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Background: Testosterone is an essential sex hormone that plays a vital role in

the overall health and development of males. It is well known that obesity

decreases testosterone levels, but it is difficult to determine the causal

relationship between body composition and testosterone.

Methods: To investigate potential causal associations between body

composition and testosterone levels by a first time application of Mendelian

randomization methods. Exposure variables in men included body composition

(fat mass, fat-free mass, and body mass index). In addition to whole body fat and

fat-free mass, we examined fat and fat-free mass for each body part (e.g., trunk,

left arm, right arm, left leg and right leg) as exposures. Instrumental variables

were defined using genome-wide association study data from the UK Biobank.

Outcome variables in men included testosterone levels (total testosterone [TT],

bioavailable testosterone [BT], and sex hormone-binding globulin [SHBG]). A

one-sample Mendelian randomization analysis of inverse-variance weighted and

weighted median was performed.

Results: The number of genetic instruments for the 13 exposure traits related to

body composition ranged from 156 to 540. Genetically predicted whole body fat

mass was negatively associated with TT (b=-0.24, P=5.2×10-33), BT (b=-0.18,
P=5.8×10-20) and SHBG (b=-0.06, P=8.0×10-9). Genetically predicted whole

body fat-free mass was negatively associated with BT (b=-0.04, P=2.1×10-4), but
not with TT and SHBG, after multiple testing corrections. When comparing the

causal effect on testosterone levels, there was a consistent trend that the effect

of fat mass wasmore potent than that of fat-freemass. There were no differences

between body parts.

Conclusion: These results show that reducing fat mass may increase

testosterone levels.
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Introduction

Testosterone is an essential sex hormone that plays a vital role

in males’ overall health and development. It is involved in

maintaining the proper functioning of various systems and

organs. Insufficient testosterone levels can lead to various signs

and symptoms that may impact a males’ physical well-being and

masculinity (1). Testosterone declines with aging, and a lower

testosterone level is associated with muscle loss, fat gain,

osteoporosis, cardiovascular problems, diabetes, hyperlipidemia,

and cognitive decline in aging men (2). The syndrome, defined by

low serum testosterone levels accompanied by characteristic

symptoms, is known as late-onset hypogonadism (LOH) (2).

Symptoms of LOH include general fatigue, diminished sexual

desire, muscle weakness, erectile dysfunction (ED), poor

concentration, insomnia, depression, headache, tinnitus, and

diminished frequency of morning erections (3). In men aged 40-

79, the incidence of symptomatic hypogonadism ranges from 2.1%

to 5.7% (3, 4). Globally, the elderly population is increasing,

particularly in developed countries, and as a result, the number of

patients with LOH is expected to increase year-on-year. Therefore,

the prevention of LOH, as well as the treatment of LOH symptoms,

is becoming a more critical problem worldwide.

Testosterone levels are influenced by many factors. Higher

testosterone levels are associated with daily physical activity (5),

strength training, and aerobic exercise (6, 7). Conversely, obesity,

diabetes, chronic obstructive pulmonary disease (COPD),

nutritional deficiencies, such as zinc and vitamin D deficiency, as

well as stress are associated with lower testosterone levels (8, 9). In

particular, obesity in men is considered one of the most important

factors responsible for low testosterone levels and is known as Male

Obesity-associated Secondary Hypogonadism (MOSH) (10). The

pathophysiological mechanisms of obesity-induced testosterone

reduction are complex and multifactorial. Factors induced by

obesity, such as the effects of systemic inflammation (11),

increased aromatase activity (12), and leptin production (13),

have all been suggested to interfere with testosterone production.

