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Stanniocalcin 1a regulates
organismal calcium balance
and survival by suppressing
Trpv6 expression and inhibiting
IGF signaling in zebrafish

Shuang Li †‡, Helena Li ‡, Zhengyi Wang and Cunming Duan*

Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor,
MI, United States
Stanniocalcin 1 (Stc1) is well known for its role in regulating calcium uptake in fish

by acting on ionocytes or NaR cells. A hallmark of NaR cells is the expression of

Trpv6, a constitutively open calcium channel. Recent studies in zebrafish suggest

that genetical deletion of Stc1a and Trpv6 individually both increases IGF

signaling and NaR cell proliferation. While trpv6-/-
fish suffered from calcium

deficiency and died prematurely, stc1a-/- fish had elevated body calcium levels

but also died prematurely. The relationship between Stc1a, Trpv6, and IGF

signaling in regulating calcium homeostasis and organismal survival is unclear.

Here we report that loss of Stc1a increases Trpv6 expression in NaR cells in an IGF

signaling-dependent manner. Treatment with CdCl2, a Trpv6 inhibitor, reduced

NaR cell number in stc1a-/- fish to the sibling levels. Genetic and biochemical

analysis results suggest that Stc1a and Trpv6 regulate NaR cell proliferation via

the same IGF pathway. Alizarin red staining detected abnormal calcium deposits

in the yolk sac region and kidney stone-like structures in stc1a-/- fish. Double

knockout or pharmacological inhibition of Trpv6 alleviated these phenotypes,

suggesting that Stc1a inhibit epithelial Ca2+ uptake by regulating Trpv6

expression and activity. stc1a-/- mutant fish developed cardiac edema, body

swelling, and died prematurely. Treatment of stc1a-/- fish with CdCl2 or double

knockout of Trpv6 alleviated these phenotypes. These results provide evidence

that Stc1a regulates calcium homeostasis and organismal survival by suppressing

Trpv6 expression and inhibiting IGF signaling in ionocytes.

KEYWORDS

Stc1a, IGF signaling, Trvp6, calcium uptake, ionocyte
Introduction

Stanniocalcins (Stcs) are evolutionarily conserved glycoproteins. The first Stc protein

was discovered from the Corpuscles of Stannius (CS), an endocrine organ unique to bony

fish (1, 2). Surgical removal of CS resulted in elevated blood calcium levels and the

appearance of kidney stones (3–5). Injection of CS extracts or purified Stc1 reversed these
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effects (6). In cultured rainbow trout CSs, secretion of Stc1 was

found to be regulated by external Ca2+ levels ([Ca2+]) (6). High [Ca2

+] increased Stc1 secretion via the calcium sensing receptor (7). In

vivo, zebrafish embryos raised in high [Ca2+] media showed

elevated stc1 mRNA levels (8, 9). Morpholino-based knockdown

of Stc1a increased Ca2+ uptake and forced expression of Stc1a

decreased Ca2+ uptake (10, 11). These and other findings have led to

the notion that Stc1 is a hypocalcemic hormone in fish (2, 4, 6).

For several decades, Stc1 was considered a fish-specific

hormone and even once called teleocalcin (2). Recent advances in

genomics, however, have revealed that two STC genes are present in

humans and other mammals. Human STC1 shares 61% sequence

identity with fish Stc1 (12). In addition to STC1, there is a related

protein (STC2), which shares ~30% identity in amino acid sequence

with STC1 and contains a histidine cluster in the C-terminal region

(2). Subsequent studies show that many teleost fish including

zebrafish have 4 distinct stc genes, including stc1a, stc1b, stc2a,

and stc2b (13), consistent with the notion that many teleost fish

genomes underwent an additional round of genome-wide

duplication (14). Published results suggest that mammalian STCs

regulate somatic growth by inhibiting the insulin-like growth factor

(IGF) signaling locally (15–17). IGFs act by binding to the IGF1

receptor and activating the downstream signaling cascades,

including the PI3K-AKT-mTOR pathway and the RAS/RAF-

MAP kinase pathway (18). In extracellular environments, IGFs

are found in complexes with six types of IGF binding proteins

(IGFBPs). These IGFBPs bind to IGF with an equal or greater

affinity than the IGF1 receptor and therefore regulates IGF

availability and biological activity (19). An important regulatory

mechanism of the IGF signaling is proteolytic degradation of

IGFBPs (16). Two structurally related metalloproteinases,

pregnancy-associated plasma protein-a (PAPP-A) and PAPP-A2,

have been shown to cleave IGFBPs and release IGFs from the

IGFBP-IGF complex for IGF1 receptor binding (20). In vivo and

biochemical studies suggest that human STC1 and STC2 function as

potent inhibitors of PAPP-A and PAPP-A2 (21–23).

