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Background: Previous research on the association between risk factors and

gestational diabetes mellitus (GDM) primarily comprises observational studies

with inconclusive results. The objective of this study is to investigate the causal

relationship between 108 traits and GDM by employing a two-sample Mendelian

randomization (MR) analysis to identify potential risk factors of GDM.

Methods:We conducted MR analyses to explore the relationships between traits

and GDM. The genome-wide association studies (GWAS) for traits were primarily

based on data from the UK Biobank (UKBB), while the GWAS for GDM utilized

data from FinnGen. We employed a false discovery rate (FDR) of 5% to account

for multiple comparisons.

Results: The inverse-variance weighted (IVW) method indicated that the

genetically predicted 24 risk factors were significantly associated with GDM,

such as “Forced expiratory volume in 1-second (FEV1)” (OR=0.76; 95% CI: 0.63,

0.92), “Forced vital capacity (FVC)” (OR=0.74; 95% CI: 0.64, 0.87), “Usual walking

pace” (OR=0.19; 95% CI: 0.09, 0.39), “Sex hormone-binding globulin (SHBG)”

(OR=0.86; 95% CI: 0.78, 0.94). The sensitivity analyses with MR-Egger and

weighted median methods indicated consistent results for most of the trats.

Conclusion: Our study has uncovered a significant causal relationship between

24 risk factors and GDM. These results offer a new theoretical foundation for

preventing or mitigating the risks associated with GDM.
KEYWORDS

risk factor, gestational diabetes mellitus, Mendelian randomization, UK
biobank, FinnGen
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Introduction

Gestational diabetes mellitus (GDM) is the occurrence of

hyperglycemia of varying severity due to impaired glucose tolerance,

which is first diagnosed during pregnancy (1, 2). According to the

International Diabetes Federation, it is estimated that GDM will affect

one out of every six live newborns worldwide in 2019 (3). GDM

significantly impacts both maternal and fetal health, as indicated by

previous studies (4). Furthermore, GDM not only worsens short-term

adverse outcomes during pregnancy (5–7) but also increases the long-

term likelihood of developing type 2 diabetes mellitus (T2DM) among

women (8, 9), which has been linked to various complications (10–16).

Observational research has identified multiple associations

between various risk factors and GDM (17–19). However, these

investigations are susceptible to confounding variables that may

influence their findings. Additionally, the casual association

proposed by these observational studies may lack statistical

validity due to inconsistent study designs, conflicting findings,

and substantial variability across different settings. Consequently,

there is inadequate evidence available within these associations to

establish a direct causal link between risk factors and GDM.

In order to address the aforementioned challenges, we employed

Mendelian randomization (MR) as a method to mitigate biased

estimation and reverse causation in the relationship between traits

and GDM. In MR analysis, single nucleotide polymorphisms (SNPs), a

type of genetic variation, are utilized as instrumental variables (IVs).

Statistical techniques are utilized in this approach to evaluate the

presence of a causal association between exposures and outcomes.

Genetic variants serve as suitable IVs due to their random distribution

during meiosis. Consequently, they exhibit reduced susceptibility to

confounding influences. Hence, if these genetic variants are randomly

distributed within a population, the observed causal relationships

between exposures and outcomes are not likely due to potential

confounders such as environmental risks, lifestyle choices, or

socioeconomic status (20). Thus, MR design is employed in this

study to systematically investigate the causal associations between

108 traits and GDM to identify the potential risk factors of GDM.
Methods

Study design

Utilizing datasets obtained from genome-wide association

studies (GWAS), we identified significant SNPs associated with

108 traits as exposure variables. These SNPs were employed as IV,
Abbreviations: GDM, Gestational Diabetes Mellitus; MR, Mendelian

randomization; IVs, instrumental variables; GWAS, genome-wide association

study; UKBB, UK Biobank; IVW, inverse-variance weighted; FDR, false discovery

rate; FEV1, Forced expiratory volume in 1-second; FVC, Forced vital capacity;

