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Zinc homeostasis and redox
alterations in obesity
Cristina Franco and Lorella Maria Teresa Canzoniero*

Department of Science and Technology, University of Sannio, Benevento, Italy
Impairment of both cellular zinc and redox homeostasis is a feature of several

chronic diseases, including obesity. A significant two-way interaction exists

between redox metabolism and the relatively redox-inert zinc ion. Redox

metabolism critically influences zinc homeostasis and controls its cellular

availability for various cellular functions by regulating zinc exchange from/to

zinc-binding proteins. Zinc can regulate redox metabolism and exhibits multiple

pro-antioxidant properties. On the other hand, even minor disturbances in zinc

status and zinc homeostasis affect systemic and cellular redox homeostasis. At

the cellular level, zinc homeostasis is regulated by a multi-layered machinery

consisting of zinc-binding molecules, zinc sensors, and two selective families of

zinc transporters, the Zinc Transporter (ZnT) and Zrt, Irt-like protein (ZIP). In the

present review, we summarize the current state of knowledge on the role of the

mutual interaction between zinc and redox homeostasis in physiology and

pathophysiology, pointing to the role of zinc in the alterations responsible for

redox stress in obesity. Since zinc transporters primarily control zinc

homeostasis, we describe how changes in the expression and activity of these

zinc-regulating proteins are associated with obesity.
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1 Introduction

It has been widely documented that oxidative stress (OS) occurs in overweight and

obesity and plays a central role in obesity-related comorbidities (1). Several conditions

underlie OS in obesity, including hyperglycemia, hyperlipidemia, chronic inflammation,

and inadequate antioxidant defenses, which are closely linked, although some contribute

more than others.

Impairment in antioxidant defenses in obesity has also been associated with a

deficiency in various microelements and vitamins. A combined vitamin and trace

element deficiency has been demonstrated in overweight individuals, which worsens

with increasing obesity (2). In fact, obese individuals frequently experience low levels of

carotenoids, vitamins A, B6, C, D, and E (3, 4), as well as deficiency in selenium,

magnesium, iron, and zinc microelements (4, 5).
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Here we review the current state of knowledge on the interplay

between zinc and redox homeostasis in obesity. Since zinc

transporters primarily control zinc homeostasis, we also describe

how changes in the expression and activity of these zinc-regulating

proteins are associated with obesity.
2 Redox signaling and homeostasis:
two faced role in obesity

OS relies on the excessive production of Reactive Oxygen

Species (ROS) and Reactive Nitrogen Species (RNS) (RO(N)S)

(6). Recently the concept of RO(N)S as harmful molecules has

been reconsidered. It is now known that ROS are not always “evil”

and antioxidants are not always “good,” but that the extent and

contest in which ROS are produced determine whether it can cause

beneficial or harmful effects on living systems. This “two-faced”

nature of RO(N)S is supported by their functional role as signaling

molecules (second messengers) in numerous redox-regulated

biological processes such as cell division, differentiation, death,

host defense, and metabolic regulation (7). RO(N)S are an

integral part of normal cell signaling, responsible for reversible

redox-based (oxidation/reduction) post-translational modifications

(redox PTMs) of reactive and redox-sensitive sulfur-containing

amino acid residues of cell signaling pathway components in a

highly selective manner (7). Hence, as with other signaling

molecules, the generation of RO(N)S is regulated to avoid RO(N)

S concentrations higher than those tolerated by cells (8).

Paradoxically, they also act as sensors of changes in the cellular

redox state and contribute to maintain redox homeostasis (9).

In this regard, the close relationship between ROS and glucose-

lipid metabolism is not surprising, considering that the cell’s redox

status is related to glucose and lipid metabolism (10, 11). However,

the production of ROS is not only the consequence of glucose and

lipid usage, but it also controls glucose and lipid metabolism.

Indeed, a close relationship exists between ROS and insulin

signaling in its target cells (12, 13). Following cellular insulin

stimulation, a transient burst of hydrogen peroxide (H2O2) is

essential for fine-tuning insulin signal transduction (14, 15).

Namely, H2O2 can trigger biochemical modifications through

oxidation of the reduced cysteine thiol side chains of protein

tyrosine phosphatases (PTPs) that negatively regulate insulin

signal transduction, leading to their inactivation (14, 16). In

addition, ROS promotes glucose uptake by positively regulating

gene expression of genes encoding glucose transporters (GLUTs)

and signaling pathways responsible for translocating GLUTs from

intracellular vesicles to the plasma membrane (10).

