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A short-term high-fat diet
alters rat testicular activity
and blood-testis barrier
integrity through the SIRT1/
NRF2/MAPKs signaling pathways
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Rosalba Senese1, Gabriella Chieffi Baccari1

and Massimo Venditti2

1Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi
della Campania ‘Luigi Vanvitelli’, Caserta, Italy, 2Dipartimento di Medicina Sperimentale, Sez. Fisiologia
Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania ‘Luigi Vanvitelli’,
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Background: Overweight/obesity are metabolic disorder resulting from

behavioral, environmental, and heritable causes. WHO estimates that 50% of

adults and 30% of children and adolescents are overweight or obese, and, in

parallel, an ongoing decline in sperm quality and male fertility has been

described. Numerous studies demonstrated the intimate association between

overweight/obesity and reproductive dysfunction due to a highly intricate

network of causes not yet completely understood. This study expands the

knowledge on the impact of a short-term high-fat diet (st-HFD) on rat

testicular activity, specifically on steroidogenesis and spermatogenesis,

focusing on the involved molecular mechanisms related to mitochondrial

dynamics, blood-testis barrier (BTB) integrity, and SIRT1/NRF2/MAPKs pathways.

Methods: Ten adult Male Wistar rats were divided into two groups of five and

treated with a standard diet or an HFD for five weeks. At the end of the treatment,

rats were anesthetized and sacrificed by decapitation. Blood was collected for

serum sex hormone assay; one testis was stored at -80ÅãC for western blot

analysis, and the other, was fixed for histological and immunofluorescence

analysis.

Results: Five weeks of HFD results in reduced steroidogenesis, increased

apoptosis of spermatogenic cells, and altered spermatogenesis, as highlighted

by reduced protein levels ofmeiotic and post-meiotic markers. Further, we

evidenced the compromission of the BTB integrity, as revealed by the

downregulation of structural proteins (N-Cadherin, ZO-1, occludin, connexin

43, and VANGL2) other than the phosphorylation of regulative kinases (Src and

FAK). At the molecular level, the impairment of mitochondrial dynamics (fission,

fusion, andbiogenesis), and the dysregulation of the SIRT1/NRF2/MAPKs

signaling pathways, were evidenced. Interestingly, no change was observed in

the levels of pro-inflammatory markers (TNFa, NF-kB, and IL-6).
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Conclusions: The combined data led us to confirm that overweight is a less

severe state than obesity. Furthermore, understanding the molecular

mechanisms behind the association between metabolic disorders and male

fertility could improve the possibility of identifying novel targets to prevent and

treat fertility disorders related to overweight/obesity.
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1 Introduction

An intimate connection between balanced nutrition and the

preservation of a good state of human health exists, in fact a

salubrious diet is associated with a reduction in morbidity and

premature mortality (1–3). Many studies reported that, especially in

industrialized countries, a considerable percentage of non-

communicable diseases (obesity, diabetes, cardiovascular

disorders, and even some types of cancer) are correlated, directly

or indirectly, to the consumption of unhealthy food, particularly

those with the high trans-fatty acids and low essential nutrients

content (vitamins, minerals, and proteins) (4–6). It has been

estimated that obesity and overweight, syndromes characterized

by the accumulation of excessive fatty tissue in the body, affect more

than 1.9 billion adults worldwide, rising from epidemic to pandemic

states (7). Such high prevalence, accompanied by severe social and

economic consequences, makes obesity/overweight one of the

major global health issues (8). It is important to note that being

overweight may be considered a preclinical condition less severe

than obesity, since the excessive accumulation of body fat increases,

in turn, the risk of chronic diseases (9). The most used parameter to

define obesity is the body mass index (BMI), calculated as a person’s

weight (in kilograms) divided by the square of his/her height (in

meters) (10). Conversely, more accurate but less used indexes, such

as waist circumference and weight gain, may provide more reliable

and individualized parameters to define the consequence of

excessive body fat accumulation on the development of chronic

disease (11). Obesity rates have significant impacts on personal and

public health; however, overweight status is often trivialized as a

mere body image issue (12, 13).

Besides the well-known comorbidities associated with obesity,

including dyslipidemia, type 2 diabetes, and hypertension, a

growing body of evidence is now focusing on its correlation with

human infertility, as evidenced by the numerous papers published

on this topic in recent years and, in particular, on the positive

correlation between growing BMI and sub-infertility (14–16).

Alteration of the hormonal milieu is one of the most evident

effects of obesity. In overweight or obese men, excess body fat

accumulation can increase the production of serum sex hormone-

binding globulin. This glycoprotein, produced by the liver, binds to

testosterone (T) and inhibits its biological action; this, along with

increased aromatase (ARO) activity, leads to a decreased T/estradiol
02
(E2) ratio; estrogen increases and, inhibiting Leydig and Sertoli cell

function, further impairs T production and the process of

spermatogenesis (17–20).

Moreover, obesity has also been defined as a “systemic oxidative

stress state”, in which an imbalance between reactive oxygen species

(ROS) production and antioxidant capacity occurs, leading to

oxidative stress. This, ultimately, damages cellular components

deleterious for male germ cells (GC), and particularly for

spermatozoa (SPZ), as their plasma membrane contains high

levels of polyunsaturated fatty acids, and their DNA, once

damaged, cannot be repaired due to lack of the cytoplasmic

enzymatic systems involved in DNA repair (17, 21–23). Several

studies reported that, compared to normal-weight men, obese ones

have a higher chance of oligozoospermia, asthenozoospermia, and

an increased rate of fragmented DNA in sperm (24–28).

