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Objective: To investigate the causal relationships between linoleic acid and type 2

diabetes, and between linoleic acid and glycemic traits in European populations.

Methods: This study employed a two-sample Mendelian randomization

approach to infer causality between linoleic acid and type 2 diabetes, as well

as between linoleic acid and glycemic traits, leveraging genetic variations. Data

were sourced from genome-wide association study summary datasets.

Random-effects inverse-variance weighted, weighted median, and MR-Egger

methods were used for the two-sample Mendelian randomization analyses.

Results were presented as odds ratios with a 95% confidence interval. Multiple

sensitivity analyses were conducted to assess result robustness.

Results: MR findings indicated a correlation between linoleic acid levels and the

risk of type 2 diabetes, fasting blood glucose, and glycated hemoglobin (HbA1c),

but not with fasting insulin. Specifically: type 2 diabetes (OR: 0.811, 95% CI:

0.688–0.956, P=0.013<0.05),fasting blood glucose (b_IVW): -0.056, 95% CI:

(-0.091,-0.021), P=0.002< 0.0125), glycated hemoglobin (b_IVW: -0.032, 95%

CI: (-0.048,-0.015), P=0.0002< 0.0125) and Fasting insulin (b_IVW: -0.024, 95%

CI: (-0.056,-0.008), P=0.136 >0.05).Reverse MR analyses showed a correlation

between type 2 diabetes and reduced levels of linoleic acid (b_IVW: -0.033, 95%

CI: (-0.059,-0.006), P=0.014<0.05). Multiple sensitivity analyses also detected

study heterogeneity but found no evidence of horizontal pleiotropy.

Conclusion: High levels linoleic acid can reduce the risk of type 2 diabetes,

fasting blood glucose, and glycated hemoglobin, but has no significant relation

with fasting insulin. Type 2 diabetes can lower linoleic acid levels; however, no

significant causal relationship was observed between the three glycemic traits

and reduced levels of linoleic acid.
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1 Introduction

Diabetes mellitus is a prevalent chronic metabolic disorder

characterized by elevated blood glucose levels (1). Globally, the

incidence of Type 2 Diabetes (T2D) has been on the rise. According

to the International Diabetes Federation (IDF), as of 2021, an

astonishing 536.6 million individuals, or 10.5% of the global

population, were living with diabetes. This number is projected to

soar to 783.2 million by 2045 (2). The global health burden imposed

by diabetes has seen a significant uptick from 1990 to 2019 (3). T2D

is a multifactorial condition marked by impaired pancreatic b-cell
function and the onset of peripheral tissue insulin resistance,

culminating in clinical manifestations (4). The etiology and causal

associations of T2D may involve intricate interactions among

genetic, behavioral, and environmental factors. These include

sedentary lifestyles, poor dietary patterns, obesity, familial

predisposition, advancing age, and even racial or ethnic attributes

(5). T2D increases the risk for an array of diabetes-related

complications such as cardiovascular diseases, renal anomalies,

ocular abnormalities, microvascular disorders (6), and premature

mortality (7). Consequently, a deep understanding of factors related

to the genesis of T2D becomes pivotal to devise proactive strategies

aiming to prevent and mitigate the adverse outcomes of

this ailment.

Linoleic Acid (LA) is the predominant W-6 polyunsaturated

fatty acid (PUFA), constituting about 80-90% of the overall dietary

PUFA composition (8). The relationship between LA and T2D has

sparked an ongoing discourse, encompassing diverse perspectives

and academic debates. A meta-analysis synthesizing multiple cohort

studies has corroborated the intimate association between LA and

T2D (9). Various meta-analyses have probed into the pivotal role of

LA in the pathogenesis of T2D. Consolidated findings elucidate a

strong association between increased dietary LA intake and elevated

physiological levels of LA, both of which are inversely correlated

with the incidence of T2D. These compelling outcomes suggest that

LA could potentially serve as a crucial protective factor against this

metabolic disorder (10, 11). Nonetheless, the current evidence falls

short of offering ample validation to endorse significant alterations

in the intake of long-chainW-3 fatty acids, a-LA,W-6 fats, or overall

PUFAs concerning their impact on glucose metabolism or diabetes

risk (12). It’s hypothesized that W-6 PUFAs have a tight nexus with

the onset of hyperinsulinemia, positioning W-6 PUFA as a

distinguishable biomarker for hyperinsulinemia rather than

exerting protective or detrimental effects on T2D (13). Moreover,

certain studies have also indicated a correlation between LA and

enhanced susceptibility to T2D (14). At present, most studies

delving into the causal relationship between LA and T2D are

grounded in observational and cohort research. However, to

establish a definitive causality, rigorous randomized controlled

trials are warranted. It’s noteworthy that executing such trials

could be cost-prohibitive or unfeasible.