Recent genetic studies in zebrafish suggest that Stc1a is essential

for life (24). stc1a-/- zebrafish developed cardiac edema around 4-5

days post fertilization (dpf). This was followed by whole body

swelling and premature death (24). In zebrafish, calcium uptake is

mainly carried out by Na+/H+-ATPase-rich (NaR) cells, one of the

five types of ionocytes (25). stc1a-/- mutant larvae had significantly

more NaR cells due to elevated NaR cell proliferation (24).

Mechanistic analysis results show that Stc1a suppresses local IGF

signaling by inhibiting Papp-aa mediated degradation of IGF

binding protein 5a (Igfbp5a) in NaR cells (24, 26). A loss of Stc1a

liberates IGFs from the Igfbp5a/IGF complex and increases

bioavailable IGFs for IGF1 receptor binding (24, 26, 27). Addition

of fish IGF-1 in excess was sufficient to increase NaR cell

proliferation (26, 28). These findings suggest that the Stc1a-Papp-

aa-Igfbp5a-IGF axis regulates NaR cell number and density.

A hallmark of NaR cells is the expression of Trpv6 (previously

known as epithelial calcium channel or ECaC) (10, 29). Trpv6 is a

constitutively open channel and it mediates continuous Ca2+ influx

and maintains high cytoplasmic [Ca2+] levels (29). We have

previously shown that genetic deletion of trpv6 not only reduces
Frontiers in Endocrinology 02
calcium influx but also increases NaR cell proliferation (29). While

trpv6-/- fish suffered from calcium deficiency and died prematurely,

stc1a-/- fish had elevated body calcium levels but also died

prematurely (24, 29). The relationship between Stc1a, Trpv6, and

IGF signaling in regulating NaR cell proliferation and calcium

uptake is unclear. In the current study, we provide evidence that

both Stc1a and Trpv6 inhibits NaR cell proliferation by suppressing

IGF signaling. Genetic deletion of Stc1a increases trpv6 mRNA

levels and results in abnormal calcium deposits in the yolk sac and

kidney stones. These phenotypes were rescued by inhibiting Trpv6

channel activity and by double knockout of Trpv6. Additional

evidence suggests a crosstalk between Trpv6-mediated calcium

signaling and IGF signaling in NaR cells and they work together

to maintain calcium homeostasis and organismal survival.
Results and discussion

Stc1a is synthesized and secreted from CS (10) (Figure 1A). As

previously reported, genetic deletion of Stc1a resulted in a

significant increase in NaR cells (24) (Figures 1B, C). Whether

this action of Stc1a is specific to NaR cells was not clear. In this

study, we determined the number of H+-ATPase-rich (HR) cells

and Na+/Cl_ cotransporter (NCC) cells, two other ionocyte types

responsible for Na+ uptake and Cl- uptake (25). No significant

difference was detected in either HR cells or NCC cells (Figures 1D–

G) between stc1a-/- larvae and their siblings, suggesting the action of

Stc1a is specific to NaR cells. This result is consistent with previous

studies showing that Igfbp5a is specifically expressed in NaR cells,

but not in other ionocyte types (30–32).

To test whether Trpv6 is involved in the increased NaR cell

proliferation observed in stc1a-/- mutant fish, we measured trpv6

mRNA levels by qRT-PCR in Tg(igfbp5a:GFP) fish. In Tg(igfbp5a:

GFP) fish, NaR cells are genetically labeled by GFP expression (32),

allowing quantification of NaR cells in live larvae. Compared to the

siblings, stc1a-/- fish had significantly greater levels of trpv6 mRNA

(Figure 2A). To ascertain that the increased trpv6 mRNA levels are

not a result of increased NaR cell number in stc1a-/- fish (24), GFP-

positive NaR cells were quantified and used to normalize trpv6

mRNA levels. The trpv6 mRNA levels/NaR cell in stc1a-/- were also

significantly greater than the siblings (Figure 2C). Our finding is

consistent with in vitro studies reporting that si/shRNA-mediated

knockdown of STC1 increases TRPV6 protein levels in human

CaCo2, Hela, and Caski cells (33, 34). Next, we measured stc1a

mRNA levels in trpv6-/- fish and siblings. As shown in Figure 2B,

stc1a mRNA levels were significantly lower in trpv6-/- mutant fish,

suggesting that Stc1a and Trpv6 are interconnected.