Furthermore, in a meta-analysis, Campbell et al. (29) described

that male obesity negatively impacts the success of assisted

reproductive technology (ART). Interestingly, while changes in

sex hormone levels may contribute to obesity-induced male sub-

infertility, data from ART indicate that they may not be the only

cause; in fact, obesity in men is associated with decreased pregnancy

rates and increased pregnancy loss in couples subjected to ART, but,

following intracytoplasmic sperm injection, the fertilization rate is

considerably improved, indicating that obesity may alter sperm

maturation, capacitation, and their ability to bind and fertilize the

egg with still unknown mechanisms (29–31). In this regard, one of

the most common tools to study obesity and its related

comorbidities, including infertility, is the use of animal models,

especially mice and rats, fed with a high-fat diet (HFD). The

duration of the HFD is crucial; in a recent review, de Moura e

Dias et al. (32) summarized the time-dependent effects of HFD in

provoking obesity, assessing that at least 3 weeks of HFD are

sufficient to obtain satisfactory results. However, to strengthen the

phenotypic and metabolic characteristics of obesity, a longer

intervention period (from 10 to 12 weeks) is necessary.

Coherently, most of the studies focused on the impact of obesity

on testicular activity, used a long-term HFD (10-14 or longer weeks

of treatment) (33–36), while just a few papers used a different

approach, with a short-term HFD (st-HFD), that is correlated to an

overweight condition (37–39).

This may be interesting to obtain parameters to be used to

monitor the progression of infertility related to being overweight,
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even at the early stages before it progresses to obesity, which is

considered a real “pathological state”. In previous studies, we

demonstrated that a 5-weeks st-HFD induced an increase in body

weight and serum cholesterol and triglyceride levels, as well as

alterations in testis and epididymis, i.e., induced oxidative stress,

increased autophagy, apoptosis, and mitochondrial damage (40–

42). Here, using the same rats fed with a st-HFD, we evaluated

additional parameters of testicular activity, such as steroidogenesis

and spermatogenesis, with special attention to the involved

mechanisms related to mitochondrial dynamics, and blood-testis

barrier (BTB) integrity. Undoubtedly, these key regulators are

essential in the spermatogenic process, which guarantees the

formation of high-quality gametes (43, 44); on the other hand,

testicular cells mitochondria and BTB are two of the main targets

highly sensitive to the non-physiological conditions, and

particularly in a prooxidant milieu, induced either by

environmental (such as the exposure to pollutants) (45–49), and

pathological (like diabetes and obesity) (50–52) factors. Finally,

because many reports demonstrated the association of SIRT1/

NRF2/MAPKs pathways with testicular function altered by

obesity (33, 53–55), we verified whether the abovementioned

pathways may also be involved in the molecular mechanisms

underlying the diet-induced testicular dysfunction obtained via a

st-HFD.
2 Methods

2.1 Animals and tissue collection

Male Wistar rats (250–300 g, aged eight weeks) were kept in

one per cage in a temperature-controlled room at 28°C

(thermoneutrality for rats) under a 12-h light/12-h dark cycle.

Before the beginning of the study, water, and a commercial mash

(Charles River Laboratories, Calco, Italy) were available ad libitum.

At the start of the study (day 0), and after seven days of

acclimatization to thermoneutrality, the rats were divided into

two groups of five and treated as follows:
Fron
• The first group of rats (n = 5, C) received a standard diet

(total metabolizable percentage of energy: 60.4

carbohydrates, 29 proteins, 10.6 fat J/J; 15.88 kJ gross

energy/g; Muscedola, Milan, Italy) for five weeks;

• The second group of rats (n = 5, st-HFD) received a HFD

(280 g diet supplemented with 395 g of lyophilized lamb

meat (Liomellin, Milan, Italy), 120 g cellulose (Sigma-

Aldrich, St. Louis, MO, USA), 20 g mineral mix (ICN

Biomedical, Solon, OH, USA), 7 g vitamin mix (ICN),

and 200 g low-salt butter (Lurpak, Denmark).

Approximate fatty acid profile of this diet was: 45%

saturated (SFA), 45% MUFA, 10% PUFA. total

metabolizable percentage of energy: 21 carbohydrates, 29

proteins, 50 fat J/J; 19.85 kJ gross energy/g) for five weeks.
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At the end of the treatment, rats were anesthetized with

intraperitoneal injection of chloral hydrate (40mg/100g body

weight), sacrificed for decapitation. The trunk blood was collected

and the serum was separated and stored at -20°C for later sex

hormone determination. The testes were dissected out, one testis

was rapidly immersed in liquid nitrogen and stored at -80°C for

western blot (WB) analysis, and the other was fixed in Bouin’

solution for histological analysis. This study is reported in

accordance with ARRIVE guidelines. Animal care and

experiments were conducted in accord with the guidelines of the

Ethics Committee of the University of Campania “Luigi Vanvitelli”

and the Italian Minister of Health (Permit Number: 704/2016-PR of

the 15/07/2016; Project Number: 83700.1 of the 03/05/2015). Every

effort was made to minimize animal pain and suffering.
2.2 Determination of serum T and E2 levels

Sex steroid levels were determined in serum from control and

st-HFD rats using T (#DKO002; DiaMetra, Milan, Italy) and E2
(#DKO003; DiaMetra, Milan, Italy) enzyme immunoassay kits. The

sensitivities were 32 pg/mL for T and 15 pg/mL for E2.
2.3 Protein extraction and WB analysis

Total testicular proteins were extracted from control (n = 5) and

st-HFD (n = 5) rats as described in Venditti et al. (56). Forty

micrograms of total protein extracts were separated into SDS-PAGE

(9 or 15% polyacrylamide) and treated as described in Venditti et al.

