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Background: Previous observational studies have indicated an association

between serum uric acid (SUA) and diabetic neuropathy (DN), but confounding

factors and reverse causality have left the causality of this relationship uncertain.

Methods: Univariate Mendelian randomization (MR), multivariate MR and linkage

disequilibrium score (LDSC) regression analysis were utilized to assess the causal

link between SUA and DN. Summary-level data for SUA were drawn from the

CKDGen consortium, comprising 288,648 individuals, while DN data were

obtained from the FinnGen consortium, with 2,843 cases and 271,817 controls.

Causal effects were estimated primarily using inverse variance weighted (IVW)

analysis, supplemented by four validation methods, with additional sensitivity

analyses to evaluate pleiotropy, heterogeneity, and result robustness.

Results: The LDSC analysis revealed a significant genetic correlation between

SUA and DN (genetic correlation = 0.293, P = 2.60 × 10-5). The primary

methodology IVW indicated that each increase of 1 mg/dL in SUA would

increase DN risk by 17% (OR = 1.17, 95% CI 1.02-1.34, P = 0.02), while no

causal relationship was found in reverse analysis (OR = 1.00, 95% CI 0.98~1.01,

P = 0.97). Multivariate MR further identified that the partial effect of SUA on

DN may be mediated by physical activity, low density lipoprotein cholesterol

(LDL-C), insulin resistance (IR), and alcohol use.

Conclusion: The study establishes a causal link between elevated SUA levels and

an increased risk of DN, with no evidence for a reverse association. This

underscores the need for a comprehensive strategy in DN management,

integrating urate-lowering interventions with modulations of the

aforementioned mediators.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1277984/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1277984/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1277984/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1277984/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1277984&domain=pdf&date_stamp=2023-11-15
mailto:2022721046@yangtzeu.edu.cn
https://doi.org/10.3389/fendo.2023.1277984
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1277984
https://www.frontiersin.org/journals/endocrinology


Zhang et al. 10.3389/fendo.2023.1277984
Introduction

Diabetes mellitus (DM), a prominent metabolic disorder

characterized by chronic hyperglycemia (1, 2), is increasingly

widespread, with the World Health Organization (WHO)

estimating over 422 million global cases. By the year 2045, this

figure is projected to rise to 629 million (3, 4). As the paramount

complication arising from DM, Diabetic Neuropathy (DN)

demonstrates an elevated prevalence, exceeding 50%, in the

populace diagnosed with this metabolic condition (5, 6). Diabetic

polyneuropathy (DPN) and Peripheral Diabetic Neuropathy (PDN)

are the most prevalent manifestations of DN (7). People living with

DN experience a significant economic loss in addition to the

medical costs of the disease due to missed opportunities at work

and lost pay. According to a U.S. study on the financial

consequences of diabetic neuropathy, the yearly immediate

expense for each people is $4,841, and the quarterly

supplementary expense is $9,730 (8). According to a study, the

annual cost of healthcare for persons with painful DN is about three

times higher than the cost for comparable control populations (9).

Despite the clinical and financial costs associated with DN, there is

no cure. Thus, the exploration of additional modifiable risk factors

for DN is critical to enhance clinical management and prevent DN

onset and progression.

Serum urate acid (SUA), which is the terminal product of

purine metabolism, is under the regulatory influence of the

enzyme xanthine oxidase. High SUA levels have been associated

with vascular dysfunction and irreversible damage, potentially

leading to tissue ischemia and compromised peripheral nerve

function (10). Numerous investigations propose an associative

relationship between augmented serum urate concentrations and

the escalated incidence of DN (11–14). However, the evidence

supporting this associat ion is debatable . Contrast ing

investigations have found inconsistent associations between levels

of SUA and DN. One study using data from the National Health

and Nutrition Examination Survey (NHANES) discerned no

consequential correlation between moderately increased urate

levels and the peril of PDN, after adjustments for multivariate

factors (15). Meanwhile, another study engaging 1,784 male and

1,025 female participants established that escalated SUA

concentration constituted an autonomous risk determinant for

non-alcoholic fatty liver disease and diabetic nephropathy.

Nevertheless, no association was discernible with DPN (16).