Previous studies have shown that loss of Stc1a increases IGF-

Akt-Tor signaling in NaR cells (24). Does the elevated IGF-Akt-Tor

signaling play any role in the increase of trpv6mRNA expression in

stc1a-/- fish? This idea was tested by treating stc1a-/- fish and siblings

with BMS-754807, an IGF1-R inhibitor (31). As shown in

Figures 2C, D, BMS-754807 reduced trpv6 mRNA levels to the

sibling levels, suggesting that loss of Stc1a increases Trpv6

expression via an IGF signaling-dependent mechanism. Recently,

we have discovered that serum- and glucocorticoid-regulated kinase
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1 (Sgk1) acts downstream in the IGF-Akt-Tor signaling pathway in

NaR cells (35, 36). Studies in culture mammalian cells suggest that

SGK1 up-regulates the expression of several ion channels and

transporters, including the epithelial Ca2+ channels TRPV5 and

TRPV6 (37). SGK1 influences transcription factors such as NF-kB,
p53, CREB, AP-1 and FOXO3a. Future studies are needed to clarify

whether Sgk1 plays a role in regulating trpv6 expression.

The functional role of increased trpv6 expression was

investigated using CdCl2, a Trpv6 inhibitor (29). CdCl2 treatment

reduced NaR cell number in stc1a-/- fish to the sibling group levels

(Figure 3A), indicating that Stc1a suppresses NaR cell proliferation

by acting through Trpv6. If this were correct, then double deletion

of Stc1a and Trpv6 should phenocopy each other. Indeed,

compared to the siblings, the NaR cell number of trpv6-/-; Tg

(igfbp5a:GFP) fish was significantly higher. Double deletion of

Stc1a and Trvp6 did not cause any further increase (Figures 3B,
Frontiers in Endocrinology 03
C), indicating that Stc1a and Trpv6 act via the same pathway. Akt is