In a study of 1,094 male patients with testosterone deficiency, the

prevalences of metabolic syndrome was 69% (14). While little is

known about the effects of muscle mass on testosterone, one study

has found an association between muscle mass and testosterone

levels, but this causal association is unclear due to the cross-

sectional nature of the study (15). It is also known that

accumulation of adipose tissue around the viscera, the internal

organs of the body, is associated with the risk for development of

cardiovascular and metabolic disease (16). Nevertheless, the

association between fat or muscle distribution and testosterone

levels is not yet known. In observational and interventional studies,

it is difficult to assess the direct effect of body composition due to

other confounding factors, so the causal relationship between body

composition and testosterone levels remains to be elucidated (14).

To the best of the authors’ knowledge, this is the first time

Mendelian randomization (MR) methods have been applied to

investigate the potential causal associations between body

composition and testosterone levels. MR can statistically elucidate

the potential causal effects of an exposure variable on an outcome
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variable by using genetic variants as instrumental variables (IVs)

(17). MR is like a natural randomized controlled trial (RCT) where

genetic IVs, rather than doctors, randomly determine

predispositions to certain traits. Just as RCTs, MR helps us infer

causal relationships in observational data using genetic information.

In this study, body composition (fat mass, fat-free mass, and body

mass index [BMI]) in men was used as exposure variables, and IVs

were defined using genome-wide association study (GWAS) data

from the UK Biobank (18). In addition to whole body fat and fat-

free mass, we examined fat and fat-free mass for each body part

(e.g., trunk, left arm, right arm, left leg and right leg) as exposures.

As outcome variables, testosterone levels (total testosterone [TT],

bioavailable testosterone [BT], and sex hormone-binding globulin

[SHBG]) in men were included in the analysis.
Materials and methods

Methods of MR are based on association statistics rather than

on individual-level data. There are able to estimate a causal effect of

an exposure (X) on an outcome (Y), b̂ XY using multiple genetic

variants Gi   (1 ≤ i ≤ N), where N denotes the number of genetic

instruments and their effects on the exposure and outcome

(denoted as b i
GX and b i

GY , respectively). When N=1, the causal

effect of X on Y was estimated by dividing bGY by bGX (i.e., b̂ XY =

bGY=bGX ; referred to as ratio estimate or Wald estimate) under

certain assumptions (19). The assumptions are: (i) the genetic

variant is predictive of the exposure, (ii) the variant is

independent of the outcome when conditioned on the exposure

and any possible confounding factors, and (iii) the variant is

independent of any confounding factors (20). When N ≥ 2,

multiple Wald estimators were calculated from multiple genetic

instruments ( b̂ i
XY = b i

GY=b i
GX) and a meta-analysis was performed

to obtain a final estimate of the causal effect. A well-used method for

the meta-analysis of b̂ i
XY is the inverse-variance weighted (IVW)

estimator (21), a weighted mean of individual Wald estimators. In

IVW, the weight of the estimator b̂ i
XY is proportional to (b i

GX)
2=s

(b i
GY )

2, and the weight of the estimator bXYi is proportional to (b
GXi)2s (b i

GY )2 where s(bGYi) is the standard error of the variance-

outcome association estimate for the variant. If all genetic

instruments satisfy the assumptions as mentioned earlier, there is

no bias for the IVW estimate; however, bias is introduced if just one

genetic variant is invalid (22). To relax these assumptions, several

estimators, including weighted median (WM) (22) and MR-Egger

(23), were developed. No bias is introduced for the WM if a large

proportion of genetic variants are valid; therefore, this allows for

invalid genetic instruments as long as they are not in the majority

(22). The assumption of the MR-Egger is referred to as InSIDE

(Instrument Strength Independent of Direct Effect), which states

that the direct effect of the genetic instruments on the outcome, not

through the exposure, is distributed independently of the strength

of genetic effect on the exposure (i.e., bGX) (22, 23).
The inputs of the MR methods based on association statistics

are variant-exposure and variant-outcome association effects (i.e.,

b i
GX and b i

GY ), with standard errors on the same multiple genetic

instruments. The variant-exposure and variant-outcome statistics
frontiersin.org
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can be retrieved from large-scale genome-wide association studies

(GWAS) performed on various complex traits. When the variant-

exposure and variant-outcome statistics are derived from separate

studies (i.e., populations from the two GWAS that do not overlap), a

bias due to participant overlap can be avoided (24). A recent

simulation study showed that the bias due to participant overlap

was observed in the MR-Egger estimate but not in IVW and WM

estimators if the single source of association statistics is based on a

large number of participants (n>100,000), such as UK Biobank (25).