In contrast, chronic malnutrition and consumption of high-fat

and high-carbohydrate meals deliver an excessive amount of energy

substrates to the metabolic pathway in adipose and non-adipose

cells, which, in turn, can increase the production of ROS, mainly via

the mitochondrial electron transport chain (17). Greater availability

of reducing equivalents from increased fatty acid and glucose

loading results in less efficient oxidative phosphorylation in

mitochondria that yields relatively large amounts of superoxide

anion (O2
-·). Impaired glucose utilization favors the occurrence of
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hyperglycemia, which enhances OS by oxidative degradation of

glucose through autoxidation processes (18). Similarly,

accumulated lipids are themselves targets of oxidation, causing an

increase in lipid peroxidation (19). Lipid peroxidation products in

turn can be released from adipose tissue and enter the liver, where

they can alter the respiratory chain, forming more ROS and starting

a vicious cycle (20).

Concomitantly, expanded adipose tissue synthesizes and

secretes huge amounts of cytokines and chemokines, collectively

defined adipochemokines or adipokines, such as leptin, that

promote infiltration of adipose tissue by macrophages with

subsequent overproduction of RO(N)S and inflammatory

cytokines, leading to adipose tissue inflammation (21, 22). Such a

process is triggered by OS, which leads to the activation of

transcr ipt ion factors that control the express ion of

proinflammatory cytokines, which further increase RO(N)S

production (23).

Finally, the lack of antioxidant defenses, both in the form of

enzymatic and nonenzymatic molecules, can contribute to OS in

obesity. Indeed, reduced expression of superoxide dismutase (SOD),

catalase, and glutathione peroxidase (GPX) enzymes has been

described in obesity (19). It is conceivable that reduced activity of

nuclear factor E2-related factor 2 (Nrf2) that controls the

expression of diverse antioxidant enzymes contributes to

weakening enzymatic antioxidant defenses in insulin resistance

and obesity, thereby worsening OS (24).

Several studies have addressed the relationship between zinc

status and the changes in obesity in animal models and obese

individuals (25). Interestingly, zinc participates in all the primary

metabolic processes contributing to OS in obesity (1). Although

zinc is relatively redox-inert in living organisms, it can regulate

redox metabolism and exhibits several pro-antioxidant properties

(26). Similarly, redox metabolism regulates zinc exchange from/to

zinc-binding proteins and controls zinc availability for various

cellular functions. This two-way interaction between redox

metabolism and zinc ion entails that even small perturbations in

zinc status and zinc homeostasis can affect cellular and systemic

redox homeostasis (27). Hence, it is conceivable that changes in

dietary zinc status may exacerbate OS in obesity.
3 Zinc: an essential micronutrient

The importance of zinc to human health has been increasingly

appreciated since the first evidence by Prasad (28), and much has

been learned about the molecular basis of its indispensability.

However, many aspects of zinc biology remain to be further

explored. Zinc is the second most abundant transition metal in

living organisms after iron and the most abundant intracellular

metal. Albeit zinc is considered a dietary microelement,

intracellularly, it reaches very high concentrations (29). Indeed, of

all total 2-3 g of body zinc, only 0.1% is present in the plasma, most

of which is bound to proteins, whereas the remaining 99.9% is

confined within cells (30). In plasma, zinc is mainly bound to

albumin, a-macroglobulin, and transferrin (31–33), while only a

very small fraction, less than 2%, is present as free zinc (33). It is
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present throughout the body, especially in skeletal muscle (~60%)

and bone (~30%), followed by skin and liver. The remaining

fraction is distributed among the other tissues and organs,

including prostate, pancreas, heart, kidney, and brain (34, 35).

Zinc is critically involved in cell proliferation, differentiation,

survival, apoptosis, and neurotransmission (36, 37). Estimates

place overall intracellular zinc concentration between 200-300

mM, depending on cell type (38). Such high intracellular

concentration is substantiated by the fact that a huge number of

proteins requires zinc: about 1 in 10 proteins (~3000 proteins)

contains a zinc-binding motif (39). In about 90% of the overall zinc-

dependent proteins, zinc is required as a catalytic cofactor by 300

enzymes of all classes and a structural component of thousands of

protein domains, such as the “zinc finger” domain of numerous

transcription factors (35). Such a large number of proteins that

require zinc to fulfill their function stimulates reflection on how

complex the entire zinc proteome is and how sophisticated is the

mechanism by which proteins gain access to zinc ions within a cell.

Maintaining cellular zinc levels within an appropriate range is

critical, as even a slight deficiency or excess can significantly affect

human growth, health, and well-being (40, 41) (Figure 1).