a downstream effector of IGF signaling and has been used as a proxy

of IGF signaling in NaR cells due to the lack of antibodies to

detected phospho-IGF1 receptors (31). To determine whether IGF

signaling is involved, we measured phosphorylated Akt levels. Few

Phospho-Akt positive cells were detected in wild-type and

heterozygous siblings (Figures 3D, E). In comparison, a robust

increase in Phospho-Akt positive NaR cells was detected in trpv6-/-

larvae (Figures 3D, E). The double stc1a-/-; trpv6-/- mutant fish had a

similar level of increase in Akt signaling as trpv6-/- mutant fish

(Figures 3D, E), suggesting that Stc1a and Trpv6 inhibit NaR cell

proliferation via the same IGF signaling. It is worthy to point out

the difference in the two approaches used to inhibit Trpv6 function/

activity in this study. In Figure 3A, CdCl2 treatment was carried out

in stc1a-/- fish. These fish have a functional Trpv6 and at elevated

levels. In this setting, CdCl2 treatment inhibited Trpv6-mediated
B C D

E F G

A

FIGURE 1

CS-derived Stc1a regulates the proliferation of NaR cells, but not other ionocyte types. (A) In situ hybridization analysis of stc1a mRNA expression in
3 and 5 days post fertilization (pdf) larvae. Arrows indicate the corpuscles of Stannius. (B, C) Loss of Stc1a increases NaR cell proliferation. stc1a+/+;Tg
(igfbp5a:GFP), stc1a-/-;Tg(igfbp5a:GFP) embryos were raised in E3 embryo medium to 5 day post fertilization (dpf) and analyzed. Representative
views are shown in (B). Scale bar = 0.2 mm. The NaR cell numbers were quantified and shown in (C). n = 16-19 larvae/group ***, P < 0.001. (D, E)
NCC cells. Larvae (4 dpf) of the indicated genotypes were analyzed by in situ hybridization for slc12a10.2 mRNA expression. Representative views are
shown in (D) and quantified data in (E). Scale bar = 0.2 mm. n = 4~13. ns, not statistically significant. (F, G) HR cells. Larvae (4 dpf) of the indicated
genotypes were analyzed by in situ hybridization for atpv61al mRNA expression. Representative views are shown in (F) and quantified data in (G).
Scale bar = 0.2 mm. n = 10~15 larvae/group. ns, not statistically significant. Images shown here and in all following figures are lateral views of the
yolk sac region. Anterior to the left and dorsal up. Data shown are Mean ± SEM.
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calcium influx and resulted in reduced NaR cell proliferation,

supporting the conclusion that Stc1a acts via Trpv6 to suppress

NaR cell proliferation. In comparison, the experiment shown in

Figures 3B, C used trpv6-/- mutant larvae. In this genetic deletion

model, there is no functional Trpv6 (29). Loss of Stc1a did not cause

a further increase in NaR cell proliferation in the absence of a

functional Trpv6. This result is in agreement with our conclusion.

It has been documented half a century ago that removal of CS

resulted in increased body calcium contents and the appearance of

kidney stones (4). This has been attributed to the loss of Stc1. This

notion, however, has not been tested genetically due to the lack of a

stable genetic mutant. We visited this issue using the stc1a-/- mutant

fish. Compared to their wild-type and heterozygous siblings,

abnormal calcium deposits were observed in the yolk sac region

where NaR cells are located (Figure 4A). Highly calcified stone-like

structures were also observed in the renal tube (Figure 4A). In a

previous report, we have quantified the calcium levels in stc1a-/-

mutants and sibling embryos and found that stc1a-/- fish had

significantly elevated calcium levels (24). Taken together, these
Frontiers in Endocrinology 04
data suggest that a permanent loss of Stc1a results in calcium

imbalance and the development of kidney stones, essentially

recapitulating the classical experiment results reported by Pang in

the 1970s (4) using molecular genetics in zebrafish. Are these

abnormal calcium deposits and kidney stones observed in stc1a-/-

larvae related to the increased trpv6 gene expression (Figure 2)? To

address this question, we treated the fish with CdCl2. CdCl2
markedly reduced the calcified structures in the yolk sac region

and in the renal tubes (Figure 4A). This was investigated further

using double mutant fish. Alizarin red staining showed that the

abnormal calcified structures were not observed in the stc1a-/-;

trpv6-/- double mutant fish. trpv6-/- fish had markedly reduced

staining as well (Figure 4B). These results suggest that Stc1a

inhibits epithelial Ca2+ uptake by regulating Trpv6 expression

and activity.

At 4-5 dpf, stc1a-/- mutants developed cardiac edema and this

was followed by whole body swelling and premature death (24). In

this study, we detected a significant reduction in heart rates

(Figure 5A). These phenotypes are very different from the mouse
B

C D

A

FIGURE 2

Stc1a and Trpv6 regulate each other’s expression. (A) Loss of Stc1a increases trpv6 mRNA levels. Fish of the indicated genotypes were raised in E3
embryo medium. At 5 dpf, the trpv6 mRNA levels were measured and normalized by 18S RNA levels. n = 15~17. *, P < 0.05. (B) Loss of Trpv6
reduces stc1a mRNA levels. Embryos of the indicated genotypes were raised in E3 embryo medium. At 5 dpf, the stc1a mRNA levels were measured
and normalized by 18S RNA levels. n = 15~17. *, P < 0.05. (C, D) IGF signaling is critical in increasing Trpv6 expression in stc1a-/- fish. Larvae (4 pdf)
of the indicated genotypes were treated with DMSO or BMS-754807 for one day and the trpv6 mRNA levels were measured and normalized by 18S
rRNA (C). The data were further normalized by NaR cell numbers and shown in (D). Data shown are from 3 independent experiments, each
containing 15 larvae/group. *, P < 0.05. ns, not statistically significant.
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model. Stc1-/- null mice grew normally with no notable anatomical