SHBG, Sex hormone-binding globulin; HDL, High-density lipoprotein; OR, odds

ratio; CI, confidence interval; T2DM, type 2 diabetes; SNPs, single nucleotide

polymorphisms; LD, linkage disequilibrium; MAF, minor allele frequency; IGF-1,

Insulin-like growth factor 1.
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and a MR analysis was conducted to evaluate the causal relationship

between the 108 traits and GDM.
Data sources

To adhere to the principles of a two-sampleMR design, we sourced

exposure and outcome data from distinct European populations as

previously described (21–23). We extracted minimally adjusted GWAS

summary statistics for our variables of interest from the largest available

sample. This dataset included individuals of both sexes and European

or mixed ancestry. Our selection process for summary statistics of 108

exposure variables followed a previously described procedure outlined

in Supplementary Figure 1 (24). While most exposure GWAS studies

utilized data from the UKBB (detailed information can be found in

Supplementary Table 1), the dataset for GDM, as outcome, relied on

information sourced from FinnGen, a significant biomedical research

initiative based in Finland.
Selection of IVs

IVs were selected for theMR analysis based on specific criteria. The

criteria included a significant genetic relationship between IVs and

exposure, with a P-value < 5× 10-8. Independent IVs were identified by

performing clumping within a 10 Mb window and considering linkage

disequilibrium (LD) with an R2 value below 0.001. Furthermore,

following previous studies, only IVs with a minor allele frequency

(MAF) greater than 0.01 were considered in our analysis. Palindromic

SNPs were excluded from the analysis due to their intermediate allele

frequencies (25). F-statistics were computed to assess the strength of

the IVs; values exceeding 10 indicated reduced likelihood of weak

instrument bias (refer to Supplementary Table 2) (26).
MR analysis and sensitivity analysis

The main technique employed in the MR analysis was the IVW

method. Furthermore, both the weighted median technique and MR-

Egger approaches were utilized. The MR-Egger intercept test was

employed to evaluate the existence of horizontal pleiotropy. To

address potential outliers, pleiotropy-corrected data from MR-

PRESSO were incorporated. The degree of heterogeneity was

examined using the Cochrane Q value. We conducted a leave-one-

out sensitivity analysis to evaluate how each IV impacted causal

relationships and ensure robustness of findings. The calculation of

causal effects involved the use of odds ratios (ORs) along with their

corresponding 95% confidence intervals (CIs). Multiple comparisons

were conducted using a false discovery rate (FDR) of 5%. All MR

analyses in R were conducted using the TwoSampleMR package.
Results

Out of a pool of 108 variables, SNPs were selected as IVs for

potential risk factors according to predetermined inclusion and
frontiersin.org
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exclusion criteria. The findings were interpreted based on FDR-

adjusted threshold. Using the IVW technique in MR analysis, we

found significant relationships of 24 genetically predicted risk

factors, such as “Apoliprotein A” (OR= 0.83; 95% CI: 0.76, 0.91),

“Forced expiratory volume in 1-second (FEV1)” (OR=0.76; 95% CI:

0.63, 0.92), “Insulin-like growth factor 1 (IGF-1)” (OR=1.16; 95%

CI: 1.08, 1.26) and “Usual walking pace” (OR=0.19; 95% CI: 0.09,

0.39), with GDM (Figures 1, 2, Supplementary Table 3). The F-

statistics for the IVs of the 24 risk factors ranged from 28.62 to

9445.10, indicating good instrument strength (Supplementary

Table 2). Except for triglycerides, we found that 23 risk factors

consistently showed a significant association with GDM in the same

direction when analyzed using both MR-Egger and weighted

median techniques (Supplementary Table 3). The scatter plot in

Figure 3 illustrated the causal relationships between all the 24 traits

and GDM. The possible heterogeneity was also examined (Figure 4,

Supplementary Table 4). Horizontal pleiotropy was estimated in

our causality assessment based on analysis using MR-Egger

technique as shown in Supplementary Table 5, and MR-PRESSO

analyses indicated consistent findings after removing outlier IVs

(Supplementary Table 6). The leave-one-out analysis demonstrated
Frontiers in Endocrinology 03
that no single SNP was solely responsible for the observed

outcomes, as shown in Supplementary Figure 2.
Discussion

This study employed a two-sample MR analysis to investigate

the causal relationship between traits and GDM. The analysis

incorporated GWAS summary statistics from public databases.

The findings indicated significant causal associations between 24

risk factors and the risk of GDM. These risk factors will be discussed

in detail across four subsequent paragraphs based on their

respective categories.
Body size measures and body composition
by impedance analysis

Body size measurements and body composition evaluated using

impedance analysis are important indicators for assessing obesity.