In Mendelian randomization(MR) studies, genetic variation

adheres to the principle of random gene assortment, analogous

to randomized controlled trials. MR serves as a potent tool

in epidemiological research, leveraging genetic variants as
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instruments to elucidate causal associations between exposures

and outcomes. By effectively sidestepping pitfalls of reverse

causation and confounding factors, this methodological approach

preserves the integrity of study findings, ensuring robust causal

inferences (15). In traditional observational studies, describing

causal relationships is challenging due to the potential presence of

confounders and reverse causation. However, using genetic variants

as instrumental variables (IVs), Mendelian randomization analysis

offers a precise avenue to scrutinize and quantify these causal

links.To ensure the reliability of such analyses, three fundamental

assumptions must be satisfied: (1) IVs robustly correlate with the

exposure, (2) they remain unaffected by confounders that could

disrupt the relationship between exposure and outcome, and (3)

they influence the outcome solely through their direct impact on

exposure. In a comprehensive investigation of the effects of linoleic

acid in the context of T2D, this study employed a two-sample MR

analysis using data from genome-wide association study (GWAS).

The primary objective was to discern the intricate causal

relationship between LA levels in the blood and T2D, along with

its associated glycemic traits.
2 Materials and methods

2.1 Study design and data sources

This study employed a complex and academic research design,

incorporating two-sample MR analyses, to meticulously investigate

the intricate causal relationships among circulating LA

concentrations and T2D, fasting blood glucose, fasting insulin,

and glycated hemoglobin (HbA1c). The study rigorously

scrutinized three key assumptions: (1) a profound and highly

significant correlation exists between the IVs and circulating LA

levels, (2) the IVs are unrelated to confounding factors, and (3) the

IVs have no effect on T2D, fasting blood glucose, fasting insulin,

and HbA1c, influencing the outcomes solely through its impact on

LA. The primary MR investigated the causal relationship between

circulating LA as the exposure variable and T2D along with its

glycemic traits as outcome variables. Simultaneously, reverse causal

relationships were explored by treating T2D and glycemic traits as

exposure variables and circulating LA levels as the outcome variable

(see Figure 1).

The GWAS data used in this study were sourced from the IEU

OpenGWAS database, which provides an extensive range of

comprehensive genetic information. A thorough exposition of this

can be found in Supplementary Table 1, where a detailed narrative

is provided.
2.2 IVs selection

We implemented a series of comprehensive quality control

procedures to ensure the inclusion of reliable and robust genetic

IVs. First, we identified single nucleotide polymorphisms (SNPs)

associated with the exposure using the established genome-wide
frontiersin.org
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significance threshold (P< 5 × 10^(-8)), based on the original

GWAS data. Subsequently, we clumped linkage disequilibrium,

grounding our approach in European ancestry referential data

(1000 Genomes Project, r2 = 0.001, clump window = 10,000 kb).

This step ensured the independence of all selected SNPs while

effectively mitigating potential confounding from linkage

disequilibrium. To alleviate the impact of weak instrument bias,

we applied an F-statistic threshold (F − statistics = b2=se2) (16)

greater than 10 for all exposure factors. To exclude any

distortions caused by strand or allele coding, palindromic SNPs

were carefully excluded from the analysis. To circumvent potential

pleiotropic effects, we utilized the PhenoScanner database (http://

www.phenoscanner.medschl.cam.ac.uk/) as a tool to screen for IVs

associated with confounding factors or risk factors.
2.3 Statistical analysis

We executed complex two-sample MR analyses in the R version

4.2.2 environment, using the TwoSampleMR 0.5.6 package,

including inverse variance weighted (IVW) (17), weighted median

(18), and MR-Egger (19). The primary method employed in the MR

analysis was IVW, as results derived from the IVW method are

generally considered the most robust when all IVs are valid (20).