abnormalities (38). These differences among species may relate to

their distinct physiology and different habitats. Zebrafish Stc1a is

expressed and secreted from CS glands in a calcium concentration-

regulated manner (10, 24, 39). Mice, however, do not have CS

glands and Stc1 gene is expressed in many tissues and likely acts

locally as a PAPP-A/PAPP-A2 inhibitor (2, 17). Mouse Stc1 does

not appear to affect calcium homeostasis because Stc1 knockout

mice had normal circulating calcium levels and normal Vitamin D3

response (38). Mice and other territorial animals take up Ca2+ from

food and drinks. Zebrafish live in freshwater, a hypoosmotic aquatic

environment (40). Zebrafish actively regulate their body osmolarity

by maintaining ion water balance. They use ionocytes to uptake

salts. At the same time, zebrafish remove the excess osmotic water
Frontiers in Endocrinology 05
by producing and excreting large volumes of diluted urine and

reabsorbing ions in the kidney (39, 40). Although zebrafish

nephrons begin to form, efficient glomerular filtration and ion re-

absorption begin around 4-5 dpf (39, 41, 42). The cardiac edema

and body swelling phenotypes observed in stc1a-/- mutant fish begin

to manifest around 4-5 dpf. These led us to speculate that elevated

epithelial Ca2+ uptake and impaired renal function may result in the

accumulation of osmotic water, which lead to the progressive

development of edema and swelling. If this were correct, then

pharmacological or genetic blockade of Trpv6-mediated Ca2+

uptake should rescue the stc1a mutant fish. Indeed, treatment of

stc1a-/- fish with CdCl2 alleviated the edema and body swelling

phenotype (Figure 5B). While stc1a-/- fish died between 6 to 10 dpf,

there was no death in the CdCl2 treated group until 10 dpf
B

C D E

A

FIGURE 3

Stc1a and Trpv6 suppress NaR cell proliferation via the same IGF signaling pathway. (A) Inhibition of Trpv6 abolishes the elevated NaR cell
proliferation in stc1a-/- larvae. Larvae (3 dpf) of the indicated genotypes were treated with DMSO or 10 mg/L CdCl2 for 2 days. GFP-labeled NaR cells
were quantified and shown. n = 4~19 fish/group. *, P < 0.05. ns, not statistically significant. (B, C) stc1a-/-; trpv6-/- double mutants phenocopy
trpv6-/-

fish. Progeny of stc1a+/-; trpv6+/- in the Tg(igfbp5a:GFP) background were raised in E3 medium. At 5dpf, NaR cells were quantified and
shown. These larvae were genotyped individually Representative images are shown in (B) and quantified data in (C). n = 4~19 larvae/group. Scale bar
= 0.2 mm. (D, E) Progenies of stc1a+/-; trpv6+/- intercrosses were raised in E3 medium. They were subjected to whole mount immunohistochemistry
using an anti-phospho-Akt antibody. Phospho-Akt positive cells in the yolk sac region were quantified. The larvae were genotyped individually
afterwards. Representative images are shown in (D) and quantified data in (E). n = 5~14 larvae/group. Scale bar = 0.2 mm.
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(Figure 5C). The role of Trvp6-mediated epithelial Ca2+ uptake was

tested further by double knocking out stc1a and trpv6. As shown in

Figures 5D, E, no cardiac edema or body swelling was observed in

stc1a-/-; trpv6-/- double mutant larvae. All stc1amutant larvae lacked

inflated swimming bladders (Figure 5D). This phenotype was

rescued by CdCl2 treatment (Figure 5A) but not by double

deletion of stc1a-/- and trpv6-/- (Figure 5C). The reason is not

clear at this time. We have reported that the premature death can be

rescued by reducing NaR cell number via pharmacological

inhibition of the IGF1 receptor and Tor or by double deletion of

igfbp5a or papp-aa in the stc1a-/- background (24). Since Stc1a and

Trpv6 inhibit NaR cell number via the same IGF signaling, we tested

the possible role of Trpv6 in zebrafish survival. While many stc1a-/-

fish died between 7 to 10 dpf, no death was detected in stc1a-/-;

trpv6-/- fish, trpv6-/- or siblings until 10 dpf (Figures 5D, E). These

data suggest that the increased calcium uptake due to the

combinatory effects of more NaR cells and great Trpv6

expression/NaR cell may cause ion water imbalance and

premature death of stc1a-/- fish.