Overweight or obese women have up to a four-fold increased risk of
FIGURE 1

The P-value distribution of associations between 24 risk factors and GDM in the Mendelian randomization analysis. The red dashed line indicates the
significance threshold adjusted by false discovery rate. The blue dash-dotted line indicates the suggestive significance threshold, set at P = 0.05.
FVC, Forced vital capacity; FEV1, Forced expiratory volume in 1-second; HDL, High-density lipoprotein; IGF-1, Insulin-like growth factor 1; SHBG, Sex
hormone-binding globulin.
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developing GDM (27). We found a significant causal relationship

between GDM and various body size measurements such as body

mass index (BMI), weight, waist-to-hip ratio (WHR), and waist

circumference (WC) in our study. Additionally, we observed

correlations among several measures of body composition

determined through impedance analysis including trunk fat mass,

trunk fat percentage, whole-body fat mass, and body-fat percentage.

Previous studies have demonstrated a strong association between

gestational weight gain and both gestational impaired glucose

tolerance and GDM (28, 29). Obesity and being overweight are

significant risk factors for acquiring GDM (4). A recent study

revealed that obesity and visceral adiposity are correlated with an

elevated risk of developing GDM. Furthermore, it highlighted that

among these factors, visceral adiposity specifically poses a higher

risk for GDM (17). BMI, as a measure of general obesity, has been
Frontiers in Endocrinology 04
reported to show an association with the prevalence of GDM.

Specifically, there is evidence suggesting that every 1 kg/m²

increase in pre-pregnancy BMI leads to a rise in GDM prevalence

by 0.92% (30). Central obesity refers to an excessive accumulation

of abdominal fat which can be assessed using markers such as WHR

and WC measurements (31). Previous literature has demonstrated

an association between maternal central obesity in the first trimester

of pregnancy and a higher occurrence of GDM (31, 32). The

presence of visceral adipose tissue can be easily explained as it

directly contributes to the pathogenesis of hyperglycemia. It does so

by secreting various substances such as thrombogenic agents,

inflammatory compounds, and inhibitors of adiponectin. These

substances negatively impact glucose metabolism, increase insulin

resistance and facilitate the development of metabolic syndrome

along with subsequent cardiovascular diseases (33, 34).
FIGURE 2

Associations between genetically predicted 24 risk factors and GDM examined by IVW methods. GDM, Gestational Diabetes Mellitus; IVW, inverse-
variance weighted; FVC, Forced vital capacity; FEV1, Forced expiratory volume in 1-second; HDL, High-density lipoprotein; IGF-1, Insulin-like growth
factor 1; SHBG, Sex hormone-binding globulin; OR, odds ratio; CI, confidence interval.
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Biomarkers

A meta-analysis revealed a significant association between

elevated fasting glucose levels and a nearly two-fold increase in

the risk of developing GDM (27). Moreover, a recent study has

established an association between elevated fasting glucose during

the initial stages of pregnancy and the subsequent onset of GDM

(35). Enquobahrie et al. reported that for every increase in

triglyceride content by 20 mg/dL, there is a 10% higher likelihood

of developing GDM (36). Hypertriglyceridemia increases the risk

for macrosomia due to factors such as insulin resistance caused by

elevated triglycerides along with reduced lipoprotein lipase

function. Macrosomia results in excessive fetal growth, obesity, as

well as accumulation and release of fatty acids in cord blood and

fetal adipose tissue (37). Previous research demonstrates an inverse

correlation between serum HDL-c concentration and the risk of

GDM and macrosomia. Additionally, even a slight increase in

HDL-c levels serves as a protective factor against these conditions

(38). Apolipoprotein A-1 is the primary lipoprotein associated with

HDL-c. In contradiction to our results, a previous cohort study

reported no association between serum Apolipoprotein A-1 levels,

insulin resistance, or the risk of GDM in human subjects (39).