Additionally, the Weighted Median and MR-Egger served as

secondary analysis methods for reference in our study. For

continuous outcome variables, we represented the results with b
and 95% confidence intervals(CI). For binary outcome variables, we

transformed the effect estimates into odds ratios (OR), serving as

evaluation metrics describing the causal relationships among

variables. The OR values, along with their precisely calculated

95% confidence intervals (CI), endowed our study results with

scientific rigor and robustness, thereby enhancing the overall

quality and reliability of the research. Horizontal pleiotropic

effects may occur when IVs associated with the exposure have

effects on the outcomes beyond the direct scope of the exposure. To

assess the presence of horizontal pleiotropy, we used the MR-Egger

intercept test, where a significance threshold (P< 0.05) detection

indicates potential pleiotropic influences, emphasizing the necessity

for cautious interpretation of the obtained results. Furthermore, we
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employed Cochran’s Q statistic to investigate heterogeneity, with

statistically significant heterogeneity (P< 0.05) detected among the

included studies indicating their heterogeneity. To visually display

these results, we used funnel plots. When adopting the “leave-one-

out” approach (21), we sequentially excluded each independent IV

and calculated the combined effect of the remaining IVs to verify

result reliability. To address the issue of multiple comparisons

among the four groups, we implemented Bonferroni correction

(corrected P-value: 0.05/4 = 0.0125). A calculated P-value less than

0.0125 was classified as statistically significant, considering the

adjustment for multiple comparisons. Furthermore, P-values

between 0.0125 and 0.05 were considered suggestive of a

causal relationship.
3 Results

3.1 Selection of IVs

The characteristics of carefully selected SNPs are elaborated in

Supplementary Tables 2–9. Each selected SNP perfectly meets the

selection criteria specified in the methods section. Furthermore, the

IVs strength tests unequivocally demonstrate that there is no

vulnerability to biased results, as all SNPs displayed an F-statistic

value exceeding the threshold of 10.
3.2 Causal relationship between circulating
levels of LA on T2D and glycemic traits.

The genetic predictive results for LA on T2D and glycemic traits

are presented Supplementary Figure 1. Using IVW as the primary

analysis method, the results reveal that linoleic acid is associated

with a risk of T2D occurrence [OR: 0.811, 95% CI: 0.688–0.956,

P=0.013] and fasting blood glucose concentration [b_IVW: -0.056,

95% CI: (-0.091,-0.021), P=0.002], with both the Weighed median

and MR-Egger demonstrating the same causal relationship.

However, MR-Egger did not find similar results; the results

indicate that glycated hemoglobin [b_IVW: -0.032, 95% CI:

(-0.048,-0.015), P=0.0002] exhibits a negative correlation, with
FIGURE 1

Assumptions and study design flowchart of the MR study. LA, linoleic acid; T2D, Type 2 Diabetes; FBG, fasting blood glucose; FI, fasting insulin.
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both Weighed median and MR-Egger showing the same causal

relationship. The results also demonstrate that linoleic acid has no

significant causal relationship with fasting insulin [b_IVW: -0.024,

95% CI: (-0.056,-0.008), P=0.136], with MR-Egger and Weighed

median similarly reflecting the same causal relationship, as shown

in Supplementary Figure 2.
3.3 Reverse MR

The genetic prediction results of LA for T2D and glycemic traits

are shown in Supplementary Figure 3. Analysis mainly conducted

using IVW method indicates that T2D is associated with reduced

concentrations of LA [b_IVW: -0.033, 95% CI: (-0.059,-0.006),

P=0.014]. The findings are consistent with weighted median,

although not significant in MR-Egger analysis, as seen in

Supplementary Figure 4. There were no significant associations

between fasting plasma glucose, fasting insulin, and glycated

hemoglobin with levels of LA (Supplementary Figure 3),

including fasting blood glucose [b_IVW: -0.077, 95% CI: (-0.249,-

0.094), P=0.375], fasting insulin [b_IVW: -0.16, 95% CI:

(-0.394,0.074), P=0.181], and HbA1c [b_IVW: 0.136, 95% CI:

(-0.075,0.347), P=0.207]. The results are in agreement with the

remaining weighted median and MR-Egger, although the weighted

median method for glycated hemoglobin and LA levels shows a

significant association between the two [b_IVW:0.213, 95% CI:

(0.097,-0.330), P=0.0003], as depicted in Supplementary Figure 4.
3.4 Sensitivity analysis in MR

We conducted heterogeneity tests and horizontal pleiotropy tests

on the results of MR analysis and reverse MR analysis for two sets of

samples. Cochran’s Q test revealed significant heterogeneity across all

study outcomes (P<0.05) (see Table 1; Supplementary Figures 5, 6).