Based upon this observation, the present study used the association

statistics of exposures (13 traits related to body composition) and

outcomes (three traits related to testosterone levels) derived from a

single large-scale biobank study, the UK Biobank (18).
Data source

The study design is shown in Figure 1. To determine genetic

instruments predictive of body composition, we utilized a large-

scale GWAS of men of European ancestry from the UK Biobank

(n=163,303 to 166,413). The UK Biobank is a large, population-

based prospective cohort comprising linked health, hospital-record,

and genetic data of individuals recruited across the UK (18). Body

composition was measured by bioimpedance analysis (BIA) (Tanita

BC418MA body composition analyser). BIA measures the electrical

impedance of tissues in the body and estimates body composition

based on this. Developments in BIA technology has now allowed for

cost-efficient segmental body composition scans that estimate of the

content of the trunk, arms and legs (26). Standing height was
Frontiers in Endocrinology 03
measured using a Seca 202 scale. Body mass index was calculated by

dividing body weight and fat mass by height squared (kg/m2) (27).

Thirteen traits related to body composition were included

(Figure 1). Publicly available genome-wide association statistics

for the 13 traits were provided from Neale Lab, UK Biobank

(imputed-v3, release 20180731). The genome-wide association

statistics for the 13 traits included reference allele, alternate allele,

b-coefficient, standard error of the b-coefficient, and P-values from

up to 13,577,736 variants. We defined genetic instruments for the

13 traits based on genome-wide significant associations (P<5×10−8)

after clumping for linkage disequilibrium at R2<0.01 (based on the

1000 Genomes reference panel of European ancestry [n=503]) (28)

using PLINK v1.90b6.8 (29).

A large-scale GWAS of testosterone levels (TT, BT, and SHBG)

from men of European ancestry was conducted in a previous study

based on UK Biobank data (n=178,782 to 194,453) (30). In this UK

Biobank study, blood samples were collected at the initial visit. Total

testosterone and SHBG-T (nmol/L) were measured by a one-step

competitive analysis and a two-step sandwich immunoassay analysis

(Beckman Coulter Unicel Dxl 800). Testosterone level bound to

albumin (Alb-T; g/L) was measured by BCG analysis (Beckman

Coulter AU5800). Bioavailable testosterone was calculated from TT,

accounting for the concentration of SHBG-T and Alb-T using the

Vermeulen equation (30). The genome-wide association statistics for

TT, BT, and SHBG-T included 16,582,614 variants. We downloaded

the genome-wide association statistics from the GWAS Catalog (TT,

GCST90012113; BT, GCST90012103; and SHBG, GCST90012109). To

perform the MR analyses, association statistics were extracted from the

genetic instruments defined from the 13 body composition traits.
FIGURE 1

Study design: One-sample Mendelian randomization analysis of inverse-variance weighted and weighted median to evaluate the association
between detailed body composition (body mass index [BMI], fat mass, fat-free mass), and testosterone levels (total testosterone, bioavailable
testosterone, and sex hormone-binding globulin) in men. MR-PRESSO was used for the sensitivity analysis.
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Mendelian randomization analyses

Mendelian randomization analyses were performed to assess

the effects of exposures (13 traits related to body composition) on

outcomes (TT, BT, and SHBG-T). The causal association between

exposure and outcome was estimated using IVW (21) andWM (22)

estimators. The Steiger test was used to confirm the directionality of

the effect on causality (31). We also used MR-PRESSO, MR-Egger,

and Leave-one-out analysis for sensitivity analysis (32). All

statistical tests were performed using the TwoSampleMR package

version 0.5.6 and the R language version 4.2.1 (R Foundation for

Statistical Computing, Vienna, Austria). The statistical testing was
Frontiers in Endocrinology 04
repeated 39 times (13 exposures × 3 outcomes), and therefore, two-

sided P <0.0013 (=0.05/39) was considered statistically significant.