(57). The membranes were incubated overnight at 4°C with primary

antibodies, listed in Table S1. The concentration of proteins was

quantified using ImageJ software (version 1.53 t; National Institutes

of Health, Bethesda, USA). Each WB was performed in triplicate.
2.4 Histology and immunofliorescence (IF)
analysis

For hematoxylin/eosin staining and immunolocalization analysis, 5

µm testis sections were dewaxed, rehydrated, and processed as

previously described (58, 59). For details on the used antibodies, see

Table S1. The cells’ nuclei were marked with Vectashield + DAPI

(Vector Laboratories, Peterborought, UK) and then observed under an

optical microscope (Leica DM 5000 B + CTR 5000; LeicaMicrosystems,

Wetzlar, Germany) with UV lamp, images were analyzed and saved

with IM 1000 software (version 4.7.0; Leica Microsystems, Wetzlar,

Germany). Photographs were taken using the Leica DFC320 R2 digital

camera. Densitometric analysis of IF signals and Proliferating Cell

Nuclear Antigen (PCNA)/Synaptonemal complex protein 3 (SYCP3)

positive cells were performed with Fiji plugin (version 3.9.0/1.53 t) of

ImageJ Software counting 30 seminiferous tubules/animal for a total of

150 tubules per group. Each IF was performed in triplicate.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1274035
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Falvo et al. 10.3389/fendo.2023.1274035
2.5 TUNEL assay

The apoptotic cells were identified in paraffin sections through

the DeadEnd™ Fluorometric TUNEL System (#G3250; Promega

Corp., Madison, WI, USA) following the manufacturer’s protocol,

with little modifications. Briefly, before the incubation with TdT

enzyme and nucleotide mix, sections were blocked with 5% BSA

and normal goat serum diluted 1:5 in PBS and then treated with

PNA lectin, to mark the acrosome. Finally, the nuclei of the cells

were counterstained with Vectashield + DAPI. The sections were

observed with the same microscope described in Section 2.4. To

determine the % of TUNEL-positive cells, 30 seminiferous tubules/

animal for a total of 150 tubules per group, were counted using the

Fiji plugin (version 3.9.0/1.53 t) of ImageJ Software. TUNEL assay

was performed in triplicate.
2.6 Statistical analysis

The values were compared by a Student’s t-test for between-

group comparisons using Prism 8.0, GraphPad Software (San

Diego, CA, United States). Values for p < 0.05 were considered

statistically significant. All data were expressed as the mean ±

standard error mean (SEM).
Frontiers in Endocrinology 04
3 Results

3.1 Effect of st-HFD on testicular
steroidogenesis

Serum T levels in st-HFD rats were significantly reduced by about

28% compared to the controls (p < 0.01); by contrast no differences in

E2 levels between the two groups were evidenced (Figure 1A).

To better evaluate the effect of st-HFD on steroidogenesis, the

protein levels of steroidogenic acute regulatory protein (StAR), and

3b-Hydroxysteroid dehydrogenase (3b-HSD), two enzymes

involved in T biosynthesis, were analyzed (Figure 1B). WB

analysis confirmed that st-HFD altered testicular steroidogenesis,

as a decrease in StAR (p < 0.05; Figures 1B, C) and 3b-HSD (p <

0.01; Figures 1B, D) protein levels, as compared to the control, was

observed. In addition, the protein level of ARO, the enzyme

converting T into E2, was also evaluated, however, results showed

no difference between the two groups (Figures 1B, E)

The effects of st-HFD on steroidogenesis were further

confirmed by an IF staining of StAR and 3b-HSD, which is

shown in Figure 1F. The signals specifically localized into the

interstitial Leydig cells (LC; asterisks; Figure 1F insets); however,

fluorescence intensity analysis showed a weaker signal in st-HFD

animals (p < 0.01; Figures 1G, H) as compared to the control.
B
C D E

F G

H

A

FIGURE 1

Steroidogenesis analysis of controls and st-HFD fed rat testis. (A) T and E2 serum levels and (B) WB analysis of testicular StAR, 3b-HSD and ARO protein
levels. (C-E) Histograms showing StAR, 3b-HSD, and ARO relative protein levels. (F) Testicular StAR (red) and 3b-HSD (green) immunolocalization. Slides
were counterstained with DAPI-fluorescent nuclear staining (blue). The images were captured at x20 (scale bars= 20µm) magnification and x40 (scale
bars= 10µm) for the insets. Asterisks: LC. (G, H) Histogram showing the quantification of StAR and 3b-HSD fluorescence signal intensity, respectively. All
values are expressed as means ± SEM from 5 animals in each group. *p < 0.05; **p < 0.01.
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3.2 Effect of st-HFD on apoptosis

Figure 2 shows the effect of st-HFD on the apoptotic rate of

germ and somatic cells. WB analysis revealed an increase in Bax/

Bcl-2 ratio (p < 0.01; Figures 2A, B), p53 (p < 0.05; Figures 2A, C),

and Caspase-3 (p < 0.001; Figures 2A, D) protein levels in the st-

HFD group as compared to the control.

In support of these data, a TUNEL assay was performed

(Figure 2E). Data showed the presence of dispersed apoptotic

cells in the control group, especially spermatogonia (SPG; arrows

and insets; Figure 2E). st-HFD induced an increase of 165% in the

number of TUNEL-positive cells (p < 0.001; Figures 2E, F),

particularly of SPG, as well as scattered apoptotic LC in the

interstitial compartment, as related to the control.
3.3 Effect of st-HFD on spermatogenesis

Testis from control exhibited well-organized germinal and

interstitial compartment, showing GC in all differentiation stages

and with mature SPZ filling tubular lumina (rhombus) as well as LC

and regular blood vessels in the interstitium (asterisk; Figure 3A).

The histological organization of the testes from st-HFD rats was not

dissimilar from that of controls; however, it appeared clear the

reduced diameter of the tubules. Indeed, the analysis of three
Frontiers in Endocrinology 05
morphometric parameters further supported this observation

since the diameter of the tubules (p < 0.001) and the thickness of

epithelium (p < 0.05) were lower in st-HFD group than in the

control, while no differences in the % of tubular lumens occupied

by SPZ were detected (Table 1). In addition, although there were no

changes in the frequency of the stages characterizing the rat

seminiferous epithelium (data not shown), alterations in the

different phases of the acrosome biogenesis, highlighted by the

PNA lectin staining, were seen (Figure 3B).