Therefore, a random effects model was utilized in the MR analysis to

ensure the reliability of the results. Tests for horizontal pleiotropy

showed no apparent trend toward zero for MR-Egger intercept term,

and all study P-values were greater than 0.05 (see Table 1), indicating
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no underlying horizontal pleiotropy. Additionally, by employing a

“leave-one-out” sensitivity analysis, where each SNP was excluded

one by one and the MR analysis was repeated, the results obtained

were consistent with the analysis including all SNPs. As illustrated in

Supplementary Figures 7, 8, the determined causal relationships did

not exhibit significant differences.
4 Discussion

Numerous previous studies have employed MR to determine

the causal relationship between LA and various diseases, including

but not limited to cardiovascular diseases, sleep apnea, and sepsis

(22–24). However, current evidence regarding linoleic acid and

T2D primarily stems from cohort studies, with results and views

exhibiting evident contradictions and conflicts (10–14). Thus, a

thorough exploration of the explicit association between the two

will assist in early identification of potential patients, and this work

becomes especially crucial for early monitoring and effective

prevention and treatment.

This study is the first to apply bidirectional MR analysis to

deeply investigate the impact of LA on the occurrence of T2D and

glycemic traits. It aims to reveal the causal relationships among LA,

T2D, and glycemic traits. The evidence obtained clearly indicates

significant correlations between LA and T2D prevalence, along with

various glycemic traits. High levels LA not only reduces the

incidence of T2D but effectively lowers fasting blood glucose and

glycated hemoglobin levels. Simultaneously, reverse MR analysis

suggests a correlation between T2D and reduced levels of LA, but no

substantive association exists between fasting glucose, fasting

insulin, and glycated hemoglobin with circulating LA levels.

Meta-analysis from prospective cohort studies undeniably

demonstrates a close correlation between increased dietary intake of

LA and increased body concentration of LA, significantly reducing the

likelihood of contracting T2D (11). A comprehensive integrated

analysis covering 20 prospective longitudinal studies (10) clearly

shows that, compared to arachidonic acid, increased LA

concentration is strongly associated with reduced susceptibility to

T2D, consistent with MR causal inference results. Additionally, this
TABLE 1 Summary of Sensitivity Analysis Results.

MR analysis SNP(n)

Heterogeneith test Pleiotropy test

Q Q_df Q-pval
MR-Egger
intercept

SE P

LA-T2D 28 220 27 2.91175E-32 -0.0054 0.0119 0.655

LA-fasting blood glucose 49 466 48 7.1208E-70 -0.0017 0.0022 0.455

LA-fasting insulin 49 292 48 8.235E-37 -0.0004 0.00205 0.83995

LA-HbA1c 49 183 48 1.03497E-17 0.000985475 0.001063011 0.358631551

T2D-LA 115 573 114 2.0631E-62 -0.00118 0.002209 0.5942

Fasting glucose-LA 64 728 63 5.681E-114 -0.00072 0.003681 0.8455

Fasting insulin-LA 38 241 37 6.5623E-32 0.007944 0.005912 0.187407

HbA1c-LA 72 692 71 8.95023E-103 -0.00416 0.003178 0.19465
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research reveals that high levels of LA can improve glucose and insulin

resistance, fully aligning with causal inference results: first, glycated

hemoglobin can be used as an indicator to assess average plasma

glucose levels over the previous three months (25); second, the

Homeostatic Model Assessment for Insulin Resistance (HOMA-IR)

index is used to assess insulin resistance, calculated as fasting insulin

(mU/mL) × fasting blood glucose (mmol/L)/22.5 (26), and we can

deduce that LA may improve insulin resistance. In reverse causal

inference analysis, we found a correlation between T2D and reduced

levels of LA, a view consistent with previous research (27).

Although the exact causal mechanism by which LA levels reduce

the risk of developing T2D occurrence risk has not been fully

elucidated, scholars have proposed several explanations. LA, a vital

component of cell membranes, can alter membrane fluidity and

regulate insulin sensitivity when integrated into phospholipids (28).

High levels of LA can increase total and High Molecular Weight

(HMW) adiponectin concentrations (29), A recent study showed a

positive correlation between lipocalin levels and insulin sensitivity,

lipocalin improves insulin sensitivity through its upregulation of IRS-

2 in the liver and can lower blood glucose (30, 31). This may be a

mechanism by which LA reduces the risk of developing

T2D.Additionally, LA is considered a PUFA in most Western diets,

found in plant oils, nuts, and seeds (32). LA is metabolized in various

tissues by delta-6 desaturase to form gamma-linolenic acid (GLA),

which is then rapidly elongated to dihomo-gamma-linolenic acid

(DGLA). DGLA can be further desaturated by delta-5 desaturase to

form arachidonic acid (AA). However, human delta-5 desaturase

activity is limited, with only a portion of DGLA being converted to

AA (33, 34). Metabolites of DGLA, such as prostaglandin E1, can

enhance insulin action (35). AA is also a precursor to various

important bioactive lipid mediators, including series 2

prostaglandins (such as PGE2, PGD2, PGF2a, and PGI2) (36).

