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Diabetes is a global health problem which is accompanied with multi-systemic

complications. It is of great significance to elucidate the pathogenesis and to

identify novel therapies of diabetes and diabetic complications. Sestrin2, a stress-

inducible protein, is primarily involved in cellular responses to various stresses. It

plays critical roles in regulating a series of cellular events, such as oxidative stress,

mitochondrial function and endoplasmic reticulum stress. Researches

investigating the correlations between Sestrin2, diabetes and diabetic

complications are increasing in recent years. This review incorporates recent

findings, demonstrates the diverse functions and regulating mechanisms of

Sestrin2, and discusses the potential roles of Sestrin2 in the pathogenesis of

diabetes and diabetic complications, hoping to highlight a promising

therapeutic direction.
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1 Introduction

Diabetic mellitus (DM) is a metabolic disease characterized by hyperglycemia. It is a

type of disease in which defects in insulin production and activity lead to abnormal glucose

metabolism. Continuous hyperglycemia leads to impaired cellular autophagy and oxidative

stress response, which further induces inflammatory response and the stimulation of

coagulation, and finally gives rise to the occurrence of complications in multiple organs and

systems (1). In recent years, the number of patients with diabetes has increased

dramatically globally due to an aging population, changes in the lifestyle, and the

increase prevalence of obesity. Among various types of DM, type 2 DM (T2DM) is the

major type and accounts for nearly 90% of all DM cases. Diabetes and diabetic chronic

complications have become important causes of disability and death for individuals, and

have posed huge economic burdens worldwide (2).

As an important member of the Sestrins (Sesns) protein family, Sestrin2 is a newly

discovered stress-inducible protein widely distributed in animals. Sestrin2 gene was

originally identified in human neuroblastoma cells as a hypoxia-activated gene (3).

Sestrin2 accumulates in mammalian cells in various pathophysiological states such as

hypoxia, starvation, radiation, oxidative stress and endoplasmic reticulum (ER) stress (4).
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Previous studies on Sestrin2 mostly focused on metabolic disease

such as obesity, age-related diseases and malignant tumors. Recent

researches indicated that Sestrin2 also plays critical roles in the

pathogenesis of cardiovascular diseases, kidney diseases, liver

diseases, respiratory diseases, and diseases of the nervous system

and exerts protective effects on several organs (5). Complicated

mechanism is involved, including regulation of oxidative stress,

mitochondrial function, ER stress, autophagy, metabolism and

inflammatory response (5, 6). In recent years, increasing numbers

of studies report about correlations between Sestrin2 and diabetes,

indicating that Sestrin2 might become a novel therapeutic target for

diabetes. In this review, we summarize the recent findings and

discuss the potential role and underlying mechanism of Sestrin2 in

diabetes and diabetic complications.
2 Sestrin2 pathways and
modulating mechanisms

As a sensitive stress receptor, Sestrin2 is activated in stress

conditions. A variety of adverse stresses could promote Sestrin2

expression, such as oxidative stress, ER stress, hypoxia, energetic

stress, and age- and obesity-associated metabolic pathological

conditions (7–10). Up-regulated Sestrin2 exerts pleiotropic

biological effects in diverse physiological and pathological states,

through attenuating oxidative stress, and modulating a series of

cellular events such as autophagy, ER stress, mitochondrial

biogenesis, protein synthesis, cell energy homeostasis and

apoptosis, while many of these responsive pathways are

interconnected (5, 11–14).
2.1 Upstream factors of Sestrin2 signaling

In response to stress, Sestrin2 could be regulated by various

transcription factors, including tumor-suppressor protein p53,

hypoxia inducible factor-1a (HIF-1a), nuclear factor erythroid 2-

related factor-2 (Nrf2), nuclear factor-kB (NF-kB), activated

transcription factor 4 (ATF4), c-Jun NH(2)- terminal kinase

(JNK)/c-Jun, Foxhead box O3 (FoxO), activated protein 1 (AP-1),

and CCAAT. A series of stress conditions, such as oxidative stress,

ER stress, DNA damage, hypoxia and mitochondrial dysfunction,

provoke the release of these upstream factors, and result in altered

expression and activity of Sestrin2 (15, 16). The mediating effects of

Sestrin2 in stress conditions will be further discussed below.
2.2 Downstream pathways of
Sestrin2 signaling

After being induced, Sestrin2 thereafter mediates several

signaling pathways, including adenosine monophosphate-

activated protein kinase/mammalian target of rapamycin (AMPK/

mTOR) pathway (17), Kelch-like ECH-associated protein1/Nrf2

(Keap1/Nrf2) pathway (18), the mitogen-activated protein kinase8/
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JNK1 (MAPK8/JNK1) pathway (19), AMPK/peroxisome

proliferator-activated receptor g coactivator-1a (AMPK/PGC-1a)
pathway (20), extracellular regulated protein kinases (ERK1/2)

pathway (21), thrombospondin-1/transforming growth factor-b1/
Smad3 (TSP-1/TGF-b1/Smad3) pathway (22), and TGF-b/NADPH
Oxidase 4 (NOX4)/ROS signaling pathway (23). Among these

signaling pathways, AMPK/mTOR and Nrf2/Keap1 are the

principal ones that Sestrin2 is suggested to be involved in the

pathogenesis of diabetes and diabetic complications.

2.2.1 The AMPK/mTOR pathway
Comprising of two distinct protein complexes (mTORC1 and

mTORC2), mTOR functions as a crucial sensor for energy, nutrient,

and redox states, and thereafter regulates protein synthesis and

autophagy (24). Persistent mTOR stimulation is linked with a wide

range of diseases such as diabetes, obesity, cardiovascular diseases,

cancer, autoimmune diseases and metabolic disorders (25). mTORC1

can phosphorylate and suppress autophagy-initiating protein kinases

unc-51-like kinase 1 (ULK1), so as to inhibit cellular autophagic

catabolism (26). mTORC2 is insensitive to nutrients but is sensitive to

growth factors via phosphatidylinositol 3 kinase (PI3K) signaling, and

thereby regulates metabolism and cytoskeletal tissue (27) and

functions as a crucial controller of lipid metabolism (28). mTORC1

could negatively regulate mTORC2 activity. mTOR is strongly

associated with T2DM and many of its chronic complications.