Antecedent scholarly exploration failed to unequivocally

substantiate the causal liaison between exposure constituents and

outcome variables, due to the intricate scenarios engendered by

confounding elements and the phenomenon of reverse causality. In

light of these inconsistencies and the limitations of observational

studies in determining causality, genetic research methods such as

Mendelian randomization (MR) can offer valuable insights.

Experiments utilizing MR apply genetic variations, identified via

genome-wide association analyses, as instrumental variables (IVs).

These IVs aid in estimating the cause-and-effect relationship

between environmental exposure and the intended outcome. This

methodology allows for causality inference under certain
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circumstances, using the genetic variants as stand-ins for

environmental exposure (17). Conceptualized as a natural

randomized controlled trial, MR operates on Mendelian laws of

inheritance, assigning parental alleles to progeny. This method

delivers a higher degree of evidence and a lower susceptibility to

confounding factors. Compared to observational epidemiological

research, MR has a greater level of evidence. Therefore, conducting

a bidirectional MR study could play a pivotal role in uncovering the

elusive causal relationships between SUA and DN, potentially

leading to more effective preventative measures and treatments.
Materials and methods

Study design

To investigate the potential causal relationships between SUA

concentrations and the risk of DN, bidirectional univariate MR

(UVMR) and multivariable MR (MVMR) analyses were developed.

(Figure 1). This study posited SUA as the exposure, DN as the

outcome variable. The choice of IVs for serum urate levels hinged

on three crucial assumptions: (i) the selected genetic variant, acting

as the instrumental variable, demonstrates a robust association with

the exposure; (ii) the genetic variant maintains no connection with

potential confounders; and (iii) the influence of genetic variants on

the outcome is mediated exclusively via the exposure, eliminating

the possibility of alternate pathways (18). Conversely, we probed the

reciprocal impact of DN on SUA, acknowledging the potential for

reverse causation. Consequently, to ensure a robust correlation

between all instrumental variables and the exposure, only SNPs

demonstrating a genome-wide significance with SUA levels were

considered. Furthermore, these genetic variants needed to display

independence and avoid linkage disequilibrium, signifying their

random allocation at conception. Given the potential for horizontal

pleiotropy, additional analyses leveraging alternative statistical

methodologies were conducted. In addition, as body mass index

(BMI), alcohol use, smoking, education attainment (EA), and

physical activity may play confounding roles in the exposure to

outcome pathway, further bidirectional MVMR analyses were

conducted to estimate the direct causal effect of exposure on

outcome. Compared with the UVMR hypothesis, assumption 1 of

the MVMR refers to genetic variation linked with one or more

exposures, and the remaining assumptions are aligned with the

UVMR (19).
Data sources

DN (2,843 ncase and 271,817 ncontrol) data were obtained

from the FinnGen consortium. The DN were defined by ICD-10

codes, with the phenotype adjusted for age, sex, and up to 20 genetic

principal components. Instituted in Finland in 2017, the FinnGen

study embarked on an expedition to collate and scrutinize genomic

and health-related data from an expansive cohort of approximately

half a million Finnish individuals (https://www.finngen.fi/en).
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The data for SUA was sourced from the CKDGen consortium.

The aggregated statistical data used in this study encompassed a

total of 74 cross-ethnic studies involving 457,690 individuals, of

which 288,649 were of European ancestry (20). The study adjusted

for key components such as age, gender, and ancestry in the

Genome-wide association studies (GWAS) meta-analysis and

identified 183 urate-related genetic loci, with 147 being novel

discoveries. Concurrently, the research designated a genetic urate

risk score and significantly enhanced the prediction of gout risk for

334,880 participants.

Furthermore, we obtained genetic associations for BMI from

the Genetic Investigation of Anthropometric Traits (GIANT)

consortium (21), low density lipoprotein cholesterol (LDL-C),

high density lipoprotein cholesterol (HDL-C), triglyceride (TG)
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from the Global Lipids Genetics Consortium (GLGC) (22), glycated

hemoglobin A1c (HbA1c) from the Meta-Analyses of Glucose and

Insulin-related traits Consortium (MAGIC) (23), insulin resistance

(IR) from the Dupuis J et al (24), alcohol use from the Psychiatric

Genomics Consortium (PGC) (25), EA from the GWAS of 1.1

million individuals conducted by the Social Science Genetic

Association Consortium (SSGAC) (26), physical activity from the

family GWAS consortium (27) and smoking were identified from

the GWAS and Sequencing Consortium of Alcohol and Nicotine

use (GSCAN), involving 1.2 million individuals (28).