At molecular level, to evaluate the effects of st-HFD on

spermatogenesis, protein levels of PCNA, phospho-histone H3 (p-

H3), SYCP3, and protamine 2 (PRM2) were investigated

(Figures 4A-E). The st-HFD provoked a significant increase (p <

0.05) in PCNA (Figures 4A, B), and p-H3 (Figures 4A, C), and a

decrease (p < 0.05) in SYCP3 (Figures 4A, D) and PRM2

(Figures 4A, E) protein levels as related to the controls.

Concomitantly, labeling of PCNA and SYCP3 was performed

(Figure 4F). Data showed a PCNA (green panel) specific

localization in the SPG (arrows) and spermatocytes (SPC;

arrowheads) in the testis of both groups; however, in st-HFD an

increase approximately of 51% in PCNA positive cells (p < 0.05;

Figure 4G) was observed. As for SYCP3, it localized in the SPC

nucleus (arrowheads; Figure 4E), and the % of SYCP3 positive cells

decreased by 53% in st-HFD group as compared to the control (p <

0.01; Figure 4H).
B C D

E

F
A

FIGURE 2

Apoptosis rate analysis of control and st-HFD fed rat testis. (A) WB analysis of testicular Bax, Bcl-2, p53, and Caspase-3. (B-D) Histograms showing
the Bax/Bcl-2 ratio, p53, and Caspase-3 relative protein levels. (E) Determination of apoptotic cells through the detection of TUNEL-positive cells
(green). Slides were counterstained with PNA lectin (red) and with DAPI-fluorescent nuclear staining (blue). The images were captured at x10
magnification (scale bars= 20 µm) and x20 (scale bars= 10 µm) for the insets. Arrows: SPG; Asterisks: LC. (F) Histogram showing the % of TUNEL-
positive cells. All the values are expressed as means ± SEM from 5 animals in each group. *p < 0.05; **p < 0.01; ***p < 0.001.
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3.4 Effect of st-HFD on biogenesis and
mitochondria dynamics

To evaluate the effects of st-HFD on mitochondrial biogenesis,

peroxisome proliferator-activated receptor-gamma coactivator

(PGC-1a), nuclear respiratory factor 1 (NRF1), and mitochondrial

transcription factor A (TFAM) were employed as markers. We found

a significant decrease in the expression levels of PGC-1a (p < 0.01;

Figures 5A, B), NRF1 (p < 0.01; Figures 5A, C), and TFAM (p < 0.05;

Figures 5A, D) in the testis of st-HFD rats as compared to controls.

Mitofusin (MFN2) and Optic atrophy 1 (OPA1) were employed

as markers of mitochondrial fusion; Dynamin-Related Protein 1

(DRP1) was used as a marker of the fission process. Testes from st-

HFD rats exhibited a slight, significant decrease in MFN2 (p < 0.05;

Figures 5A, E), OPA1 (p < 0.05; Figures 5A, F), and DRP1 (p < 0.05;

Figure 5A, G) protein levels as compared to control animals.
Frontiers in Endocrinology 06
IF staining was performed for TFAM (Figure 5H), MFN2, and

DRP1 (Figure 5J). In the control testis, TFAM localized in the

cytoplasm of SPG (arrows), SPC (arrowhead), and in the residual

cytoplasm of elongating spermatids (SPT; dotted arrows).

Additionally, a clear signal in the interstitial LC was also observed

(insets). In the st-HFD-treated group, TFAM localized in the same cell

types abovementioned (Figure 5H), but a weaker immunofluorescent

signal was observed (p < 0.05; Figure 5I). Similarly, DRP1 also

localized in the cytoplasm of SPG (arrow), SPC (arrowheads), in

eltongating SPT (dotted arrows), as well as in LC (insets);

interestingly, MFN2 signal appeared dotted-shaped and diffused in

all the cell types composing the seminiferous epithelium. The analysis

of MFN2 (Figure 5K) and DRP1 (Figure 5L) fluorescent signals

showed a comparable pattern, statistically significant, as observed

for the protein level.
3.5 Effect of st-HFD on BTB integrity
markers

st-HFD produced substantial alterations in the BTB at both

structural and regulatory proteins, compared to control groups

(Figures 6-8). Indeed, st-HFD resulted in a significant reduction in

the protein levels of N-Cadherin (N-CAD; p < 0.01; Figures 6A, B),

occludin (OCN; p < 0.001; Figures 5A, C), zonula occludens-1 (ZO-

1; p < 0.01; Figures 6A, D), connexin 43 (CX43; p < 0.01; Figures 6A,

E), and Van Gogh-Like 2 (VANGL2; p < 0.05; Figure 6A, F), as well
TABLE 1 Effect of st-HFD on testicular morphometric parameters.

Groups C st-HFD

Tubules Diameter (µm) 225,32± 2,17 171,49 ± 6,38**

Epithelium Thickness (µm) 43,2 ± 1,13 30,51 ± 2,4*

Empty Lumen (%) 36 ± 2,3 39 ± 1,5
Evaluation of testicular morphometric parameters of control and st-HFD fed rat testis. All the
values are expressed as means ± SEM from 5 animals in each group. *p < 0.05; **p < 0.01.
A

B

FIGURE 3

Histological analysis of control and st.HFD fed rat testis. (A) Hematoxylin-eosin staining of rat testicular paraffin-embedded sections. The images
were captured at x20 magnification (scale bars= 40 µm). Rhombus: tubules lumen; asterisks: interstitial compartment. (B) PNA lectin acrosome
staining (red) showing the different phases of acrosome biogenesis. The images were captured at x40 magnification (scale bars= 10 µm).
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as in the phosphorylation status of p-Src (p < 0.001; Figures 6A, G),

p-FAK-Y397 (p < 0.01; Figures 6A, H), and p-FAK-Y407 (p < 0.05;

Figures 6A, I) as compared to control.

