coa in mice via threonine dehydrogenase

embodies an important link between cellular metabolism and

epigenetically related pathways (35). The phosphorylation of

threonine is crucial for intracellular signal transduction,

regulating cell growth, differentiation, and apoptosis. L-threonine

promotes the proliferation of mouse embryonic stem cells through

lipid raft/microvesicle-dependent PI3K/Akt, MAPKs, and mTOR

signaling pathways (36). It also enhances the phosphorylation

of PI3K/Akt at Thr308 and Ser473 to activate other signaling

cascades (36). Threonine effectively protects against cadmium-

induced cellular apoptosis and membrane damage, and

outperforms Vitamin C in restoring SOD activity in vivo (37).

However, further investigation is required to fully understand the

role of N-stearoyl threonine in regulating biological processes and

ovarian function.

Ubiquinone, also known as coenzyme Q10 (CoQ10) in

mammals, is a lipid-soluble antioxidant that is widely expressed
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in several organ systems (38). CoQ10 acts as an electron carrier to

transfer electrons between mitochondrial respiratory chain enzyme

complex I, II and III (39), thereby promoting the production of

oxidative phosphorylated ATP to provide energy for cellular

activities. CoQ10’s antioxidant effect can protect cell membranes

from oxidative damage caused by free radicals (40). Female

reproductive aging is often accompanied by oxidative stress and

mitochondrial dysfunction, as confirmed by elevated ROS,

decreased ATP levels and mitochondrial enzyme complex activity

by ELISA validation in our study. The expression of CoQ10

synthesis genes, particularly Pdss2 and CoQ6, declines with age in

both human and mouse oocytes (41). CoQ10 supplementation

enhances oocyte quantity, glucose uptake, progesterone

production (41), as well as mitochondrial activity and gene

expression in oocytes (42). In elderly patients, ovarian granulosa

cells exhibit a 50% decrease in activity of CoQ10-dependent

mitochondrial respiratory chain enzyme complex III, indicating

that CoQ10 deficiency is the underlying cause of mitochondrial

dysfunction (39). Pretreatment with CoQ10 can enhance ovarian

response, embryo quality and clinical pregnancy rate in women

with DOR undergoing assisted reproductive cycles.

Integrating transcriptional and metabolomic data revealed that

mitochondrial dysfunction is closely related to the pathogenesis of

POI. Our previous transcriptome study showed that subunits of

mitochondrial enzyme complex I, III, IV, and V were down-

regulated in peripheral blood of POI women (8), and this

phenotype was also confirmed by single-cell RNA-sequencing of

aging mouse oocytes (43). Our study showed that CoQ10

expression was significantly reduced in POI, implying an

imbalance of the antioxidant system and impaired mitochondrial

energy metabolism in POI. Oxidative stress occurs when the

accumulation of ROS exceeds the antioxidant defense system,

inducing mitochondrial DNA mutations and leading to

dysfunction (42). In fact, the electron transport system, enzyme

complex activity, and oxidative phosphorylation are interconnected

components of the energy metabolism within the mitochondrial

respiratory chain. Any disruption in these processes can lead to

mitochondrial dysfunction and impaired energy metabolism.

Human oocytes possess a substantial number of mitochondria,

and disturbances in mitochondrial function and energy

metabolism can subsequently trigger granulosa cell apoptosis and

follicle atresia, ultimately resulting in ovarian failure (Figure 7).

Although this study provides new insights into the metabolic

features and molecular regulatory mechanisms of POI, there are still

some limitations. Firstly, it should be noted that this is a single-

center study with a limited sample size, and the presence of clinical

heterogeneity may introduce bias to the metabolic profile, thus

limiting the generalizability of our findings. Therefore, future multi-

center prospective studies with larger sample sizes are warranted to

verify the reliability of metabolic markers. Secondly, the predictive

model was derived from single-center data, requiring recalibration

when applied in other institutions. Utilizing multi-center large

sample data can optimize the diagnostic model. Finally, this study

exclusively focused on peripheral blood metabolomics; however,

future investigations should encompass ovarian tissue, granulosa
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cells, and oocytes to elucidate the expression patterns and

regulatory mechanisms of metabol ic markers across

diverse samples.
5 Conclusion

This non-target metabolomics study provided a panorama of

changes in the plasma metabolic profile of POI. By employing

bioinformatics, WGCNA and ML, we successfully identified eight

metabolic markers and developed an XGBoost diagnostic model.

The downregulation of these metabolic markers in POI may

contribute to elevated oxidative stress levels and impaired energy

metabolism. Furthermore, our integrated transcriptome and

metabolomics data revealed that the decreased expression of

mitochondrial respiratory chain electron carrier (CoQ10) and

enzyme complex subunits led to inhibition of enzyme complex

activity as well as disruption in oxidative phosphorylation process,

ultimately resulting in reduced ATP production. Therefore, we

speculated that the pathogenesis of POI is intricately linked to

oxidative stress, MRC dysfunction, and energy metabolism

disruption. These findings provide valuable insights into the

pathological mechanisms of POI at both transcriptional and

metabolic levels. Moreover, the identification of metabolites and

prediction models holds significant implications for the diagnosis,

treatment, and monitoring of POI.
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