A detailed presentation of the summary statistics from the data

sources is available in Table 1; Supplementary File 1. Each

investigation incorporated within the GWAS framework was

sanctioned by the relevant ethical review panels. Written
FIGURE 1

Overview of research design and analysis strategy. Overview of the research design. Exposures come from SUA, with outcomes including DN. The
MR framework is based on three fundamental MR assumptions, with MVMR analyses adjusting for ten mediating factors for positive results. MVMR,
multivariate Mendelian randomization; UVMR, Univariate Mendelian randomization; BMI, body mass index; EA, education attainment; DN, diabetic
neuropathy; SUA, Serum urate acid; HbA1c, Glycated Hemoglobin A1c; LDL-C, Low Density Lipoprotein Cholesterol; HDL-C, High Density
Lipoprotein Cholesterol; TG, Triglyceride; IR, insulin resistance.
TABLE 1 Detailed information of data sources.

Explore or Outcome Ref Ieu id Consortium Ancestry Participants

Phenotypes

Diabetic Neuropathy NA NA FinnGen European 2,843 cases / 271,817 controls

Serum urate acid 31578528 NA CKDGen European 288,649 individuals

Adjustment of the model

LDL-C 24097068 ieu-a-300 GLGC 96% European 173,082 individuals

HDL-C 24097068 ieu-a-299 GLGC 96% European 187,167 individuals

TG 24097068 ieu-a-302 GLGC 96% European 177,861 individuals

HbA1c 20858683 ieu-b-104 MAGIC European 46,368 individuals

IR 20081858 ebi-a-GCST005179 Dupuis J et al European 37,037 individuals

(Continued)
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informed consent was procured from every participant involved.

The data utilized in the present study maintain public accessibility.
Genetic instrument selection

Within the framework of our MR studies, we treated the

included SNPs as genetic IVs. To ensure the accuracy of the MR

estimates, these SNPs were required to satisfy specific criteria:

(1) All SNPs chosen as IVs manifested a correlation with the

respective exposure at a genome-wide significance threshold

(P<5×10-8). (2) SNPs were ensured to be unassociated with any

potential confounders and independent of one another to prevent

biases stemming from linkage disequilibrium (r2 < 0.001, clumping

distance = 10,000 kb); (3) F-statistics were employed to test for weak

instrumental variables, and all of the F-statistics of the incorporated

SNPs exceeded 10. A larger F-statistic indicates stronger instrument

strength. We calculated an F-statistic (F=beta2/se2; beta for the

SNP-exposure association (beta); variance (se)) for each SNP (29).

(4) To maintain the robustness of the results, proxy SNPs were not

used and MR-Steiger filtering was employed to eliminate variations

demonstrating stronger correlations with outcomes than with

exposures (30).(5) The effect of an SNP on exposure and the

effect of that SNP on outcome must each correspond to the same

allele. (6) If an SNP is absent in the outcome dataset, we employ the

SNiPa online tool (http://snipa.helmholtz-muenchen.de/snipa3/) to

locate the respective SNP. We calculated the variance explained by

each assay SNP. This tool utilizes European population genotype

data derived from Phase 3 of the 1000 Genomes Project.