For a more detailed characterization of the effects exerted by st-

HFD on N-CAD, OCN, ZO-1 (Figure 7) CX43, and VANGL2

(Figure 8) localization, an IF analysis was carried out. N-CAD, one

of the components of cell adhesion complexes (adhesion junctions) in

BTB (60), localized both in the basal compartment, at Sertoli cells (SC)

interface (striped arrows; Figure 7A), and in their cytoplasmic

protrusions of the luminal compartment, associated with the heads

of elongating SPT (dotted arrows; Figure 6A). Interestingly, in the testis

of st-HFD-treated rats, while N-CAD immunosignal was still present

in the basal compartment, in the luminal one it was quite weak, and less

intense that of the control group (p < 0.001; Figures 7A, B).

OCN (Figure 7C) and ZO-1 (Figure 7E) are integral membrane

and adaptor proteins, respectively, that link integral membrane

tight junctions (TJ) components to the actin cytoskeleton (61). They

specifically localized in the SC cytoplasm (striped arrows;

Figures 7C, E; insets) in the two groups; however, the signal

intensity decreased in the st-HFD-treated rats (p < 0.05;

Figures 7D, F) as compared to the control.

CX43 is the principal testicular gap-junction protein, localized

between adjacent SC and at the SC-GC interface (62). IF data

confirmed this localization pattern; in control, CX43 was detected

in the above-mentioned cell types, particularly in SPG (arrows;
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Figure 8A), SPC (arrowheads; Figure 8A; insets), SC (striped

arrows; Figure 8A), and their cytoplasmic protrusions

surrounding SPT (dotted arrows; Figure 8A). st-HFD produced a

marked decrease of signal intensity in SC and GC, as compared to

the control (p < 0.05; Figure 8B).

Finally, VANGL2 is a member of the Planar Cell Polarity

family, factors that regulate the spatial and temporal expression of

actin-regulatory proteins and the polymerization of microtubules at

the apical ectoplasmic specialization (ES) and SC-SC and SC-SPT

interface levels (63, 64). In the control testis, VANGL2 localized in

SPC (arrowheads; Figure 8C), in the SC cytoplasm (striped arrows;

Figure 8C; insets), and their protrusions surrounding the SPT/SPZ

heads (dotted arrows; Figure 8C). In the st-HFD-treated group,

although VANGL2 localized in the above-mentioned cell types

(Figure 8C), a weaker immunofluorescent signal was observed

(p < 0.01; Figure 8D).
3.6 Effect of st-HFD on SIRT1/NRF2/MAPKs
pathways

In our previous paper, we assessed that st-HFD induced oxidative

stress (42), thus herein we explored the underlying mechanisms,

analyzing the SIRT1/NRF2/MAPKs pathways, that are notoriously

involved in the cellular response to oxidative stress (65–69). Results
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FIGURE 4

Spermatogenesis analysis of control and st-HFD fed rat testis. (A) WB analysis of testicular PCNA, p-H3, H3, SYCP3, and PRM2. (B-E) Histograms
showing the p-H3/H3 ratio, PCNA, SYCP3, and PRM2 relative protein levels. (F) Testicular PCNA (green) and SYCP3 (red) immunolocalization. Slides
were counterstained with DAPI-fluorescent nuclear staining (blue). The images were captured at x20 magnification (scale bars=20 µm). Arrows: SPG;
Arrowheads: SPC. (G, H) Histograms showing the % of PCNA and SYCP3 positive cells, respectively. All the values are expressed as means ± SEM
from 5 animals in each group. *p < 0.05; **p < 0.01.
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FIGURE 5

Mitochondrial dynamics analysis of control and st-HFD fed rat testis. (A) WB analysis of testicular PGC-1a, NRF1, TFAM, MFN2, OPA1, and DRP1.
(B-G) Histograms showing PGC-1a, NRF1, TFAM, MFN2, OPA1, and DRP1 relative protein levels. (H) Testicular TFAM (green) immunolocalization.
Slides were counterstained with PNA lectin (red). (J). Testicular DRP1 (green) and MFN (red) immunolocalization. All the slides were counterstained
with DAPI-fluorescent nuclear staining (blue). The images were captured at x20 (scale bars= 20 µm) magnification and x40 (scale bars= 10 µm) for
the insets. Arrows: SPG; Arrowheads: SPC; Dotted arrows: SPT. Insets show LC. (I, K, L) Histograms showing the quantification of TFAM, MFN2, and
DRP1 fluorescence signal intensity, respectively. All the values are expressed as means ± SEM from 5 animals in each group. *p < 0.05; **p < 0.01.
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FIGURE 6

BTB markers analysis of control and st-HFD fed rat testis. (A) WB analysis of testicular N-CAD, OCN, ZO-1, CX43, VANGL2, p-Src, Src, p-FAK-Y397,
p-FAK-Y407, and FAK, in the testes of animals treated with a st-HFD. (B–I) Histograms showing N-CAD, OCN, ZO-1, CX43, and VANGL2 relative
protein levels, and p-Src/Src, p-FAK-Y39/FAK, and p-FAK-Y407/FAK ratios. All the values are expressed as means ± SEM from 5 animals in each
group. *p < 0.05; **p < 0.01; ***p < 0.001.
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showed that SIRT1 protein level decreased in st-HFD rat testis as

compared to the control (p < 0.01; Figures 9A, B); conversely, no

differences in FOXO1 levels were observed (Figures 9A, C).

The protein expression of KEAP1 increased in the st-HFD group

(p < 0.05; Figures 9A, D), while those of NRF2 (p < 0.01; Figures 9A, E)

and HO-1 (p < 0.05; Figures 9A, F) in the testis of st-HFD group were

decreased compared with the control. Finally, the phosphorylation

status of p38 (p< 0.01; Figures 9A, G), JNK (p < 0.05; Figures 9A, H),

and ERK1/2 (p < 0.05; Figures 9A, I) was upregulated in the testis of st-

HFD group as compared to the control.