Both mTORC1 and mTORC2 play significant roles in the

regulation of insulin signaling. mTORC1/ribosomal protein S6

kinase 1 (S6K1) and mTORC2/protein kinase B (AKT), is critical

for the maintenance of insulin sensitivity and that their dysfunction

contributes to the development of T2DM (29). mTORC1 in

pancreatic b-cells controls cell size, proliferation, survival,

maturation, protein translation, insulin processing and secretion,

and autophagy. mTORC1/S6K1 pathway regulates the apoptosis

and autophagy of b-cell, while mTORC1/4E-BP2-eIF4E pathway

regulates the proliferation of b-cell. Loss of b-cell-specific mTORC1

leads to diabetes and b-cell failure (30). mTORC2 is essential for

maintaining a balance between the proliferation and the cell size of b-
cells (31). Recently, it is reported that mTORC2 regulates glucose-

stimulated insulin secretion in b-cell by enhancing actin filament

remodeling (32). Besides the direct regulating effects on b-cell,
mTORC2 also modulates glucose uptake in peripheral tissues

including adipose, skeletal muscle and brown adipose tissues (33–

35). Moreover, mTORC2 participates in the regulation of hepatic

insulin sensitivity, glycolysis, and lipogenesis (35, 36).

Sestrin2 exerts antioxidant and apoptosis-associated effects in a

variety of diseases through the inhibition of mammalian target of

rapamycin complex 1 (mTORC1) and/or the activation of AMPK

(21–23). Sestrin2 can suppress mTORC1 through AMPK-

dependent or -independent pathways. It was presumed that

Sestrin2 regulates AMPK activation by orchestrating the

recruitment of liver kinase B1 (LKB1), independent of

calmodulin-dependent protein kinase 2 (CAMKK2), as well as

promoting LKB1/AMPKa1b1g1 complex expression (37, 38).

Except the AMPK signaling pathway, Sestrin2 can also directly

bind to RagA/B regulatory protein complex 2 (GATOR2), mediate
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the discharge of GATOR1, stimulate GATOR1 to inhibit RagA/B,

and suppress mTORC1 inimitably (39). Sestrin2 promotes

mTORC2 activity through its interaction with mTORC2, as well

as the inhibition of feedback loop (40). GATOR2-mTORC2 axis is

essential for Sestrin2-induced AKT activation (41), which exerts

various glucose- and lipid-regulating effects (42).

2.2.2 The Keap1/Nrf2 pathway
As a member of a family of basic leucine transcription factors,

Nrf2 is involved in a serious of important cellular events including

redox regulation, DNA repair, metabolic homeostasis, and

apoptosis prevention (43). Nrf2 acts as a crucial transcription

factor that can modulate antioxidant gene expression through its

interaction with the antioxidant response elements (AREs). Keap1

acts as a sensor of oxidative stress, as well as a inhibitor of Nrf2 (44).

Under physiological circumstance, Keap1 binds to Nrf2 in the

cytoplasm and is inactivated (45). Keap1/Nrf2 signaling plays a

key role in diverse diseases, including diabetes, cancer,

neurodegenerative diseases, airway diseases, inflammatory

diseases, cardiovascular diseases, and aging (44, 46, 47). A

growing body of evidence suggest Nrf2 as a key regulator in the

development and progression of diabetes and its complications

(43). Nrf2 contributes to the suppression of inflammation of

pancreatic b-cell, the maintenance of autophagy in pancreatic b-
cells under ROS stimulation, and the regulation of the ER-

associated degradation (48, 49). Besides regulating b-cell function,
Keap1/Nrf2 pathway also demonstrates protective effects in diabetic

complications, i.e. diabetic kidney disease (50), diabetic

cardiomyopathy (51) and diabetic neuropathy (52), which is

further elucidated below. In fact, Nrf2 has been indicated to be

involved in mediating all aspects of diabetic complications across

every diabetes-relevant organ (43).

The Nrf2 activators up-regulate the expression of Sestrin2 in a

time- and dose-dependent manner and the Nfr2-ARE pathway

activation seems to be necessary for Sestrin2 induction. In turn,

Sestrin2 can function as a positive regulator of Nrf2 signaling,

activate the Nrf2 pathway by augmenting autophagy-directed

degradation of Keap1, which targets and breaks down Nrf2 (6,

53). Sestrin2 overexpression suppresses oxidative stress and cell

apoptosis by activating Nrf2-ARE signaling (54, 55). Also, Sestrin2/

Nrf2 signaling may be important for the mediation of ER stress as a

downstream regulator of the protein kinase R-like endoplasmic

reticulum kinase (PERK) pathway (56), which is illustrated below.
2.3 Sestrin2 and autophagy

Autophagy is a distinct type of programmed cellular death.

Autophagy helps maintain cell survival and tissue stabilization by

degrading misfolded and aged intracellular proteins and

dysfunctional organelles during stress. The process of autophagy

is regulated by various pathways and involves diverse organelles

such as mitochondria, ER, ribosomes, peroxisomes, and lysosomes.

The dysfunction of autophagy is related to a myriad of diseases,

such as diabetes, cardiovascular diseases, cancer, neurodegenerative

diseases, liver diseases, and inflammatory diseases (57–59).
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Autophagy takes part in the regulation of pancreatic b-cells and

protection of insulin target tissues. Dysfunctional autophagy is

detrimental for the maintenance of b-cell function and reduces

insulin secretion. Furthermore, inhibition of autophagy leads to

chronic ER stress and b-cell apoptosis. The disruption of autophagy

also contributes to diverse diabetic complications (1, 60).