However, since this study was observational, it cannot fully

eliminate potential confounding variables as contributors to this

discrepancy. Sex hormone binding globulin (SHBG), derived from

the liver, is expressed in the placenta and acts as a regulator of sex

steroid hormones. SHBG levels in the first trimester of pregnancy

have been identified as reliable biomarkers for GDM (40, 41). There

exists a negative correlation between SHBG and T2DM (42). Several
Frontiers in Endocrinology 05
previous studies have not only identified HbA1c as a diagnostic tool

for GDM (43–45) but have also established a relationship between

an HbA1c level above 7% in early pregnancy and adverse maternal

outcomes (45). Fetal IGF-1 plays a crucial role in fetal growth due to

its mitogenic and metabolic properties (46). According to Schwartz

et al, an increase in IGF-1 concentration within umbilical cord

blood contributes to accelerated intrauterine fetal growth (47).
Physical measures

Forced vital capacity (FVC) and FEV1 are commonly used

indicators of lung function (48, 49). Consistent with previous

research, our study identified a significant inverse causal

association between FVC, FEV1, and GDM. A prior study has

reported a significant association between restrictive ventilatory

dysfunction assessed through FVC and FEV1 measurements with

an elevated risk of T2DM, whereas no such relationship was

observed for obstructive ventilatory dysfunction evaluated using

the FEV1/FVC ratio (50). Emerging evidence indicates that

inflammatory markers such as C-reactive protein and interleukin-

6 might contribute to the association between T2DM and decreased

FEV1 and FVC (51).
Lifestyle

Our study identified a negative causal relationship between

usual walking pace and GDM, consistent with prior research in this
FIGURE 3

Scatter plot showing the causal effects of 24 risk factors on GDM. SNP, single nucleotide polymorphism; GDM, Gestational Diabetes Mellitus; HDL,
High-density lipoprotein; SHBG, Sex hormone-binding globulin; IGF-1, Insulin-like growth factor 1; FVC, Forced vital capacity; FEV1, Forced
expiratory volume in 1-second.
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field. Previous studies have suggested a robust correlation between

the usual walking pace and a decreased likelihood of developing

GDM (52). Furthermore, these studies revealed that women

reporting faster speeds or longer durations during regular walks

exhibited reduced risks of developing GDM when compared to

those with slower speeds and shorter durations (52). Exercise leads

to a significant increase in muscle glucose uptake. Exercise can

increase muscle glucose uptake by up to 100 times when compared

to resting conditions in humans (53). Increased glucose supply to

the contracting skeletal muscles is made possible by the increase in

blood flow and capillary recruitment during exercise (54).
Strengths and limitations

The current study possesses three significant strengths. Firstly,

previous observational studies have suggested an increased risk of

GDM onset in association with long-term maternal residence in an

environment characterized by a mixture of PM2.5, PM10, NO2, and

PM2.5 chemical constituents (55). However, the MR method can help

mitigate the influence of confounding factors on the results. This

method involves selecting a SNP that is strongly associated with the

exposure of interest as the IV. By utilizing this SNP, individuals can be

randomly assigned to the exposure, ensuring comparability of the

population in terms of both known and unknown confounders.

Secondly, we conducted a comprehensive investigation of the causal

relationship between 108 traits and GDM. Thirdly, we employed a
Frontiers in Endocrinology 06
variety of sensitivity analyses to verify the results of our main analyses

using IVWmethod. Lastly, during our assessment of pleiotropy within

the MR analysis framework, we utilized MR-PRESSO method to

provide outlier-corrected results.

However, our study has several limitations. Firstly, the scope of

our investigation was limited to people of European descent.

Consequently, the generalizability is impacted by this restriction.

Further studies on diverse population groups are still needed in

future research. Secondly, there might be potential selection bias

affecting our results as individuals who died due to competition risk

related outcomes might be missed in the GWAS analysis. Thirdly,

due to the utilization of GWAS summary data, we were unable to

stratify the data by variables such as age and gender, potentially

introducing population bias. Finally, we could not assess any

potential non-linear association between risk factors and GDM.

Future research utilizing extensive biobanks may offer insights into

the complex relationship between traits and GDM.
Conclusion

The present study has established a substantial and causative

association between multiple risk factors and GDM. The MR

analysis revealed statistically significant inverse associations of

usual walking pace, FEV1 and FVC with GDM risk. This finding

introduces novel insights that can guide future strategies aimed at

preventing or mitigating the risks associated with GDM.
FIGURE 4

Funnel plot indicating the causal associations of 24 risk factors on GDM. SNP, single nucleotide polymorphism; GDM, Gestational Diabetes Mellitus;
HDL, High-density lipoprotein; SHBG, Sex hormone-binding globulin; IGF-1, Insulin-like growth factor 1; FVC, Forced vital capacity; FEV1, Forced
expiratory volume in 1-second; IV, instrumental variable; SE, standard error.
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