To confirm these data, we performed double immunolabeling

on SIRT1 and NRF2 in the two groups. In the control testis, SIRT1

possessed a nuclear localization, especially in SPG (arrows;

Figure 9J), SPC (arrowheads; Figure 9J), and SPT (dotted arrow;

Figure 9J and insets). On the contrary, although it was present in the

same cells, NRF2 sub-localization was cytoplasmic (Figure 9J). In

the testis of st-HFD rats, the intensity of both signals was weaker

(p < 0.01; Figures 9K, L), particularly in the SPG nucleus for SIRT1

(arrows; Figure 9J) and in SPC cytoplasm for NRF2

(arrowheads; Figure 9J).
Frontiers in Endocrinology 09
3.7 Effect of st-HFD on inflammation

To assess whether a st-HFD induced testicular inflammation,

several markers, namely NF-kB (Figures 10A, B), b-catenin (b-
CAT; Figures 10A, C), TNFa (Figures 10A, D), IL-6 (Figures 10A,

E), and IL-1RA (Figures 10A, F) were used. Interestingly, there were

no differences between st-HFD and control for any of the

selected markers.
4 Discussion

Proper male and female reproductive activity are crucial for the

health and survival of the species. This is accomplished by the

production and differentiation of good quality gametes that, as for

the male counterpart, are based on SPZ with the ability to cross the

female genital tract, perform an accurate acrosome reaction, and

contribute with an undamaged DNA for fertilization. Such events

depend on an extremely intricate and specialized progression,

which involves the proliferation (both mitotic and meiotic) of
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FIGURE 7

IF analysis of N-CAD, ZO-1, and OCN of control and st-HFD fed rat testis. (A) Testicular N-CAD (green) immunolocalization. Slides were counterstained
with PNA lectin (red) and DAPI-fluorescent nuclear staining (blue). (C) Testicular ZO-1 (green) and OCN (red) immunolocalization. (E) Testicular ZO-1
(green) and b-Actin (red) immunolocalization. All the slides were counterstained with DAPI-fluorescent nuclear staining (blue). All the images were
captured at x20 (scale bars= 20µm) magnification and x40 (scale bars= 10µm) for the insets. Striped arrows: SC. Dotted arrows: SPT. (B, D, F)
Histograms showing the quantification of N-CAD, OCN, and ZO-1 fluorescence signal intensity, respectively. All the values are expressed as means ±
SEM from 5 animals in each group. *p < 0.05; ***p < 0.001.
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FIGURE 8

IF analysis of CX43, and VANGL2 of control and st-HFD fed rat testis. (A) Testicular CX43 (green) immunolocalization. (C) Testicular VANGL2 (green)
and a-Tubulin (red) immunolocalization. All the slides were counterstained with DAPI-fluorescent nuclear staining (blue). All the images were
captured at x20 (scale bars= 20 µm) magnification and x40 (scale bars= 10 µm) for the insets. Arrows: SPG; Arrowheads: SPC Dotted arrows: SPT.
Striped arrows: SC. (B, D) Histograms showing the quantification of CX43 and VANGL2 fluorescence signal intensity, respectively. All the values are
expressed as means ± SEM from 5 animals in each group. *p < 0.05; **p < 0.01.
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FIGURE 9

SIRT1/NRF2/MAPKs pathways analysis of control and st-HFD fed rat testis. (A) WB analysis of testicular SIRT1, FOXO1, KEAP1, NRF2, HO-1, p-p38,
p38, p-ERK 1/2, ERK 1/2, p-JNK, and JNK. (B–I) Histograms showing SIRT1, FOXO1, KEAP1, NRF2, and HO-1 relative protein levels, and p-p38/p38,
p-ERK 1/2/ERK 1/2, and p-JNK/JNK ratios. (J) Testicular NRF2 (green) and SIRT1 (red) immunolocalization. Slides were counterstained with DAPI-
fluorescent nuclear staining (blue). The images were captured at x20 (scale bars= 20 µm) magnification and x40 (scale bars= 10 µm) for the insets.
Arrows: SPG; Arrowheads: SPC Dotted arrows: SPT. (K, L) Histograms showing the quantification of NRF2 and SIRT1 fluorescence signal intensity,
respectively. All the values are expressed as means ± SEM from 5 animals in each group. *p < 0.05; **p < 0.01.
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SPG into round SPT and their differentiation into SPZ, with also the

contribution, for several aspects, of the somatic Sertoli and Leydig

cells. Conversely, the decrease in sperm quality is a worldwide

phenomenon, originating from a plethora of factors: genetic,

environmental, and behavioral. Among the latter, dietary habits,

with the spread of the so-called “Western diet” (characterized by

being hypercaloric and nutritionally poor) is one of the most

responsible, as a clear, multifunctional association between

overweight/obesity and male sub- infertility has been extensively

demonstrated (70–72). Indeed, many papers showed a positive

correlation, in human and experimental rodent models fed with a

long-term HFD, with increasing BMI and the worsening of several

aspects related to fertility, as hormonal status (especially T level),

sperm count, and motility, as well as the increased rate of oxidative

stress and inflammation, increasing the risk of oligozoospermia and

azoospermia (73, 74).

This work, with the use of a st-HFD rat model instead of the

most usual mice/rats HFD-fed for a prolonged period, takes a

different view, aimed to investigate the impact of overweight on

testicular activity, since this condition represents the initial stage of

the obesogenic process and may assess the status of affected people

and direct them to a more correct diet (or other intervention

strategies) in an attempt to mitigate its effects.
4.1 st-HFD alters testicular steroidogenesis
and spermatogenesis

As expected, we found that the steroidogenesis was

compromised in the testis of st-HFD rats. Herein, serum T levels

were decreased significantly in the HFD group by about 28%, and

our data agree with those by Migliaccio et al. (38), which evidenced

a reduction in serum T levels and testicular androgen receptors in

rats fed with a st-HFD (for 6 weeks). Nevertheless, the reduction in
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T levels was evidently less pronounced than that observed in rats fed

with HFD for 12 (about 400%) (75), or 20 (about 180%) (35) weeks.