Autophagy activation is required for the antioxidant effects of

Sestrin2 (61). After activated by the JNK pathways (62), Sestrin2 is

involved in modulation of autophagy through AMPK/mTORC1,

Keap1/Nrf2, p53/Sestrin2 and PI3K/AKT/mTOR pathways (63–

65). Furthermore, Sestrin2 has been indicated to be interacted with

BCL2/adenovirus E1B 19 kDa protein-interacting protein 3

(BNIP3), which is also a promoter of autophagy (66).
2.4 Sestrin2 and oxidative stress

Oxidative stress is considered to be an imbalance in redox

properties in certain cellular environments, and plays a crucial role

in the development of numerous human diseases, such as diabetes,

obesity, and myocardial injury (67, 68). Oxidative stress has been

proved to play key roles in the pathogenesis of diabetes and diabetic

complications. The high glucose activates various molecular and

biochemical pathways, causing increased ROS production, which

thereby leads to insulin resistance, b-cell dysfunction and diabetic

complications (69).

Sestrin2 is essential for the maintenance of cellular homeostasis

under oxidative stress. In various types of diseases, Sestrin2 is up-

regulated and is important for the resistance to oxidative stress

injury. Under oxidative stress, Sestrin2 is activated by various

transcription factors, including NF-kB, activator protein-1 (AP-

1), CCAAT-enhancer-binding protein beta (C/ERPb), forkhead box
O3 (FOXO3), and p53 (70). Sestrin2 helps to maintain the balance

of oxidative metabolism by exerting two major biological functions.

First, as an antioxidant enzyme, Sestrin2 is able to directly reduce

the accumulation of ROS (71). Second, Sestrin2 can exert

antioxidant effects through several signaling pathways, such as

Keap1/Nrf2 pathway (6) and AMPK/mTORC1 pathway (72),

which have been described above.
2.5 Sestrin2 and ER stress

ER stress is provoked when unfolded or misfolded proteins

accumulate in the endoplasmic network lumen in pathophysio

logical conditions (73). Many physiological and pathological

factors, such as inflammation, hypoxia and oxidative stress,

disturb the homeostasis of ER and lead to ER malfunction, which

thereby causes ER stress and promotes the unfolded protein

response (UPR). Three ER transmembrane receptors inositol-

requiring enzyme 1 (IRE1, also known as ERN1), PERK and

activating transcription factor 6 (ATF6) mediate ER state by

regulating UPR (74). The activation of UPR impairs cellular

survival by improving protein folding ability, inhibiting protein

production and accumulation, inducing ER stress-related gene

transcription, and strengthening the self-repair ability of ER. But
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if ER stress persists or continues for prolong periods, UPR is not

enough to maintain ER homeostasis, and apoptosis ultimately

occurs (75). ER stress has significant impact on maintaining

cellular homeostasis (76). ER stress plays mediating roles in the

pathogenesis of a series of diseases, such as diabetes, obesity,

inflammation, neurodegenerative diseases, cancer, and

autoimmune diseases (77). Numerous studies have proved the

role of ER stress in diabetes. Disturbed ER homeostasis and

unmitigated ER stress trigger or exacerbate b-cell dysfunction,

and contribute to insulin resistance in diabetes (60, 78). Diabetic

complications are closely associated with dysregulation of UPR

signaling pathways (79).

Increasing evidence has shown that Sestrin2 is activated under

ER stress (8, 80). How Sestrin2 expression is induced by ER stress is

not fully revealed. The PERK and IRE1/X-box binding protein 1

(XBP1) arms of the UPR appear to be required (8). Also, the

activation of transcription molecules, such as HIF-1, activating

transcription factor 4 (ATF4) and Nrf2, is suggested to be

necessary for ER stress-induced expression of Sestrin2 (72). Once

induced, Sestrin2 in turn prevents protein synthesis by inhibiting

mTORC1 (81). Sestrin2 inhibits the phosphorylation of JNK and

p38 as well as poly ADP-ribose polymerase (PARP) cleavage, and

prevents the adverse effect of excessive ER stress (80). The AMPK/

mTORC1 pathway, Keap1/Nrf2 pathway, CCAAT-enhancer-

binding protein homologous protein, phosphorylation of both

p38 and JNK, and Sestrin2-mediated UPR is involved in the

protective effects of Sestrin2 against ER stress-associated diseases

(4, 82, 83).
2.6 Sestrin2 and mitochondrial function

Mitochondria are the prime organelle which not only offers

energy substrates to cells but also controls the fate of cells via

mediating diverse cellular processes such as autophagy, apoptosis,

cellular mobilization and metabolism (84, 85). Mitochondria

possess a quality control system, including mitochondrial

dynamics (fusion and fission), mitophagy and mitochondrial

biogenesis, which is critical for maintaining a well-functioning

mitochondrial network (86, 87). Altered mitochondrial

functionality is involved in a variety of diseases, such as diabetes,

obesity, neurological disorders, and cardiovascular diseases (88–91).

A myriad of evidence has revealed crucial roles of mitochondrial

dynamics, mitophagy, and mitochondrial biogenesis in the

pathogenesis of diabetes. Dysregulations of mitochondrial

functions and dynamics could result in b-cell dysfunction and

insulin resistance (92, 93).

Recent studies have showed that Sestrin2 may play an

important role in maintaining cellular homeostasis by restoring

mitochondrial function and metabolism (7, 94). Mitochondrial

superoxide mediates Sestrin2 activation in the process of

mitochondrial quality control (95). Sestrin2 can thereby secure

the mitochondria from oxidative lesion, both in vivo and in vitro

(96, 97). Mitophagy is a subtype of autophagy, which helps to

remove dysfunctional mitochondria as well as is crucial for

maintenance of the functionality and integrity of the
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mitochondrial network. Several studies indicated that Sestrin2 is

involved in regulating the pace of mitophagy (95, 98). Sestrin2

stimulates ULK1- mediated phosphorylation of Beclin1 and

strengthens the interaction between Beclin1 and Parkin. Then

mitophagy is provoked as Parkin’s shift on the surface of

mitochondria (95, 99). Sestrin2-mediated autophagy and

mitophagy can ameliorate mitochondrial dysfunction and prevent

cell apoptosis (100).