The average daily zinc intake (Recommended Dietary

Allowance, RDA) sufficient to meet the nutrient requirements of

healthy adults is 11 mg for men and 8 mg for women. Depending on

age, children require 2-8 mg for both sexes (42). The tolerable upper

limit (UL) for zinc has been set at 40 mg/day (43). Zinc is naturally

present in a wide variety of foods. The major dietary sources of zinc

are shellfish (oysters, crabs, lobsters), red meat, poultry, pork, eggs,

dairy products, legumes, nuts, seeds, whole grains, and vegetables

(44, 45). However, zinc from plant sources is less bioavailable than

from animal foods because they contain large amounts of phytic
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acid and some other indigestible zinc-binding ligands that make

zinc unavailable for absorption (45–49).

Unfortunately, zinc deficiency in humans remains a significant

global public health problem. In low- and middle-income countries,

an estimated 4% of childhood morbidity and mortality is due to

severe zinc deficiency (50, 51). However, slightly inadequate zinc

intake is also observed in young children and the elderly over 69

years of age in developed countries (42, 52), suggesting that many

factors interact to cause zinc deficiency (53). In particular, dietary

habits and food preferences, such as high consumption of phytate-

containing foods, e.g., corn, cereals, rice, and legumes, reduce zinc

absorption (48). In addition, chronic diseases such as diabetes,

gastrointestinal, liver, and kidney diseases, or infections are

considered important risk factors for zinc deficiency (54–56).

The body responds to insufficient intake with rapid metabolic

adaptations aimed at reducing endogenous losses, primarily by

lowering zinc-dependent processes, such as growth and immune

system functions. In fact, zinc deficiency mainly affects the immune,

skeletal, gastrointestinal, epidermal, nervous, and reproductive

systems (49, 57, 58). As a result, severe zinc deficiency leads to

serious complications such as immune system dysfunction with

recurrent infections, growth retardation, weight loss, alopecia,

diarrhea, dermatitis, hypogonadism, hematologic abnormalities,

mental disorders, and increased oxidative stress (55, 59–61).

However, mild/moderate zinc deficiency is more common than

severe zinc deficiency and, in humans, is usually associated with

growth retardation, male hypogonadism, skin changes, loss of

appetite, loss of taste, mild weight loss, mental lethargy, abnormal

dark adaptation, and delayed wound healing (59, 62). Therefore, an

adequate supply of zinc is critical for both nutritional status and

treatment of various diseases. In this regard, zinc supplementation
FIGURE 1

Overview of biological functions of zinc in living organisms. Created with BioRender.com.
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is potentially beneficial and may serve to correct intercurrent

deficiency, such as in preterm infants (63), or as adjunct therapy

for various acute and chronic diseases (59, 64).

However, zinc deficiency is not the only health problem

associated with zinc intake. Although in healthy individuals the

risk of zinc accumulation is much lower than that of zinc deficiency

and is a relatively rare event, long-term exposure to elevated zinc

concentrations well above the UL results in clinical manifestations

of zinc toxicity (65, 66). Zinc toxicity mainly results from dietary

supplements, including multivitamins, or the overuse of denture

adhesive creams (67). Conversely, even if they contain high

amounts of the mineral, excess zinc from food sources alone is

relatively harmless. In this context, healthy infants are often

unnecessarily exposed to the risk of zinc poisoning, primarily

through consumption of supplements, foods, and beverages used

to meet needs during growth and to prevent possible inadequate

intakes in early childhood (68). Adverse effects of high zinc intake

include nausea, dizziness, headache, upset stomach, vomiting, loss

of appetite, and lower immunity (65). It is also known that intake of

very high doses of zinc supplements can impair the HDL: LDL ratio

and copper absorption, resulting in decreased serum levels of HDL

and copper, respectively (69–71).

In addition, zinc status in humans and other organisms is of

particular importance for the optimal maintenance of a normal gut

microbiota composition (72). Zinc shapes host–pathogen

interactions and actively protects the host from pathogen

invasion. In addition, zinc contributes to maintaining the

integrity of the intestinal barrier (73) by regulating the activity of

alkaline phosphatase (74). On the other hand, competition for zinc

between the immune system and the pathogen and zinc

accumulation in immune cells represents the first line of defense

against host colonization to limit bacterial infection, a process

known as nutritional immunity (29, 74). On the other hand, zinc

also serves as an essential micronutrient in prokaryotic cells (29)

and is involved in many aspects of their biology. Therefore, it is not

surprising that both zinc deficiency and excess can significantly

affect the gut microbiota by altering microbial diversity and

changing susceptibility to bacterial infections (68, 75–77). This

aspect is of great interest considering that dysbiosis of the gut

microbiome is causally associated with obesity in humans (78–80).