Results

The number of genetic instruments used for the 13 exposure

traits related to body composition ranged from 156 to 540 (Table 1;

Supplementary Tables S1–S13). We calculated IVW and WM

estimators to investigate potential causal relationships between

exposures and outcomes (Figure 1). We also performed MR-

PRESSO, MR-Egger, and Leave-one-out analysis as a sensitivity

analysis. All results of the Steiger test were TRUE (P<0.001).
TABLE 1 Mendelian randomization analyses of body composition and testosterone levels: inverse-variance weighted.

Exposures SNVsa Total testosterone levels Bioavailable testosterone levels Sex hormone-binding
globulin levels

IVW b Pb IVW b Pb IVW b Pb

Whole body fat mass 170 -0.24 5.17E-33 -0.18 5.78E-20 -0.06 8.02E-09

(-0.28 to -0.20) (-0.22 to -0.14) (-0.08 to -0.04)

Arm fat mass left 176 -0.23 8.28E-21 -0.17 6.99E-22 -0.06 1.42E-05

(-0.27 to -0.18) (-0.20 to -0.13) (-0.08 to -0.03)

right 173 -0.23 9.85E-21 -0.16 3.48E-19 -0.06 1.10E-05

(-0.28 to -0.18) (-0.20 to -0.13) (-0.08 to -0.03)

Leg fat mass left 163 -0.25 4.94E-37 -0.16 1.73E-15 -0.07 3.36E-13

(-0.29 to -0.21) (-0.20 to -0.12) (-0.09 to -0.05)

right 156 -0.25 1.97E-35 -0.16 1.43E-15 -0.07 1.44E-14

(-0.29 to -0.21) (-0.20 to -0.12) (-0.09 to -0.05)

Trunk fat mass 162 -0.23 1.51E-20 -0.19 3.35E-19 -0.05 1.19E-04

(-0.28 to 0.18) (-0.23 to -0.15) (-0.07 to -0.02)

Whole body fat-free mass 458 -0.04 0.036 -0.04 2.11E-04 0 0.941

(-0.07 to 0.00) (-0.07 to -0.02) (-0.02 to 0.02)

Arm fat-free mass left 389 -0.05 0.025 -0.04 0.004 -0.01 0.459

(-0.09 to -0.01) (-0.06 to -0.01) (-0.03 to 0.01)

right 370 -0.05 0.024 -0.04 0.019 -0.01 0.369

(-0.09 to -0.01) (-0.06 to -0.01) (-0.04 to 0.01)

Leg fat-free mass left 337 -0.08 5.90E-04 -0.08 3.36E-08 -0.01 0.403

(-0.13 to -0.04) (-0.11 to -0.05) (-0.04 to 0.02)

right 339 -0.06 0.02 -0.07 5.32E-06 0 0.87

(-0.11 to -0.01) (-0.10 to -0.04) (-0.03 to 0.02)

Trunk fat-free mass 540 0 0.789 -0.02 0.068 0.01 0.485

(-0.03 to 0.03) (-0.04 to 0.00) (-0.01 to 0.02)

BMI 211 -0.24 1.58E-30 -0.13 2.97E-17 -0.08 1.56E-11

(-0.28 to -0.20) (-0.16 to -0.10) (-0.10 to -0.05)
fro
BMI, body mass index; IVW, inverse-variance weighted; SNVs, single-nucleotide variations.
aNumber of SNVs retained for this analysis.
bP less than 0.001 appears in bold.
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Association of genetically predicted fat
mass and testosterone