Several signaling pathways participate the regulating

mechanisms of Sestrin2 in mitochondrial function and

metabolism. Kim et al. reported that Sestrin2 suppresses the

overactivation of the NLRP3 inflammasome and alleviates

mitochondrial injury. Sestrin2 promotes perinuclear clustering-

damaged mitochondria through regulating the aggregation of

SQSTM1 and its binding to Lys63-linked ubiquitins on the

surface of damaged mitochondria (98). Sestrin2 overexpression

suppresses inflammation by inducing AMPK/PGC-1a-mediated

mitochondrial biogenesis (101). Sestrin2/LKB1/AMPK pathway is

also indicated to function in mitochondrial quality control

enhancement, including mitochondrial biogenesis and

mitophagy (38).
2.7 Sestrin2 and apoptosis

Apoptosis is an active programmed cell death process,

characterized by specific biochemical and morphological

alterations such as cellular shrinkage, nuclear condensation and

chromatin condensation along the nuclear membrane (102). There

are three major signaling pathways that modulate apoptosis, namely

the mitochondrial, death receptor and ER pathways (103).

Pancreatic b-cell apoptosis is the determining factor for the

decline of b-cell function and impaired insulin secretion in

diabetes (104). Also, apoptosis of organ-specific cells has been

identified and characterized in the development of diabetic

complications (105, 106).

In different cell types and under different pathophysiological

conditions, Sestrin2 may exert opposite effects on apoptosis. In

most studies targeting non-tumor cells, Sestrin2 is involved in anti-

apoptotic signaling pathways. However, in most tumor studies,

Sestrin2 elicits proapototic effects in cancer cells (107). Ding B et al.

reported that Sestrin2 is protective for overall cell energy

metabolism and mitochondrial function. Sestrin2 overexpression

can reduce cell apoptosis by reducing ROS aggregation, maintaining

mitochondrial membrane potential, reducing ATP consumption

and restoring mitochondrial DNA level (7). However, as shown by

the study of Seo K et al. (108) and Budanov AV et al. (109), Sestrin2

overexpression can promote cell apoptosis. Bidirectional regulating

roles of Sestrin2 in apoptosis are indicated and require further

validation (110).
3 The roles of Sestrin2 in diabetes

A summary of researches which investigated the roles of

Sestrin2 in diabetes, diabetic complications and diabetes-
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associated conditions is presented in Table 1. Figure 1 summarizes

the effects of Sestrin2 on diabetes-associated signaling pathways. As

mentioned before, diabetes is characterized by changes in AMPK

and mTOR, the principle nutrient level sensing mechanisms (129).

The chronic continuous activation of mTORC1 is accompanied by

continuous inhibition of hepatocyte autophagy, leading to insulin

resistance and T2DMmainly by suppressing the phosphorylation of

insulin receptor substrates (130). Continuous cellular mTORC1

activation under overnutrition promotes protein and lipid synthesis

and inhibits autophagy catabolism (111). One of the major negative

feedback mechanisms that prevent the harmful effects of chronic

mTORC1 continuous activation is the transcriptional activation of

Sestrin2. Chronic mTORC1 activation mediated by stress responses

such as overnutrition eventually results in Sestrin2 overactivation

(111, 131). After activation, Sestrin2 stimulates AMPK signaling,

which in turn impairs mTORC1 activation and, therefore, triggers
Frontiers in Endocrinology 05
autophagy (111, 132). The major target organs and tissues of insulin

resistance include liver, muscle and adipose tissue. Sestrin2 is found

to be highly accumulated in muscle, liver, and adipose tissues in

models of T2DM and obesity (41, 111). As reported by Lee et al.,

Sestrin2 can activate AMPK, attenuate mTORC1-S6K activity in the

liver, thereby lowering blood glucose level in obese mice. Sestrin2

ablation activates hepatic mTORC1-S6K signaling, and enhances

insulin resistance, hepatic steatosis and diabetic progression,

indicating a key role of Sestrin2 in cell metabolic homeostasis

(111). Insulin up-regulates Sestrin2 expression in mouse primary

hepatic cells and the upregulation of Sestrin2 by insulin was shown

to be regulated via PI3K/PKB/mTOR signaling pathway, indicating

a feedback mediation of Sestrin2 on insulin signaling transduction

(112). Also, Sestrin2 is identified to induce autophagy, maintain

insulin sensitivity and glucose metabolism by regulating AMPK/

mTORC1 signaling pathway (64, 113). Sestrin2/AMPK/mTORC1
TABLE 1 The roles of Sestrin2 in diabetes and diabetic complications.

Type of
disease/
intervention

Model Pathway Effect Reference

Sestrin2 in diabetes associated conditions

Obesity Mice Sestrin activates AMPK, suppresses
mTORC1-S6K.

Maintains metabolic homeostasis. (111)

Insulin signaling Primary hepatic
cells

Insulin upregulates Sestrin2 through PI3K/
PKB/mTOR.

Negative feedback effect on insulin signaling. (112)

Exercise Mice Sestrin2 interacts with AMPK and activates
autophagy.

Mediates the effects of exercise to increase insulin
sensitivity.

(113)

Insulin resistance C2C12 myotubes Sestrin2 induces autophagy via activation of
AMPK.

Maintains insulin sensitivity and glucose sensitivity. (64)

Pathological
stresses relevant
to diabetes

Pancreatic b-cells Sestrin2 promotes autophagy by attenuating
mTORC1 activaiton through AMPK-
dependent and -independent mechanisms.

Maintains b-cell function. (114)

Regular or
obesity

Interscapular brown
adipose tissue in
mice

Sestrin2 suppresses UCP1 expression. Regulates thermogenesis and mitohormesis. Either
overexpression or deficiency of Sestrin2 is detrimental
for the energy homeostasis in brown adipose tissue.

(115)

b3AR agonist Inguinal white
adipose tissue and
soleus muscle in
mice

Sestrin2 regulates b3AR. Reduces lipid droplet size in inguinal white adipose
tissue and increases soleus muscle mass.

(56)

High-glucose and
dyslipidemic
conditions

Monocyte Sestrin2 regulates AMPK/mTOR signaling
and also AMPK regulates Sestrin2 in a
feedback mechanism.