On the contrary, we found no difference in ARO protein levels as

compared to the control. Of note, a previous paper showed that 16

weeks of HFD induced an increase in serum E2 levels and testicular

ARO expression (76) and, considering that this enzyme converts T

into E2, and that decreased T/E2 ratio has been related to impaired

spermatogenesis (56, 77–79), we highlighted that the disturbance of

the hormonal milieu, induced by st-HFD, may be not so severe as

that produced by a long term HFD. In addition, reduced T levels,

together with the imbalance of oxidative status (42) are among the

main causes of the negative impact induced by st-HFD on rat testis.

Further, oxidative stress may also be one of the causes inducing LC

apoptosis, exacerbating the reduced T bioavailability and,

consequently, increasing the number of apoptotic GC. However,

the apoptotic rate of testicular cells observed here was less

pronounced as compared to that observed in the testis of HFD

administered for a longer time (33–36, 80, 81), just confirming that

an overweight-like condition provokes less detrimental effect as

compared to that of obesity on testicular activity.

Our results showed that st-HFD impacts spermatogenic

progression. While the histological organization was similar to

controls, a reduced tubular diameter and epithelium thickness

were observed. In addition, for the first time, we found

significantly lower expression levels of SYCP3, an essential

structural component of the synaptonemal complex, and PRM2, a

protein associated with histone replacement in haploid cells during

spermiogenesis (82). Vice versa, higher levels of PCNA, a nuclear

antigen of cell proliferation, and p-H3, a histone protein crucial for

chromatin condensation during mitosis/meiosis (83), were

detected, together with a higher % of PCNA-positive SPG and I

SPC. This last point is of interest, since our data are contrasting with

that reported in other papers, in which a reduced number of PCNA-

positive cells were observed in the seminiferous tubules of rats
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FIGURE 10

Inflammation markers analysis of control and st-HFD fed rat testis. (A) WB analysis of testicular NF-kB, b-Catenin, TNFa, IL-6, and IL-1RA. (B–F) Histograms
showing NF-kB, b-Catenin, TNFa, IL-6, and IL-1RA relative protein levels. All the values are expressed as means ± SEM from 5 animals in each group.
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HFD-fed for 8 (36), 12 (84, 85), 18 (34), and 20 (35) weeks.

Therefore, a st-HFD appeared to have a major negative effect on

meiotic and post-meiotic events, rather than the previous ones. This

data was partially supported by the fact that no differences in the

frequency of stages characterizing rat seminiferous cycle were

observed. This is in contrast with the paper by Komnions and

colleagues (86), whose data demonstrated that a long-term HFD

altered this value in mice; however, there were slight alterations in

the phases of acrosome biogenesis. Further studies are required to

clarify the underlying molecular aspects and the impact of a st-HFD

on sperm parameters and physiology since proper acrosome

formation is fundamental for successful fertilization (87).
4.2 st-HFD alters testicular mitochondrial
dynamics via SIRT1 pathway

It is known that self-renewing and proliferating SPG use

predominantly glycolysis, while in SPC and SPT, energy is

prevalently produced through mitochondrial respiration, for this,

fully functional mitochondria are required to complete a successful

meiosis (43). Therefore, the altered progression of meiosis in st-

HFD testis, as demonstrated by lower SYCP3 and PRM2 levels,

could be the result of mitochondria damage, while the increased

expression of PCNA and p-H3 in SPG and I SPC may be a

compensatory response to the impaired maturation of GC.

Bearing in mind the interesting data obtained by Migliaccio et al.

(88), reporting that a st-HFD modifies mitochondrial fusion/

fission processes in rat liver, we assessed whether the altered

steroidogenesis/spermatogenesis in our animal model could also

be induced by a consequence in mitochondrial dynamic changes.

In particular, we analyzed several proteins involved in three pivotal

mitochondrial processes: fusion (that promotes the maintenance of

a homogeneous mitochondrial population that can tolerate higher

levels of mitochondrial DNA mutations), fission (the division of a

mitochondrion into two smaller mitochondria), and biogenesis

(89). Our hypothesis on the involvement of mitochondrial damage

in impaired spermatogenesis/steroidogenesis is confirmed by a

decrease in MFN2 and OPA1 (fusion markers), DRP1 (fission

marker), PGC-1a, NRF1, and TFAM (biogenesis marker)

protein levels.

In this complex scenario, it should also be considered the

multifaceted role played by SIRT1, a NAD+-dependent

deacetylase, for several reasons (90). First, it has a well-recognized

role in spermatogenesis, in particular to produce sex hormones by

the hypothalamus-pituitary-testis axis (91) and for meiotic and

post-meiotic progression (92). Second, SIRT1 is a ROS “sensor”,

regulating, in oxidative stress conditions, the expression of several

redox-related factors, such as FOXOs and NF-kB (90). Third,

SIRT1 regulates mitochondrial function and energetic metabolism

activating PGC-1a through deacetylation and mediating the

induction of several components of the ROS detoxifying system

(93). Fourth, testicular SIRT1 downregulation has previously been

associated with the insurgence of an oxidative stress status (94) and

in HFD-fed mice (53, 95). In view of these considerations,

supporting earlier reports, we hypothesize that the effect of a st-
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HFD on impaired spermatogenesis may be also due to the

downregulation of SIRT1 expression/activity and, consequently,

of the downstream pathways, including those regulating

mitochondrial dynamics.
4.3 st-HFD alters BTB integrity via NRF2/
MAPKs pathways

BTB integrity is sensitive to stressful conditions, such as survival

factor depletion and oxidative stress, as reported in several papers

(96, 97). BTB is a distinctive structure of the testis, dividing the

seminiferous epithelium into two compartments: the basal, where

SPG and preleptotene SPC reside, and the apical one, which

contains all the other cell types. It is composed of several cell

junctions, located between adjacent SC, and particular cytoskeleton-

based structures (the ES and the tubulobulbar complex), which

connect SC to SPT. The BTB is an extremely dynamic structure,

which, at stages IX–XI of the rat seminiferous epithelial cycle, is

“disrupted” and then “reassembled” to permit the transit of

preleptotene/leptotene SPC. This action is mediated by the

interplay of various mechanisms that generally regulate

fluctuation in the expression, localization, activation, and

interactions of structural, scaffolding, and signaling proteins (61).