PGE2 not only enhances insulin sensitivity but also increases

muscle glycolysis (37). PGD2 also regulates insulin, with PGD2 in

white adipose tissue primarily produced by hematopoietic PGD

synthase in macrophages, causing macrophages to polarize from an

inflammatory M1 state to an anti-inflammatory M2 state. This

polarization of macrophages correlates positively with adipose

insulin sensitivity (38). These results suggest that LA metabolites

PGE1 and PGE2 may improve adipose insulin resistance by

enhancing insulin sensitivity, and PGD2 may do so by regulating

macrophage polarization, thereby reducing the risk of T2D. As for the

mechanism of T2D reducing LA levels, it’s not entirely clear, but

possible mechanisms include a significant increase in the abundance

of Lactobacillus in the gut microbiome of T2D patients (39). In the

gastrointestinal tract, Lactobacillus promotes the transformation of

LA, thus reducing the gastrointestinal uptake of LA and lowering

circulating LA levels. This phenomenon may explain a potential

mechanism for reduced LA concentration in T2D patients.

These findings presented in this study may hold significant

clinical implications. The prevalence of T2D is experiencing a sharp

increase globally (2), underscoring the necessity for extensive

preventive and therapeutic measures. We found that maintaining

high levels LA might benefit in reducing the risk of T2D onset. In

all major guidelines, diet is the cornerstone of prevention

and treatment (40). Therefore, from a healthcare professional
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perspective, it may be worth considering recommending more

LA-rich foods or supplements to high-risk populations for T2D,

especially those with genetic susceptibility. However, it should be

noted that these findings are solely based on genetic analysis, so

further research is needed to validate the clinical efficacy of

these recommendations.

This MR study exhibits the following advantages. Firstly, it employs

genetic variations as IVs to infer the causal relationships between LA

and T2D occurrence risk and glycemic traits. This approach

significantly minimizes the potential influences of confounding factors

and reverse causality, both of which are common challenges in

traditional observational studies (41–43). Secondly, the study leverages

large-scale genomic data provided by the IEU summary database,

notably enhancing the applicability and robustness of the research

findings. Thirdly, the utilization of public datasets and open-source

software further bolsters the transparency and reproducibility of the

study. Fourthly, this method allows for the assessment of the degree of

causal effects, the results of which may have substantial and lasting

impacts on clinical and public health decisions. Overall, this MR study

offers vital insights into the causal relationships between LA and the risk

of T2D onset and glycemic traits.

Despite our study’s strengths, there are certain acknowledged

limitations. Firstly, our reliance on GWAS data involving only

European ancestry populations hampers the generalizability of our

findings to other groups, imposing a constraint on the study in terms

of population diversity. Secondly, our research lacks adequate

sensitivity analysis to assess the possibility of horizontal pleiotropy,

even though we used the MR-Egger intercept test and found no clear

evidence of horizontal pleiotropy in our statistical analysis. Thirdly,

we observed some heterogeneity in the results. Nevertheless, the

random-effects IVW remains the primary analytical method,

effectively controlling for the influence of summary data

heterogeneity. Fourthly, our sole reliance on genetic-level evidence

limits further observational studies and mediation analyses to validate

the specific regulatory mechanisms of the causal relationship between

LA, T2D, and glycemic traits. Fifthly, we only studied linear causal

relationships, as LA levels were treated as a continuous variable.

Therefore, future research needs to encompass broader, more diverse

populations, spanning different ancestries and cultures, and further

conduct non-linear MR analysis to delve into the potential non-linear

effects of LA levels on T2D and glycemic traits.
5 Conclusion

Overall, our study is groundbreaking, employing a bidirectional

sample MR analysis to explore the causal relationships between LA,

T2D, and glycemic traits. The results of this MR study validate the

existence of a bidirectional causal link between glycemic traits and

T2D. We found a significant negative correlation between high levels

LA and susceptibility to T2D, and the occurrence of T2D seems to

lead to a decrease in LA levels. Additionally, we observed a negative

correlation between high levels LA and fasting blood glucose, as well

as glycated hemoglobin levels. However, the complex relationship

between LA and T2D, the association between LA and glycemic traits,

and the potential mechanisms governing these relationships, require
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further in-depth exploration through original research. Considering

the adverse consequences associated with T2D and the causal

relationships identified in our study, we recommend increasing LA

intake as a primary preventive measure for T2D.
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