Regulates monocyte activation. (116)

High-fat diet-
induced obesity

Mice Sestrin2 activates AKT through GATOR2-
mTORC2 axis.

Promotes metabolic homeostasis. (41)

Obesity with
T2DM

Obesity children
with T2DM

Serum Sestrin2 is decreased. (117)

T2DM Patients with T2DM Serum Sestrin2 is decreased. (118)

T2DM Patients with T2DM Serum Sestrin2 is decreased. (119)

T2DM Newly diagnosed
drug-naïve T2DM

Serum Sestrin2 is increased. (120)

T2DM Patients with T2DM Serum Sestrin2 is increased. (121)

(Continued)
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signaling pathway is indicated to contribute to the maintenance of

b-cell function and resistance to pathological stresses associated

with diabetes (114). Therefore, based on these evidences, Sestrin2 is

a potential insulin sensitizer and one of the key factors for b-cell
homeostasis. Deficiency and/or dysfunction of Sestrin2 may result

in insulin resistance and the development of diabetes (70).

Besides the role in the modulation of insulin signaling, there are

studies referring to the regulating effects of Sestrin2 on peripheral

tissues which play key roles in the pathogenesis of diabetes, such as

adipose tissues and skeletal muscle. Growing evidence

displays adipose tissue as an endocrine organ which produces

multiple adipokines regulating diverse aspects of b-cell function
and viability. Adipose tissue malfunction is crucially involved in the

development of diabetes (133, 134). Recent finding suggested

Sestrin2 as a regulator of motohormesis in brown adipose tissue

(135). Also, Sestrin2 was found to be related to beneficial body

composition changes, including the decrease of lipid droplet size in

inguinal white adipose tissue and the increase of soleus muscle mass
Frontiers in Endocrinology 06
(56). Monocytes and macrophages are critically involved in

atherosclerosis and participate in the atherosclerotic lesion

progression associated with diabetes (136). Sestrin2 was shown to

play a principal role in regulating monocyte activation through the

AMPK/mTOR pathway in diabetes and also AMPK mediates

Sestrin2 in a feedback way (116).

As described before, except for the classical AMPK/mTORC1

pathway, Sestrin2 can exert downregulating effects on

mTORC1 through other mechanisms such as GATOR2-

GATOR1-mTORC1 signaling pathway (39). On the other hand,

Sestrin2 could increase mTORC2 activity through its ability to

interact with mTORC2 via GATOR2-mTORC2 signaling pathway

during high-fat diet-induced obesity (41). However, these

mediating pathways of Sestrin2 on mTORC have not been

investigated and confirmed in diabetic models.

Several clinical studies have investigated the changes of

circulatory levels of Sestrin2 in patients with obesity, T2DM, and

metabolic syndrome. However, no consensus was reached. It was
TABLE 1 Continued

Type of
disease/
intervention

Model Pathway Effect Reference

Sestrin2 in diabetic complications

Diabetic kidney disease (DKD)

Diabetic kidney
disease (DKD)

Human samples and
podocytes and
diabetic rats

Sestrin2 regulates AMPK in mitochondria
and podocytes.

Sestrin2 expression is decreased in podocytes from
patients with DKD and in podocytes from diabetic rats.
Sestrin2 circumvents mitochondrial dysfunction.

(122)

Diabetic
nephropathy

T2DM patients with
diabetic
nephropathy

Serum Sestrin2 is decreased, especially in those with
macroalbuminuria.

(123)

Diabetic kidney
disease (DKD)

HK-2 cells MIR-4756 suppresses Sestrin2. Promotes albumin-induced renal tubular epithelial-to-
mesenchymal transition and endoplasmic reticulum
stress.

(124)

Diabetic kidney
disease (DKD)

Diabetic mice,
mouse podocytes
exposed to high
glucose

Sestrin2 modulates TSP-1/TGF-b1/Smad3
pathway.

Mitigates podocyte injury in DKD. (22)

Diabetic kidney
disease (DKD)

Diabetic mice Sestrin2 regulates Hippo pathway. Inhibits mesangial cell proliferation and fibrosis. (125)

Diabetic heart disease (DHD)

Coronary heart
disease (CHD)

T2DM patients with
CHD

Serum Sestrin2 is decreased, and is a risk factor for
CHD.

(126)

Diabetic
myocardial
ischemia/
reperfusion
injury

Diabetic rat Sestrin2 interacts with Nrf2. Promotes antioxidant actions and attenuates
mitochondrial damage.

(18)

Diabetic
cardiomyopathy

Cardiomyocytes
exposed to high
glucose

Alleviates mitochondrial dysfunction and ameliorates
cardiac injury.

(127)

Diabetic neuropathy (DN)

Diabetic
neuropathy (DN)

T2DM patients with
diabetic peripheral
neuropathy

Serum Sestrin2 is decreased. (128)
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indicated that circulatory Sestrin2 is lowered in diabetes and

negatively correlates with glycemic levels (117, 118, 123). Also, as

shown by the study of Golpour et al., plasma Sestrin2 level presents

a trend of decrease in obesity and T2DM (119). On the contrary,

some studies reported significant high serum levels of Sestrin2 in

patients with T2DM, obesity, and metabolic syndrome (120, 121).

Sestrin2 concentration significantly correlates with insulin

resistance and percentage body fat (120).
4 The roles of Sestrin2
in diabetic complications

Rather than a disease of mere hyperglycemia, diabetes brings

real harm and devastating effects by leading to a series of

complications in peripheral systems, organs and tissues such as

kidney, cardiovascular system, retina, and the nervous system (137).