In summary, the results of this study have provided genetic and

biochemical evidence that Stc1a regulates calcium homeostasis and

organismal survival by playing dual roles in ionocytes (Figure 6).

Stc1a suppresses NaR cell proliferation via its reported role in

inhibiting Papp-aa-mediated local Igfbp5a degradation (24, 26).

Stc1a also inhibits Trpv6 expression and/or Trpv6-mediated

calcium uptake (Figure 6). These two functions are linked. While

Trpv6-mediated calcium uptake inhibits IGF signaling, IGF

signaling upregulates Trpv6 expression and stimulates NaR cell

proliferation (Figure 6). A loss of Stc1a results in a reactivation of

IGF-PI3 kinase-Akt-Tor signaling in NaR cells, which stimulates
Frontiers in Endocrinology 06
NaR cell proliferation and increase NaR cell number and calcium

uptake. In addition, loss of Stc1a also increases Trpv6 expression

and Trpv6-mediated calcium uptake. These changes contribute to

abnormal calcium deposits in the yolk sac region and in the kidney,

the development of edema, body swelling, and premature death

(Figure 6). The current study also reveals a feedback loop from

Trpv6 to Stc1a. While loss of Stc1a increases Trpv6 expression in

NaR cells, loss of Trpv6 expression decreases Stc1a expression in

CS. These findings provide new insights into our understanding of

Stc1/STC1. At present, the biochemical pathways that lead to the

formation of ectopic calcium deposits in the yolk sac region and in

renal tubes found in the stc1a-/- mutant fish are not clear. In the

adult stages, NaR cells are distributed mainly in the gills and kidney.

Because stc1a-/- mutant fish die prematurely, the function of Stc1a

in adult physiology is not clear. A conditional knockout fish model

will be needed to elucidate Stc1a’s actions in the adult gills, kidney,

and intestine. In addition to stc1a, zebrafish have 3 other stc genes.

Future studies will be needed to elucidate their functions and the

relationship among these genes.
Materials and methods

Zebrafish

The experiments were conducted in accordance with the

guidelines approved by the Institutional Committee on the Use

and Care of Animals, University of Michigan. Zebrafish were raised,

maintained, crossed, and staged in accordance with the standard

zebrafish husbandry guidelines (43). Embryos and larvae were
BA

FIGURE 4

Loss of Stc1a results in abnormal calcium deposits in a Trpv6-depndent manner. (A) Larvae (3 dpf) of the indicated genotypes treated with or without
10 mg/L CdCl2 for 2 days. They were subjected to Alizarin red staining at 5 dpf. Representative images are shown. Note the ectopic calcified
structures in the yolk sac region (arrow) and kidney stones (arrow heads) in the mutant fish. Scale bar = 0.5 mm. (B) Alizarin red staining analysis of 7
dpf zebrafish larvae of the indicated genotypes. Representative images are shown. Note the ectopic calcified structures in the yolk sac region (arrow)
and kidney stones (arrow heads) in the mutant fish. Scale bar = 0.2 mm.
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raised at ~28°C in the standard E3 embryo medium. To inhibit

pigmentation, 0.003% (w/v) N-phenylthiourea was added to these

medium. The Tg(igfbp5a:GFP) fish line, Tg(ifbp5a:GFP);stc1a+/-,

and Tg(igfbp5a:GFP);trpv6+/- fish line were generated in previous

studies (24, 26, 27, 29). Double mutant fish were generated by

crossing these lines.
Genotyping

Fish larvae or adult fish fin were digested in 100 ml SZL buffer

(50 mM KCl, 2.5 mMMgCl2, 10 mM tris-HCl (pH 8.3), 0.45% NP-

40, 0.45% Tween 20, 0.01% gelatine) and proteinase K (100 mg/ml)

at 60°C for 2 hours. The reaction was stopped by 15-minute heat

treatment (95°C). The genotyping was performed by PCR using the

digestion mixture as a template as previously reported (24, 29).
Morphological analysis and heart rate

Heat rate was determined by counting heartbeat manually

under a stereomicroscopy. For morphology imaging, embryos and

larvae were briefly anesthetized with Tricaine and mounted in 1.5%

agarose and imaged. Bright field images were acquired using a

stereomicroscope (Leica MZ16F, Leica, Wetzlar, Germany)

equipped with a QImaging QICAM camera (QImaging, Surrey,

BC, Canada). After imaging, embryos and larvae were washed and

returned to the E3 embryo medium.
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Immunostaining, in situ hybridization, and
Alizarin red staining