Even in severe deficiency, a slight increase in dietary zinc intake

can rapidly improve clinical symptoms and restore the small

amount of zinc loss. An effective homeostatic mechanism

prevents variations in tissue zinc and meets tissue requirements

over a wide range of zinc intakes (81). The daily zinc requirement is

relatively low due to the slow turnover of body zinc (1/1000 per

day); however, a correct daily dietary intake is essential because it

influences the size of a small but significant endogenous zinc pool,

the so-called “exchangeable zinc pool” (EZP), which is probably the

most important zinc reservoir (61). EZP accounts for approximately

10% of total body zinc (51) and is localized mainly in plasma and

liver (82, 83). The metal ion that makes up this pool is readily

mobilized and exchanged with tissues, making zinc available for all

functions that require this metal (84).

Consequently, an increase in tissue uptake could decrease

serum zinc if it is not rapidly absorbed, transferred to plasma,
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and replaced within the EZP. The availability of zinc controls the

rate of EZP turnover (81). EZP turnover increases markedly (~35)

when zinc intake is deficient (85) and immediately decreases when

zinc intake is restored (85). Interestingly, intake of glucose and fat

results in a significant decrease in plasma zinc, albeit slowest with

fat meals, likely due to the slower absorption rate (81). Most

importantly, the extent of the decline in plasma zinc induced by

glucose and fat depends on the energy intake rather than the meal

composition (81, 86).
4 Zinc status and obesity

The propensity to develop obesity varies between the sexes.

Indeed, obesity is a sexually dimorphic trait and is more common in

boys than in girls (6% of girls and 8% of boys). Conversely, it is

more frequent in adult women than in age- and weight-matched

men (World Health Organization. Obesity and overweight.

Available at: https://www.who.int/news-room/fact-sheets/detail/

obesity-and-overweight). Similarly, it is generally observed that

women, both normal weight and obese, have slightly higher

serum zinc levels than men, although not significantly (87, 88).

Nevertheless, changes in zinc status occur in obese children and

adults regardless of gender. In particular, obese patients of both

sexes frequently exhibit alterations in the metabolism of this trace

element, as demonstrated by the significantly lower serum zinc

concentrations that they exhibit compared with lean control

subjects (87–101). In the same individuals, zinc balance is

worsened by increased hyperzincuria due to increased urinary

zinc excretion (87). The latter aspect contrasts sharply with

conditions characterized by dietary zinc deficiency, in which the

body attempts to conserve zinc and reduce its excretion (102).

In addition, hypozincemia in obese individuals is negatively

associated with anthropometric parameters such as body mass

index (BMI) and waist circumference, as well as with biochemical

parameters such as fasting blood glucose, insulin and leptin (88, 96,

98, 103, 104). Also, women with poorer zinc status had higher body

weight, waist circumference, and plasma glucose levels than women

with normal levels of this trace mineral (101). The association

between zinc and obesity has been underscored in genetically obese

(ob/ob) mice that exhibited hypozincemia and hyperzincuria (95)

and in null mice for zinc-binding proteins metallothioneins (MTs)

that spontaneously develop obesity (105).

Alterations of zinc distribution occur in obese mice. For

instance, zinc levels were significantly lower in the pancreas,

whereas higher levels were found in muscle, brown and white

adipose tissue, and liver (106, 107). Alterations in the

sequestration and zinc transport mechanisms in the liver and

adipose tissue may be responsible for the hypozincemia observed

in obesity (106). Such a decrease in serum zinc would affect the zinc

supply to all tissues, reducing the amounts needed to maintain EZP.

However, even though hypozincemia seems to be a common

feature of obesity, it is not a direct cause of the disease (108).

No significant differences in body weight, adipose tissue mass, or

fat distribution are observed in obese individuals on a low zinc

diet. In contrast, even modest weight loss in obese individuals
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following a hypocaloric diet increased circulating zinc to normal

levels (89, 101, 109). Most important, obesity-induced

hypozincemia is inversely correlated with OS markers (59).

Weight loss following moderate caloric restriction while

restoring normal zinc levels improved obesity-related OS (110).
5 Zinc and obesity-related
metabolic abnormalities

Numerous observations emphasize the role of nutritional zinc

in all the significant features of obesity. From a mechanistic point of

view, the biological functions of zinc are closely associated with all

the major metabolic mechanisms that generate OS in obesity,

especially with a lack of antioxidant defenses, but also with

insulin resistance, hyperleptinemia, and chronic low-grade

inflammation (1, 111).
5.1 Zinc and obesity-related insulin
resistance and hyperleptinemia

Zinc has insulin-mimetic activity and is involved in the

synthesis, storage, and release of insulin in pancreatic b-cells
(112). In particular, zinc is stoichiometrically associated with

insulin molecules in the secretory granules of pancreatic b-cells to
maintain the crystalline structure of insulin and prevent its

degradation by the action of proteolytic enzymes (113, 114).