Genetically predicted whole body fat mass was negatively

associated with TT (IVW: b=-0.24 [95% CI: -0.28 to -0.20],

P=5.2×10-33; WM: b=-0.24 [95% CI: -0.27 to -0.20], P=1.7×10-44),

BT (IVW: b=-0.18 [95% CI: -0.22 to -0.14], P=5.8×10-20; WM: b=-
0.16 [95% CI: -0.19 to -0.12], P=3.7×10-19) and SHBG (IVW: b=-
0.06 [95% CI: -0.08 to -0.04], P=8.0×10-9; WM: b=-0.06 [95% CI: -

0.08 to -0.05], P=3.3×10-16). Similar associations were observed

when fat mass for individual body parts was used (i.e., arm fat mass

[left], arm fat mass [right], leg fat mass [left], leg fat mass [right],

and trunk fat mass) as exposure and there were no differences

between body parts (Figures 2, 3, Tables 1, 2).
Association of genetically predicted fat-
free mass and testosterone

According to IVW, genetically predicted whole body fat-free

mass was negatively associated with BT (b=-0.04 [95% CI: -0.07 to -

0.02], P=2.1×10-4) but not with TT and SHBG after multiple testing

corrections (Table 1). In contrast, WM suggested that genetically

predicted whole body fat-free mass was negatively associated with

TT (b=-0.04 [95% CI: -0.06 to -0.02], P=5.0×10-5) and SHBG (b=-
0.02 [95% CI: -0.03 to -0.01], P=6.2×10-5), but not with BT after

multiple testing corrections (Table 2). When fat-free mass for

individual body parts was used as exposure, three (IVW) and 10

(WM) significant exposure-outcome pairs were suggested. There

were no differences between body parts (Tables 1, 2).

When comparing the causal effect on testosterone levels, a

consistent trend was found – the effect of fat mass was stronger

than that of fat-free mass (Figures 2, 3). For example, the absolute

value of b- coefficients of whole body fat mass were consistently

more significant than that of whole body fat-free mass (IVW: bTT, -
Frontiers in Endocrinology 05
0.24 vs. -0.04; bBT, -0.18 vs. -0.04; and bSHBG, -0.06 vs. 0.00, WM:

bTT, -0.24 vs. -0.04; bBT, -0.16 vs. -0.03; and bSHBG, -0.06 vs. -0.02).

Similar trends were observed when fat mass and fat-free mass were

compared for individual body parts.
Association of genetically predicted BMI
and testosterone

Genetically predicted BMI was negatively associated with TT (IVW:

b=-0.24 [95% CI: -0.28 to -0.20], P=1.6×10-30; WM: b=-0.25 [95% CI:

-0.28 to -0.22], P=3.0×10-54), BT (IVW: b=-0.13 [95%CI: -0.16 to -0.10],

P= 3.0×10-17; WM: b=-0.14 [95% CI: -0.17 to -0.11], P=1.2×10-20) and

SHBG (IVW: b=-0.08 [95% CI: -0.10 to -0.05], P=1.6×10-11; WM: b=-
0.07 [95%CI: -0.09 to -0.06], P=8.7×10-25) (Tables 1, 2). The comparison

of a causal effect on testosterone levels revealed that the absolute value of

b-coefficients for BMI was equivalent to a fat mass of the whole body or

each body part. It was more significant than fat-free mass of the whole

body or each body part (Figures 2, 3).
Sensitivity analysis

Similar results were observed using MR-PRESSO, while MR-

Egger showed an attenuated causal relationship between each

exposure and testosterone levels (Supplementary Figures S1, S2,

Supplementary Tables S14, S15). Leave-one-out analysis also

showed that individual SNPs did not affect the overall estimates

(Supplementary Figures S3–5).
Discussion

It is well known that obesity decreases testosterone levels, but it

is difficult to determine the causal relationship between body
FIGURE 2

bcoefficients with 95% CIs of inverse-variance weighted for the effect of one unit increase in fat mass, fat-free mass, and body mass index (BMI) on
testosterone levels (total testosterone, bioavailable testosterone, and sex hormone-binding globulin) in men. SHBG, sex hormone-binding globulin.
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composition and testosterone. This is the first study to investigate