Subsequently, another SNP exhibiting linkage disequilibrium (r2 >

0.8) with the initial SNP is identified as a proxy SNP.
LDSC regression analysis

The linkage disequilibrium score (LDSC) regression analyses

was applied to summary-level GWAS data to ascertain genetic

correlations between the two distinct phenotypes. Initial stages of

analysis involved employing munge_sumstats.py (https://

github.com/bulik/ldsc/blob/master/munge_sumstats.py) to

restructure summary statistics, and to eliminate variants that do
Frontiers in Endocrinology 04
not align with SNPs, such as indels, ambiguous strand SNPs, and

duplicated SNPs. As a subsequent step, aligning with the

methodology proposed by the original developers, we used the

1000 Genomes Project as the linkage disequilibrium (LD) reference

panel to compute the LD score. In the final stage, the LDSC tool

(https://github.com/bulik/ldsc) facilitated the assessment of genetic

correlation between SUA, DN, and DPN.
Statistical analysis

In the process of UVMR analysis, the Wald ratio test was

meticulously employed to scrutinize individual IVs. Subsequently,

causal relationships involving multiple IVs (≥2) were systematically

explored using the multiplicative random-effects inverse-variance-

weighted (IVW) method. A fixed-effects model was implemented

when the heterogeneity index I2 was less than 50%, further

enhanced by the integration of both MR-Egger and weighted

median approaches. In this framework, the IVW weighting has a

direct correlation with the Wald ratio estimate for each SNP and an

inverse relationship with the variance estimate of the Wald ratio for

the specific SNP (31). In scenarios where all genetic variations are

classified as valid, IVW yields both dependable and efficient

estimations. Conversely, the weighted median method proves

superior when a minimum of half of the genetic variations are

evaluated as invalid, and the MR-Egger method is called upon when

all genetic variations are considered invalid (32). Finally weighted

mode and simple mode are used as complementary methods to

increase the confidence of the results.

To ensure reliable MR estimates, a series of sensitivity analyses

were conducted. Cochran’s Q test was utilized to evaluate the

heterogeneity of each genetic variant, with a P-value under 0.05

indicating significant heterogeneity among the selected SNPs (33).

Directional pleiotropy in our MR study was scrutinized using MR-

Egger regression (34), and a P-value below the 0.05 threshold

concerning the MR-Egger’s intercept may suggest significant

directional pleiotropy. Although the MR-Egger method has

relatively lower accuracy, its intercept can indicate the presence of

directional pleiotropy (35). The MR-PRESSO method was

employed to identify potential outliers and investigate horizontal

pleiotropy, which is presumed if the global P-value falls below 0.05
TABLE 1 Continued

Explore or Outcome Ref Ieu id Consortium Ancestry Participants

Smoking 30643251 ieu-b-4877 GSCAN European 311,629 cases / 321,173 controls

Alcohol use 30336701 NA PGC European 141,932 individuals

Physical activity 35534559 ieu-b-4860 The Within Family European 78,007 individuals

BMI 30239722 NA GIANT European 694,649 individuals

EA 30038396 ieu-a-1239 SSGAC European 1,131,881 individuals
BMI, body mass index; GSCAN, GWAS and Sequencing Consortium of Alcohol and Nicotine use; GIANT, Genetic Investigation of Anthropometric Traits; GLGC, Global Lipids Genetics
Consortium; MAGIC, Meta-Analyses of Glucose and Insulin-related traits Consortium; LDL-C, Low Density Lipoprotein Cholesterol; HDL-C, High Density Lipoprotein Cholesterol; TG,
Triglyceride; IR, insulin resistance; PGC, Psychiatric Genomics Consortium; EA, Education Attainment; SSGAC, Social Science Genetic Association Consortium; HbA1c, Glycated Hemoglobin
A1c; Ref, reference(Pubmed id). NA, Not Applicable.
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(36). Any outliers would be removed to enhance the accuracy of the

correction. Lastly, a leave-one-out analysis was conducted to

evaluate the impact of individual SNPs on the overall results (37).

The study calculated R2 = 2×MAF×(1-MAF)×beta2, where

MAF indicates minor allele frequency, of each instrumented SNP

and summed the values for the coefficient necessary for the power

calculator (38). We calculated the statistical power using the mRnd

website (https://shiny.cnsgenomics.com/mRnd/) (39).
Results

Genetic instrument selection and genetic
correlation between phenotypes

The research report indicates that the F-statistics for all IVs

exceeded 100, signifying a substantial reduction in bias due to weak

instruments. In both forward and reverse MR analyses, 89

(Supplementary File 2-Table 1) and 7 (Supplementary File 2-

Table 2) SNPs were selected as IVs, accounting for 7.92% and

27.93% of the explained variance, respectively. We possess 75%

statistical power to detect a correlation between SUA and DN, with

an OR of 1.17.