Diabetic complications are often irreversible, causing severe injury

and increasing mortality in patients with diabetes. Recent

researches have suggested the contribution of alterations of

Sestrin2 and the related pathways in the pathogenesis of

diabetic complications.
4.1 Diabetic kidney disease

Diabetic kidney disease (DKD) is a typical chronic

microvascular diabetic complication and is a major cause of

chronic kidney disease and end-stage renal disease worldwide

(138). About 30%-50% of patients with T1DM or T2DM
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eventually develop DKD, resulting a significant increase of

mortality in these patients. Clinically, patients with DKD often

exhibit proteinuria, hypertension and edema, while laboratory tests

present increased urinary albumin excretion and decreased

estimated glomerular filtration rate (eGFR). A series of signaling

pathways contributes to the pathogenesis of DKD, including

AMPK/mTOR pathway, MAPKs/Erk1/2 pathway, PI3K/AKT

pathway and the advanced glycation end products (AGEs)

pathway (139–141). As shown by Puelles et al., hyperglycemia

can induce oxidative stress and other pathophysiological

processes through AMPK/mTOR signaling, leading to podocyte

injury and proteinuria, therefore leading to the loss of renal

function (139). Activated mTORC1 signaling is a feature of DKD,

which causes podocyte and tubular damage by suppressing

autophagy and in turn promotes progressive kidney dysfunction

(142, 143).

The activation of Sestrin2 could inhibit AMPK/mTOR

signaling, promote autophagy and reduce the susceptibility of

renal cells to diabetes-related damage. The potential therapeutic

role of Sestrin2 in DKD was initially found in a human proximal

tubule cell line (HK-2) model, illustrating that overexpression of

Sestrin2 represses DKD-induced renal epithelial tubular cell

epithelial-to-mesenchymal transition and ER stress, but its

mechanism is still unclear. The researchers further found that

administration of microRNA-4756 regulates DKD-induced renal

tubular epithelial cell damage by the interaction with Sestrin2 (124).

Later, Lin et al. reported that Sestrin2 activation increases the level

of AMPK phosphorylation, and thereby ameliorates mitochondrial

dysfunction of podocytes under high glucose conditions (122).

However, it is worth noting that though overactivation of
FIGURE 1

Sestrin2 and Diabetes.
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mTORC1 in diabetes aggravates kidney lesions, mTOR activity is

necessary to maintain podocyte homeostasis. Genetic deletion of

mTOR in mouse podocytes induces proteinuria and progressive

glomerulosclerosis. A tightly balanced mTOR activity is essential to

maintain normal renal function in diabetes (142). Clinically, serum

Sestrin2 levels were found to significantly decrease in T2DM

patients with diabetic nephropathy, especially in the ones with

macroalbuminuria (123). In recent years, sodium-glucose co-

transporter 2 (SGLT2) inhibitors have been well-documented to

protect the renal function in patients with and without T2DM and

slow down the progression towards end-stage kidney disease (144).

It has been shown that the Sestrin2/AMPK pathway plays a critical

role in the protective actions of SGLT2 inhibitors on metabolism,

fibrosis, and organ damage in obese mice (145). Specially, studies

have demonstrated that activation of AMPK by inhibiting SGLT2 is

a main protective mechanism in diabetic nephropathy (146).

Nevertheless, in another study investigating the working

mechanisms of empagliflozin, Sestrin2/AMPK pathway was not

activated in nondiabetic rats and did not participate in the renal

protective effects of empagliflozin (147).

TGF-b1 is a decisive regulator of renal fibrosis and

overactivation of TGF-b1 could cause progressive renal injury

(148). Hyperglycemia and insulin resistance enhance the

expression of Angiotensin II, which increases ROS production

and activates TGF-b1 signaling (149). Smad2/3 complex, PI3K/

AKT/mTOR, protein kinase C (PKC), MAPK, interleukin like

kinase (ILK) and Wnt/beta-catenin signaling are among the

downstream targets that modulate profibrogenic effects of TGF-

b1 (150–152). Thrombospondin-1 (TSP-1) is an extracellular

matrix protein that mediates a wide range of biological processes.

TSP-1 is vital to maintain normal glucose metabolism. Also, TSP-1

is involved in the pathophysiology of multiple diabetic

complications, including diabetic cardiomyopathy, neuropathy
Frontiers in Endocrinology 08
and nephropathy (153). TSP-1 mediates the activation of latent

TGF-b1, which is indispensable for maintaining the normal

function of islet. Nevertheless, during chronic hyperglycemia,

TGF-b1 exacerbates diabetic nephropathy by inducing renal

fibrosis (154). Both TGF-b and TSP-1 have been indicated to play

causal roles in insulin resistance and obesity-related renal fibrosis,

except for TGF-b-dependent and independent roles of TSP-1 (155,

156). Recently, Song et al. reported that Sestrin2 remedies podocyte

injury in DKD through the coordination with TSP-1/TGF-b1/
Smad3 pathway, suggesting that Sestrin2/TSP-1/TGF-b1 signaling

is critically involved in renal protection (22).

The Hippo pathway, a kinase cascade that regulates cellular

proliferation, differentiation, and tissue homeostasis, is inhibited in

diabetic conditions. The Hippo pathway has been indicated to be

involved in the development and progression of DKD (157, 158).

PI3K/AKT signaling is related to the Hippo pathway and both of

these pathways take part in the pathogenesis of DKD (158). Sestrin2

overexpression was found to alleviate renal damage via regulating

Hippo pathway in DKD mice (125). Considering the interactions

among Sestrin2 and multiple signaling pathways, Sestrin2 may be

critically in involved in the development of DKD and thus may

perform as a latent therapeutic target for DKD. Figure 2

summarizes Sestrin2 signaling pathways in diabetic kidney disease.
4.2 Diabetic cardiovascular complications/
diabetic heart disease

Diabetic heart disease (DHD) is a major cause of death in

patients with diabetes. It refers to abnormal heart structure and

manifestations in patients with diabetes in the absence of other

cardiac risk factors. DHD is a conglomeration of coronary artery

disease, heart failure, diabetic cardiomyopathy (DCM) and diabetic
FIGURE 2

Sestrin2 and Diabetic kidney disease.
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cardiac autonomic neuropathy, and is characterized by molecular,

structural, and functional changes in the myocardium (159, 160).