potential causal associations of detailed body composition

parameters with testosterone levels based on large-scale GWAS

data and MR analyses. These results showed that genetically higher

fat mass was associated with lower testosterone levels in men of

European ancestry but that genetically predicted fat-free mass was

either only weakly associated or not statistically associated with

testosterone levels. There were no differences between body parts.

With the exception of MR-Egger, which may give a biased estimate

in a single-sample MR analysis (25), different MR methods

consistently supported our findings. Therefore, this MR study

suggests that fat mass lowers testosterone levels, while muscle

mass may not be related to testosterone levels.

Various observational studies have reported an association between

obesity and low testosterone, but the mechanism is multifactorial and

possibly bidirectional, and the exact causal relationship is largely

unknown (33, 34). Our findings that fat mass lowers testosterone

support the direction that fat lowers testosterone. Indeed, there have

been reports of post-operative increases in testosterone in patients

undergoing bariatric surgery (35, 36). Grossmann M et al. said that

weight loss, whether dietary or surgical, also leads to significant

increases in total testosterone in proportion to the amount of weight

loss, particularly in morbidly obese men (37). These reports are

consistent with the results of the present study, which suggest that

fat itself may affect low testosterone. There is a negative correlation

between BMI and SHBG, and the main cause of lower TT in obesity is

lower SHBG. In people with severe obesity, TT is not only decreased

but BT also. Decreased BT is not, however, associated with increased

luteinizing hormone (LH), which may be due to decreased

gonadotropin-releasing hormone (GnRH)/LH secretion (38). Obesity

in men can lead to reduced testosterone levels due to several

mechanisms. Increased aromatase activity in fat cells converts

testosterone to estradiol, suppressing the hypothalamic–pituitary–

thyroid (HPT) axis (39). Elevated leptin, a hormone from fat cells,

also impacts this axis, decreasing testosterone (40, 41). Additionally,
Frontiers in Endocrinology 06
obesity can cause leptin resistance and impact Leydig cell

responsiveness (40). Obesity-related inflammation might further

suppress testosterone production, and complications like obstructive

sleep apnea, which reduces REM sleep and induces nocturnal hypoxia,

further contribute to this reduction (12, 42).

Fat-free mass includes mainly muscle, bone, and water but is

generally related to muscle mass. The effect of muscle mass on

testosterone is not well understood. Strength training, such as

deadlifts and squats, which use larger muscles, has been

associated with significant increases in testosterone levels (43).

While it has been reported that muscle mass does not affect the

degree of testosterone elevation immediately after training (44),

elevated testosterone levels immediately after muscle training and

aerobic exercise have been reported (43), and attributed to, reduced

plasma volume, adrenergic stimulation (45), lactate-stimulated

secretion (46), potential effects on testosterone synthesis, and

secretory capacity of Leydig cells in the testis (47). On the other

hand, the long-term effects of muscle training and aerobic exercise

on testosterone are controversial (43). While some studies report

long-term testosterone elevation (45, 46), others report no changes

(48). Effects may vary according to exercise intensity or age. The

conventional phenomenon that muscle training and aerobic

exercise raise testosterone levels may be due to a biochemical

effect of the activities themselves, and increasing muscle mass

itself may have no direct effect on testosterone levels.

This study has several limitations. Firstly, this was not an

interventional study. Secondly, body composition in the GWAS

used in this study was measured by BIA, not Dual-energy X-ray

Absorptiometry (DXA). DXA is more accurate for the assessment

of body composition. In addition, this MR analysis was performed

in a European population, and it is unknown whether similar

findings would be present in other racial groups. There is a need

for large-scale GWAS in Asian and African populations.