LDSC analysis revealed a significant genetic correlation between

SUA and DN (rg = 0.293, P = 2.60×10-5), and the SNP-based

heritability (h²) for SUA and DN were found to be 9.64% and

1.05%, respectively.
Association of genetically predicted SUA
with DN

In the forward MR analysis, scatter plots vividly displayed a

positive correlation between SUA and DN (Supplementary File 1-

Figure 1). Since an I2 of 42% (less than 50%) was detected, a fixed-

effects model was also chosen to estimate the causal effect. The main

method, IVW (fixed effects model), indicated that each increase of 1

mg/dL in SUA would increase the risk of DN by 17% (OR = 1.17,

95% CI 1.02~1.34, P = 0.02) (Figure 2). A random-effects result did

not detect a causal relationship (OR = 1.17, 95% CI 0.971.39, P =

0.09). Further, the weighted median estimate was consistent with
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the primary method (OR = 1.27, 95% CI 1.02~1.57, P = 0.03),

considering the main results robust, albeit with a wide 95%CI.

Sensitivity analyses confirmed the robustness of these results

(Supplementary File 2-Table 3). MR-PRESSO did not find any

outliers, but there was unavoidable horizontal pleiotropy (P < 0.05).

Leave-one-out analysis further substantiated that the causal

relationship was not influenced by any individual SNP. The

symmetry of the funnel plot was maintained, and after

performing the steiger test, the causal relationship remained

significant, bolstering the stability of our findings (Supplementary

File 1-Figure 1).

In the reverse MR analysis (Supplementary File 1-Figure 2), the

primary analytical method indicated that there was no causal

association between genetically predicted DN and SUA (OR =

1.00, 95% CI 0.98~1.01, P = 0.97) (Supplementary File 2-Table 4).

The estimates from Supplemental Methods were consistent with

this finding. A series of sensitivity analyses revealed no outliers,

pleiotropy, or heterogeneity, and the results were not distorted by

any individual SNP. Thus, the findings are robust (Supplementary

File 2-Table 3).
MVMR analysis adjusted for ten
confounders

In the MVMR analysis (Figure 3), after adjusting for potential

confounders such as LDL-C, physical activity, IR, and alcohol use,

the causal association between SUA and DN was no longer

significant (P > 0.05). This suggests that the partial causal

relationship of SUA on DN might be mediated through

these phenotypes.
Discussion

This study conducted a comprehensive MR analysis to delve

into the relationship between genetic predisposition to SUA levels

and DN. TheMR findings corroborate prior epidemiological studies

(11–14), establishing a causal link between elevated SUA levels and

an increased risk of DN. Additionally, no reverse causal association

was identified between DN and SUA. Further MVMR analysis
FIGURE 2

Mendelian randomization association of genetically predicted SUA with DN using different statistical models. Odds ratios are scaled per 1 mg/dL
increase in the genetically predicted serum urate level. IVW, inverse-variance-weighted method; MR, Mendelian randomization; MR-PRESSO, MR-
pleiotropy residual sum and outlier; OR, odds ratio; CI, confidence interval; SUA, Serum urate acid; DN, Diabetic Neuropathy.
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indicated that physical activity, LDL-C, IR, and alcohol use may

mediate a portion of this causal relationship.

Previous research has suggested a connection between SUA and

DN, with findings indicating an association between SUA and a

heightened risk of DN (40–43). A meta-analysis involving 12

studies with 6,134 patients supported that hyperuricemia

independently correlates with an elevated risk of peripheral

neuropathy amongst patients diagnosed with type 2 diabetes (44).

However, prior studies have reported conflicting findings regarding

the connection between generalized SUA and DN (15, 16).

Specifically, a cross-sectional study found no association between

hyperuricemia and diabetic polyneuropathy (45). Moreover, SUA is

a recognized risk factor for diverse conditions such as Alzheimer’s

disease, sudden cardiac death, and gout.