The pathogenesis includes the macrovascular and microvascular

lesions and cardiac autonomic neuropathy caused by oxidative

stress, inflammatory response, mitochondrial dysfunction, AGEs,

alterations at the level of insulin signaling, gene regulation, ER

stress, hypoxia, neurohumoral activation, apoptosis, and exosome

dysregulation (160, 161).

mTOR signaling is found to play a key role in the development

of DHD. Activation of mTORC1 either by strengthening PI3K/

AKT signaling or disruption of tuberous sclerosis complex 1 (TSC1)

drives cardiac hypertrophy (162, 163). Also, mTORC1 inhibition

exerts cardioprotective effect against myocardial ischemia and

DCM by activating autophagy (164). Inhibition of mTOR

signaling by application of melatonin reduces myocardial

damages and protects against DCM (165). mTORC2 seems to

exert reverse effect on cardiac remodeling. Suppression of

mTORC1 and activation of mTORC2 exert beneficial effects on

myocardial ischemia and adverse cardiac remodeling (29). TGF-bs
are central effectors of myocardial fibrosis (166). TGF-b-driven
fibrosis is regulated by canonical or noncanonical pathways and is

mediated by coreceptors and by interacting networks. The

activation of canonical or Smad-dependent signaling pathways

causes phosphorylation and activation of SMAD proteins. The

activation of noncanonical pathways include PI3K/AKT, ERK,

JNK, RhoA and MAPK pathways (167, 168). In the dilated

cardiomyopathy model, the increase of myocardial expression of

TGF-b and activation of downstream Smad 2 and Smad 3 signal

cascades have been unanimously confirmed. Overexpression and

activation of TGF-b1 in DCM induces cardiac fibrosis, which can be

alleviated by administration of telmisartan, empagliflozin,

dapagliflozin, epigallocatechin gallate, or cannabidiol, possibly

due to the inhibitory effects on TGF-b signaling (169–174). TSP-1

is suggested to play a significant role in DCM. TSP-1 upregulation

in the diabetic heart stabilizes the cardiac matrix and promotes

vascular rarefaction in obese diabetic mice. TSP-1 enhancement in

the myocardium may be a crucial regulator in diabetes-associated

impaired angiogenesis (175). The effect of TSP-1 are mediated

regulated by activation of TGF-b, angiostatic actions, matrix

metalloproteinase inhibition and direct stimulation of CD36

signaling (176). Downregulating TSP-1 and TGF-b1 improves the

heart function and ameliorates vascular fibrosis in diabetic rats

(177, 178).

As previously described, Sestrin2 participates in the modulation

of oxidative stress, mitochondrial biogenesis, ER stress and

apoptosis. Also, the AMPK/mTOR pathway and TSP-1/TGF-b1
pathway are constitute parts of the regulating mechanism of

Sestrin2. It is reasonable to postulate that Sestrin2 may take part

in the pathogenesis of DHD. But the researches investigating the

role of Sestrin2 in DHD are relatively few (rare). Previously,

Sestrin2 is considered to be cardioprotective in several models of

cardiovascular diseases, including myocardial infarction and

cardiac dysfunction induced by ER stress or lipopolysaccharide,

via AMPK/mTOR signaling cascade (97, 179). Besides, increasing

evidence indicate a protective role for Sestrin2 against the

development and progression of cardiomyopathy and heart
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failure in model of pressure-overload cardiac remodeling, via

Nrf2/Keap1 pathway (180). Also, Sestrin2 is indicated to

modulate cardiac inflammatory response through maintaining

oxidative stress through MAPK/JNK pathway during ischemia

and reperfusion (181). Sestrin2 suppression aggravates ER stress-

induced oxidative stress and apoptosis in endothelial cells (182).

Clinically, several studies have investigated the variations in plasma

Sestrin2 protein levels in patients with cardiomyopathy and/or

heart failure, and displayed conflicting results (183–185). Wang

et al. reported that plasma Sestrin2 level was increased in patients

with chronic heart failure (CHD) and was positively related to the

severity of CHD. Increment of Sestrin2 concentrations prominently

increased the occurrence of major adverse cardiac events and

suggested poor prognosis (183). Also, plasma Sestrin2 levels were

found to be increased in patients with coronary heart disease (CAD)

and positively related to the severity of CAD (184, 186). However,

lower serum Setrin2 levels were indicated in patients with septic

cardiomyopathy and in T2DM patients with CHD (126, 185). Low

Sestrin2 level was a risk factor for CHD in T2DM patients (126).

The contradictory results concerning the beneficial or harmful

effects of sestrin2 in cardiomyopathy and heart failure need to be

further clarified. In recent years, a few studies investigated the role

of Sestrin2 in DHD. Zhou et al. reported that Sestrin2 may enhance

antioxidative actions and alleviate mitochondrial lesion by

interacting with Nrf2 to prevent the diabetic rat heart from

ischemia/reperfusion injury (18). Our previous research showed

that inhibition of enhanced Sestrin2 expression attenuates cardiac

injury in DCM, which may be mainly attributed to the restoration

of mitochondrial function (127). Some antiglycemic agents, such as

metformin and empagliflozin, were found to be cardioprotective

through Sestrin2-associated mechanism. As shown by Yang et al.,

metformin can activate AMPK, thereby promoting autophagy by

suppressing the mTOR pathway in DCM (187). Sestrin2 was

suggested to participate in cardioprotective effects of metformin

in a model of acute kidney injury (188). Sun et al. found that

empagliflozin improves obesity-related cardiac dysfunction via

regulating Sestrin2-mediated AMPK/mTOR signaling and

maintaining redox homeostasis (145). Figure 3 summarizes

Sestrin2 signaling pathways in diabetic heart disease.
4.3 Diabetic ocular complications

Diabetes can cause various ocular complications, such as diabetic

retinopathy (DR), cataract, diabetic papillopathy, glaucoma, and

ocular surface diseases (189). DR is a major diabetic complication

characterized by retinal microvascular lesion and is a major cause of

vision loss in working middle-aged adults. Complicated mechanism

is included in the pathogenesis of DR, including increased free radical

production, activated AMPK/mTOR signaling, renin-angiotensin

pathway, TGF-b/Smad signaling, and the kallikrein-kinin system,

the formation of AGEs, and increased inflammatory factors and

vascular endothelial growth factor (VEGF) (190–192). mTOR

signaling is considered to play multiple roles in the pathogenesis of

DR. mTORC1 is indispensable for the hypoxic-induced expression of

VEGF, which is an important pathogenic event in DR (193). Also,
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mTORC1 affects DR development by negatively regulating

autophagy (194). PI3K/AKT/mTOR signaling pathway is associated

with the early pathogenesis of DR (195). Promoting autophagy and

enhancing AMPK/mTOR signaling pathway can protect retinal

Muller cells from apoptosis caused by high glucose (196). Aberrant

TGF-b signaling pathway is involved in the pathogenesis of DR (155).