In conclusion, we found a negative association between genetically

predicted fat mass and testosterone levels and a weak or no association
FIGURE 3

bcoefficients with 95% CIs of weighted median for the effect of one unit increase in fat mass, fat-free mass, and body mass index (BMI) on
testosterone levels (total testosterone, bioavailable testosterone, and sex hormone-binding globulin) in men. SHBG, sex hormone-binding globulin.
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between fat-free mass and testosterone levels in men of European

ancestry. This MR study suggests that muscle mass itself may not be

related to testosterone; however, the effect of fat mass can lower

testosterone levels. Therefore, reducing fat mass may be necessary to

maintain or elevate testosterone levels. Further interventional and MR

studies are required, including GWAS in different racial populations.
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TABLE 2 Mendelian randomization analyses of body composition and testosterone levels: weighted median.

Exposures SNVsa Total testosterone levels Bioavailable testosterone levels Sex hormone-binding
globulin levels

WM b Pb WM b Pb WM b Pb

Whole body fat mass 170 -0.24 1.66E-44 -0.16 3.70E-19 -0.06 3.32E-16

(-0.27 to -0.20) (-0.19 to -0.12) (-0.08 to -0.05)

Arm fat mass left 176 -0.23 1.51E-41 -0.16 4.68E-21 -0.07 7.52E-20

(-0.27 to -0.20) (-0.19 to -0.13) (-0.08 to -0.05)

right 173 -0.24 1.57E-46 -0.16 3.57E-21 -0.07 7.96E-22

(-0.28 to -0.21) (-0.19 to -0.12) (-0.09 to -0.06)

Leg fat mass left 163 -0.24 2.22E-41 -0.16 1.30E-19 -0.07 1.50E-18

(-0.28 to -0.21) (-0.20 to -0.13) (-0.08 to -0.05)

right 156 -0.24 3.83E-43 -0.16 1.32E-18 -0.07 2.16E-20

(-0.28 to -0.21) (-0.19 to -0.12) (-0.09 to -0.06)

Trunk fat mass 162 -0.23 2.16E-38 -0.16 7.40E-18 -0.06 1.13E-16

(-0.26 to 0.19) (-0.19 to -0.12) (-0.08 to -0.05)

Whole body fat-free mass 458 -0.04 5.00E-05 -0.03 0.003 0.02 6.21E-05

(-0.06 to -0.02) (-0.05 to -0.01) (-0.03 to -0.01)

Arm fat-free mass left 389 -0.06 2.90E-07 -0.03 0.004 -0.03 7.82E-08

(-0.08 to -0.04) (-0.06 to -0.01) (-0.04 to -0.02)

right 370 -0.07 2.20E-07 -0.03 0.017 -0.03 3.05E-09

(-0.09 to -0.04) (-0.05 to -0.01) (-0.04 to -0.02)

Leg fat-free mass left 337 -0.08 1.67E-09 -0.08 6.04E-10 -0.03 1.03E-07

(-0.11 to -0.06) (-0.10 to -0.05) (-0.04 to -0.02)

right 339 -0.06 8.83E-07 -0.07 9.72E-08 -0.03 2.44E-06

(-0.09 to -0.04) (-0.09 to -0.04) (-0.04 to -0.02)

Trunk fat-free mass 540 -0.02 0.038 -0.01 0.367 -0.01 0.003

(-0.04 to 0.00) (-0.03 to 0.01) (-0.02 to 0.00)

BMI 211 -0.25 2.99E-54 -0.14 1.17E-20 -0.07 8.71E-25

(-0.28 to -0.22) (-0.17 to -0.11) (-0.09 to -0.06)
fro
BMI, body mass index; WM, weighted median; SNVs, single-nucleotide variations.
aNumber of SNVs retained for this analysis.
bP less than 0.001 appears in bold.
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