SUA acts as a surrogate marker for oxidative stress, where

environments with elevated uric acid can trigger oxidative stress,

intimately tied with inflammation (46, 47). Oxidative stress

epitomizes a disparity between reactive oxygen species (ROS) and

the body’s inherent antioxidant defense mechanism (48). Chronic

hyperglycemic disorders can incite protein glycation and stimulate

an increase in free radicals, including ROS. At the same time, the

antioxidant defense system suffers impairment in these

hyperglycemic conditions (49, 50). Additionally, SUA promotes

inflammatory responses and activates inflammatory pathways (51).

A specific study revealed that uric acid innately incites

inflammation by direct activation of the NLRP3 inflammasome,

resulting in an upsurge in IL-1b and IL-18 expression within lung

macrophages (52). Uric acid can penetrate the blood-brain barrier

and initiate an inflammatory response through the activation of the

NFkB-mediated inflammation pathway (53). High uric acid levels

might aggravate these conditions, leading to nerve cell damage and

inflammatory responses that could precipitate DN. Meanwhile,

Uric acid is observed to interfere with nitric oxide (NO)

synthesis, inciting vascular endothelial dysfunction (54). NO is

known to dilate blood vessels and enhance local tissue perfusion

(55). NO deficiency may contribute to nerve ischemia and hypoxia,

further intensifying the progression of diabetic neuropathy. Recent

findings have demonstrated uric acid’s role in influencing insulin

secretion by escalating oxidative stress in b cells (56), thereby
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triggering insulin resistance. This insulin resistance is closely

associated with the development of neuropathy and could

deteriorate glycemic control further, exacerbating oxidative stress

and inflammatory responses.

Considering the intrinsic limitations of observational studies,

these investigations might not eliminate the influence of

unobserved confounding factors and reverse causality.

Observational studies typically emphasize correlation over

causation. Despite some data suggesting a link, the causal

relationship between SUA and DN is yet to be definitively

established. We employed MR analysis to explore the genetic

basis of the causal relationship between SUA and DN, aiming to

negate these biases and confounders. The results of this analysis

support that SUA is a risk factor for DN. As blood uric acid levels

can be modified, uric acid-lowering therapy may offer preventive or

therapeutic advantages in patients with DN.

Further MVMR analyses underscored the significance of

physical activity, LDL-C, IR, and alcohol use. Firstly, physical

activity impacts metabolic health and systemic inflammatory

responses. Regular exercise has been shown to enhance insulin

sensitivity, a notion that’s also supported by a NHANES study

conducted by Yajuan Lin et al. (57). Secondly, Hui Zhang and

colleagues have demonstrated that elevated LDL-C can instigate

endothelial dysfunction and inflammation, exacerbating the

pathophysiology of diabetic neuropathy (58). Additionally, a

meta-analysis by Dovell et al. has pointed out a link between

increased SUA and heightened IR (59), which further amplifies

the risk of DN. Lastly, chronic alcohol consumption not only

elevates serum urate levels but can also directly impact glucose

metabolism and intensify the risk of neuropathic complications (60,

61). Hence, this suggests a multifaceted approach to the

management of diabetic neuropathy, considering these

factors collectively.

Our study possesses several strengths. This MR study is the first

to establish a causal relationship between SUA and DN. All the

SNPs set as IVs were derived from the European population,

thereby reducing the likelihood of population stratification bias

and enhancing the validity of the bidirectional MR assumption. Our

robust tools employed in this study (e.g., an F statistic significantly
FIGURE 3

The effect of potential confounders was adjusted individually. BMI, body mass index; CI, confidence interval; LDL-C, Low Density Lipoprotein
Cholesterol; HDL-C, High Density Lipoprotein Cholesterol; TG, Triglyceride; IR, insulin resistance; EA, Education Attainment; HbA1c, Glycated
Hemoglobin A1c.
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exceeding 10) should mitigate potential bias from sample overlap.

However, our study is not without its constraints. Some of the first

selected exposures originated from the UKB cohort and the lack of

other GWAS studies prevented a positive control analysis. Finally,

due to the availability of only summary-level GWAS data, further

subgroup analyses were precluded.
Conclusion

To encapsulate, our MR study establishes a causal link between

elevated SUA levels and increased risk of DN, with no evidence for a

reverse association. The potential therapeutic role of urate-lowering

strategies in DN management warrants further investigation.
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