Immunostaining of phospho-Akt was performed as previously

described (31, 44). Briefly, zebrafish larvae were fixed overnight in

4% paraformaldehyde. They were dehydrated in methanol for two

hours at -20°C and washed with PBST (Triton 0.1%). After

incubated with in PBST containing 5% horse serum for 1.5 hours

at 4°C. The larvae were rinsed and incubated overnight with an

antibody against phospho-Akt at 4°C. They were washed with PBST

and 5% HS in PBST. The larvae were incubated with an anti-rabbit

HRP antibody (Jackson ImmunoResearch, West Grove, PA, USA)

for 3 hours at room temperature and visualized by nickel-

diaminobenzidine staining. Whole mount in situ hybridization

was performed as previously reported (30, 31, 45). Calcified

tissues were detected by Alizarin red staining as reported

previously (27).
qRT-PCR

Total RNA was extracted from pooled zebrafish embryos and larvae

as reported (46). RNA was reverse transcribed to cDNA using oligo(dT)

18 primer and M-MLV (Promega). qPCR was performed using SYBR

Green (Bio-Rad) on a StepONEPLUS real-time thermocycler (Applied

Biosystems). The expression level of a target gene transcript was

normalized by 18S RNA level. The following primers were used:

trpv6-qPCR-F: 5’- GGACCCTACGTCATTGTGATAC-3’, trpv6-
B

C D E

A

FIGURE 5

Pharmacological inhibition and double deletion of Trpv6 rescues cardiac edema and body swelling, and delays premature death of stc1a-/- fish. (A)
Loss of Stc1a reduces heartbeat rate. Heartbeat rate stc1a-/- and siblings was determined and shown. *, P < 0.05. n = 9~17. (B) Gross morphology of
fish of the indicated genotypes at the indicated time. Progeny of stc1a+/- intercrosses were raised in E3 embryo medium and treated with or without
10 mg/L CdCl2 from 3 dpf until the indicated time. Fish were genotyped individually. Representative views of the indicated genotypes at the indicated
stages are shown and survival curve shown in (C). Scale bar = 0.5 mm. P < 0.0001 by log-rank test. (D, E) Gross morphology of fish of the indicated
genotypes at the indicated time. Representative views at the indicated stages are shown and survival curve shown in (E). Scale bar = 0.2 mm. P <
0.0001 by log-rank test.
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qPCR-R: 5’-GGTACTGCGGAAGTGCTAAG-3’, 18s-qPCR-F: 5’-

AATCGCATTTGCCATCACCG-3 ’ , and 18s-qPCR-R: 5 ’-

TCACCACCCTCTCAACCTCA-3’.
Drug treatment

All drugs were dissolved in DMSO and further diluted in double

deionized water as previously reported (24, 31). Drug solutions were

changed daily.
Statistical analysis

Statistical tests were determined using GraphPad Prism 8

software (GraphPad Software, Inc.,San Diego, CA). Values are

shown as means ± SEM. Unpaired two-tailed t-test, Chi-square

test, log-rank test and one-way ANOVA followed by Tukey’s

multiple comparison test were used to determine statistical

significance of experimental groups. A p-value less than 0.05 was

accepted as statistically significant.
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FIGURE 6

A proposed model. Stc1a plays dual roles in ionocytes. Stc1a suppresses local IGF signaling and inhibits NaR cell proliferation by inhibiting Papp-aa-
mediated Igfbp5a degradation. Stc1a also inhibits Trpv6 expression and activities. These two functions are linked. Trpv6-mediated calcium signaling
inhibits IGF signaling, while IGF signaling upregulates Trpv6 expression. A loss of Stc1a reactivates IGF-PI3 kinase-Akt-Tor signaling in NaR cells and
increased NaR cell proliferation. In addition, Trpv6 expression and Trpv6-mediated calcium uptake in each NaR cell are elevated in the stc1a-/-

mutant fish. These changes contribute to abnormal calcium deposits in the yolk sac region and kidney and to the developemnt of cardiac edema,
body swelling, and premature death phenotypes.
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