TGF-b1 protects retinal ganglion cells from hyperglycemia-induced

oxidative damage through promoting cell antioxidation and

neuroprotection pathways, including Nrf2/Keap1 signaling (197).

Increased TGF-b signaling induced by diabetes protects retinal

vessels in diabetic rats and may prevent rapid retinopathy

progression (198).

Based on its pleiotropic modulating effects, Sestrin2 may have

an impact on the pathogenesis of DR. So far there are several studies

exploring the role of Sestrin2 in models of ocular lesions, but still no

reports in diabetic ocular complications have been found.

Previously, Hanus et al. demonstrated that upregulation of

Sestrin2 protects retinal pigment epithelial cells from oxidative

stress-induced necrosis (199). Sestrin2 could also secure retinal

ganglion cells from oxidative stress-induced apoptosis through

Keap1/Nrf2 pathway, which suggests a significant role of Sestrin2

in retinal degeneration in glaucoma (200). But on the other hand,

Sestrin2 is indicated to be a negative modulator of corneal epithelial

cell proliferation. The downregulation of Sestrin2 leads to the

synergistic activation of mTORC1 and Hippo signaling, thus

promoting reepithelialization of the corneal wound (201).
4.4 Diabetic neuropathy

Diabetic neuropathy (DN) is another frequent chronic

complication of diabetes, consisting of four major types including

peripheral neuropathy, autonomic neuropathy, proximal

neuropathy, and mononeuropathy (202). The pathogenesis of DN

is complicated, including changes of various metabolic pathways
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and vascular pathways. Three main pathological events contribute

to the progression of DN, including chronic low-grade

inflammation, endothelial dysfunction and oxidative stress (203).

Consistent hyperglycemia in diabetes induces activation/inhibition

of diverse pathways, including polyol, hexosamine, AGEs, PARP,

MAPK, mTOR, NF-kB and tumor necrosis factor-a (TNF-a)
pathway, which contribute to the pathogenesis and progression of

DN (204, 205). Among them, overactive mTORC1 interferes with

synaptic plasticity and is one of the main factors contribute to

chronic neuropathy. Activation of mTOR exacerbates the

hyperalgesia in diabetic rats, while suppression of mTORC1

activity is indicated to lead to an anti-injury effect in experimental

model of diabetic small fiber neuropathy (206, 207). With the

inhibition of PI3K/AKT/mTOR pathway, autophagy is enhanced

and hyperalgesia is alleviated in diabetes rats (208). So far, no

research exploring the role of Sestrin2 in DN can be found. But

there are a few studies in other disease models. In denervated

atrophy, Sestrin2 has been proved to prevent the change of muscle

fiber type from slow contraction to fast contraction through AMPK/

PGC-1a signaling, and protect muscle quality (209). Regulation of

UPR and mitophagy is also included in the mechanism by which

Sestrin2 protects against denervated muscle atrophy (210). Zhang

et al. demonstrated that overexpressing Sestrin2 significantly

reduces oxidative stress of neurons in model of cerebral ischemia-

reperfusion injury through modulating the activity of Nrf2 (12).

Mao et al. conducted a clinical study and documented that serum

Sestrin2 is lowered in T2DM patients with diabetic peripheral

neuropathy (128).
5 Possible pharmacological
mediators of Sestrin2

The exploration of Therapeutic strategies through mediation of

Sestrin2 is now underway. Several natural products and
FIGURE 3

Sestrin2 and Diabetic heart disease.
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medications in diabetes have been shown to alter the expression

levels of Sestrin2, which lead to the possibility of novel treatments in

diabetes and diabetic complications targeting Sestrin2 and the

associated pathways (211). Initially, a few studies investigated the

potential mediator of Sestrin2 in the field of tumor therapies,

including several small molecules (212). Recently, natural-derived

mediator of Sestrin2, such as Gallic acid (213) and eupatilin

(Unpublished data of our research), are also indicated to be

potential therapeutic agents of obesity and diabetes. Some

antidiabetic medications are indicated to be involved in the

regulation of Sestrin2 signaling in diabetes-associated conditions,

some of which have been illustrated in the previous sections of this

review. Sestrin2 can be targeted by empagliflozin in the treatment of

obesity-related nonalcoholic fatty liver disease (214). Another

antidiabetic agent, liraglutide, is shown to alleviate obesity-related

fatty liver disease via modulating the Sestrin2-mediated Nrf2-HO-1

pathway (215). Intervention through gene editing of Sestrin2 also

presents beneficial effects in organ and tissue protection (216), but

further investigation is needed in the context of diabetes.
6 Conclusions and perspectives

Diabetes is a condition causing multi-organ injuries and is a

major global threaten for human health. As a stress-induced

protein, Sestrin2 can be activated by diverse stresses and can exert

pleiotropic effects. Sestrin2 can interact with various signaling

perspectives involved in the development of diabetes. Increasing

numbers of studies indicate a prominent role of Sestrin2 in the

pathogenesis of diabetes and diabetic complications. Sestrin2 may

functions in a multitude of ways and offer exciting prospects for the

treatment of diabetes and diabetic complications, though currently

the strong supporting evidence is limited. Despite of the protective

roles of Sestrn2 in various conditions, the pros and cons of excessive

activation or inhibition of Sestrin2 is yet to be confirmed. How to

exert accurate mediation under different conditions also remains

elusive. The modulation of Sestrin2 activity to effectively achieve

homeostasis might be more appropriate. Further researches are

needed to thoroughly reveal the relationship between Sestrin2 and
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diabetes which includes multi-organ injuries, to disclose associated

signaling pathways and to explore potential treatment protocols.
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