Indeed, all the BTB components work harmoniously through

continuous cycles of phosphorylation/de-phosphorylation,

endocytosis of membrane proteins, and their recycling to

guarantee the accurate moving of GC, and to preserve the

immune-privileged microenvironment.

Herein, we confirmed that in the testis of st-HFD-fed rats, the

protein levels of ZO-1, OCN, and CX43 were reduced (34). However,

to our knowledge, this is the first report showing that a st-HFD affects

testicular levels of N-CAD and VANGL2, proteins found at basal and

apical ES, respectively, as well as the activation of Src and FAK.

In particular, FAK is a central kinase regulator of BTB dynamics,

since its phosphorylation, by Src, at tyrosines 397 and 407, allows it to

interact with many other components, including OCN, ZO-1, and Src

itself. Once activated, FAK regulates the transit of GC through the

seminiferous epithelium, especially maintaining the integrity of the

apical ES and SPT adhesion during spermiogenesis until spermiation

(98). Thus, as previously observed by other authors in HFD-fed mice

for 10 (99), and 16 (100) weeks, we found that also a st-HFD can

produce perturbations in BTB components, highlighting that its

stability is fundamental for a correct spermatogenesis. However, as a

limitation of this study, these are indirect data, and an in vivo BTB

integrity assay would offer direct evidence, solidifying the claim.
4.4 st-HFD alters testicular activity via
NRF2/MAPKs pathways

Emerging evidence demonstrated that the disturbance of BTB

integrity may be due to ROS overproduction, by the downregulation

of NRF2 (101) and activation of the MAPKs pathways (102, 103).

Worth remembering, in physiological condition, NRF2 levels are

maintained low via the repressive action of the protein KEAP1
frontiersin.org

https://doi.org/10.3389/fendo.2023.1274035
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Falvo et al. 10.3389/fendo.2023.1274035
while, in an oxidative stress environment, NRF2 is released by

KEAP1, allowing its translocation into the nucleus, and activating

the expression of antioxidant enzymes, including HO-1 and SOD.

As for the MAPKs pathways, the increased activity of p38, JNK, and

ERK 1/2 leads to OCN ubiquitination and degradation, as well as

endocytosis of junction proteins, including N-CAD and CX43

(104–106).

In addition, it has also been reported that p38/JNK work

together to activate the mitochondrial apoptotic pathway, via the

stimulated expression of pro-apoptotic genes, such as cytochrome c

and Caspase-3 (107, 108). Finally, apart from its well-known

contribution to cell proliferation, numerous studies revealed that

ERK 1/2 is also involved in apoptosis ROS-triggered (109–112).

Consistently, our results showed that also a st-HFD induced the

inhibition of the NRF2 pathway, as well as the phosphorylation, and

thus the activation, of testicular p38, JNK, and ERK 1/2. These

results were positively associated with the oxidative stress status and

the enhanced apoptosis, while they were negatively correlated with

the levels of structural proteins composing the BTB. The combined

data suggest that BTB damage and apoptosis may be mediated by

the inhibition of NRF2 and the activation of p38, JNK, and ERK 1/2

MAPK pathways, in st-HFD-fed rat testis, as already demonstrated

in testicular tissues of type-1 diabetic or obese rodents (99,

113–116).
4.5 st-HFD does not induce
testicular inflammation

Finally, for a broader picture of the effect of st-HFD on rat testis,

the last analyzed parameter was the protein level of the pro-

inflammatory markers NF-kB, b-CAT, TNFa, IL-6, and IL-1RA.

However, no differences between st-HFD-treated rats and controls

were found, and this point is particularly interesting, since one of

the principal manifestations that are evidenced in obesity is the

systemic inflammation, that produces altered testicular activity and

sperm quality in men (114) and in rodents HFD-fed for a prolonged

period (34, 84, 117–119). Thus, although a st-HFD can lead to

dysfunction in testicular physiology, the lack of inflammation may

be the sign of a less severe influence of overweight on fertility,

suggesting that in overweight men there are still possibilities of

intervention strategies (restricted diet, exercise, drugs, and others)

that may effectively ameliorate testicular activity.
5 Conclusions

This study is one of the few to highlight the effects of a st-HFD

on rat testicular activity. We demonstrated that disturbance in the

hormonal milieu and the increased oxidative stress enhanced LC

and GC apoptosis, reduced meiotic progression, and altered the

integrity of BTB. These effects may be related to altered

mitochondrial dynamics, and also to dysregulation of the SIRT1/

NRF2/MAPKs pathways. However, we highlighted the absence of a

claimed inflammation status, as well as the less % of TUNEL-

positive cells, the increased % of PCNA-positive cells and no
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changes in the ARO protein level, as compared to literature

papers in which a longer HFD was employed. The combined data

led us to confirm that an overweight condition provoked less

intense effects than obesity; however, as a limitation of this study,

we lack a direct comparison with a long-term HFD, leading us to

not completely exclude that these differences could be related to

factors other than diet duration. In any case, this report encourages

further studies not only to confirm this aspect but also on the

development of different strategies to be used in preventing/

mitigating the still not-so-severe effects of overweight on

male fertility.
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