Furthermore, upon glucose stimulation, zinc is released along

with insulin into the extracellular space, exerting autocrine and

paracrine effects within the pancreas (113). It controls insulin

secretion by positively regulating the ATP-activated K+ channel

(KATP) activity and potentiating KATP currents, ultimately

reducing cellular excitability and, thus, insulin release (115).

Moreover, zinc promotes the action of insulin (116, 117) by

lowering blood glucose levels and sensitizing target cells in

muscle, liver, and adipose tissue to insulin signaling and exerting

a regulatory function on various signaling cascades (118–122).

Specifically, changes in intracellular zinc appear to be crucial in

modulat ing insul in response through crossta lk with

phosphorylation signaling pathways. The mechanisms underlying

these effects include the inhibition of protein tyrosine phosphatase

1B (PTP1B), which is physiologically responsible for insulin

receptor inhibition through dephosphorylation and attenuates

insulin signal transduction (123, 124).

Resistance to the cellular effects of insulin is a significant

contributor to obesity (125) and gradually leads to a failure of

pancreatic b-cell function, which inevitably results in impaired

insulin secretion due to a progressive loss of insulin sensitivity of

peripheral target tissues. Initially, pancreatic b-cells attempt to

compensate for decreased sensitivity to insulin action by

increasing the rate of insulin synthesis and release through

hypertrophic and hyperplastic processes in pancreatic b-islets to

improve glucose sensing until the compensatory potential of the

pancreas is exhausted (126, 127).
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Zinc deficiency has been shown to decrease the total number of

insulin granules in pancreatic b-cells and to impair insulin

sensitivity and glucose tolerance in obese rats and mice (128,

129). As in rodents, obese individuals with lower dietary zinc

intakes have higher insulin levels than obese ones with normal

dietary zinc intakes (97). In ob/ob mice, zinc supplementation

markedly attenuates glucose-induced insulin secretion and lessens

fasting plasma glucose levels (107). Similarly, zinc treatment leads

to a change in metabolic profile with beneficial effects on insulin

sensitivity in both obese children and adults (130–134).

Zinc can improve glucose utilization in insulin-resistant

individuals through its insulin-like effects, increasing glucose

uptake in insulin-resistant muscle cells by upregulating critical

components of the insulin signaling cascade (122). These results

are also supported by the blood glucose-lowering effects of zinc

compounds observed in several preclinical studies (135–138).

Concerning the potential risk of insulin resistance resulting from

impaired zinc status in obesity, Cruz and his coworkers (131)

systematically reviewed the results of several clinical trials

conducted to determine the efficacy or inefficacy of zinc

supplementation in obese men and women. The available

evidence supports the notion that improving zinc status helps

relieve insulin resistance (131, 139).

Similarly, zinc’s regulation of leptin production has been a

matter of intense research. Leptin functions as a hormone to give

information about the status of body fat depots by acting on the

hypothalamus to diminish food intake and increase energy

expenditure to maintain constant adipose tissue mass. Brain

leptin controls the hypothalamic production of a central appetite-

regulating neuropeptide called neuropeptide Y (NPY), which, in

turn, stimulates appetite (140, 141). During fasting, NPY levels are

high while leptin levels are low, stimulating appetite. It is now

apparent that, among other biological functions, zinc regulates

appetite, modulating leptin production (55, 104, 142, 143).

Interestingly, in healthy humans and rodents, dietary zinc

deficiency decreased circulating leptin levels (104, 143–145),

whereas zinc supplementation increased leptin levels

proportionally to zinc adjustments (104). Thus, in non-obese

individuals, zinc provides a regulatory signal for food intake via

leptin that can explain the decreased appetite and anorexia observed

in zinc deficiency (105,145. 144). Thus, in healthy individuals, zinc

deficiency caused a general reduction of NPY, which may ultimately

lead to weight loss and anorexia (146, 147).

Consequently, changes in the leptin-NPY axis may occur in

obesity, but paradoxically, the vast majority of obese individuals do

not have reduced but higher circulating leptin concentrations that

do not lead to a reduction in appetite, indicating leptin resistance

(148, 149). In obesity, a low zinc diet alters leptin production,

although in this case zinc deficiency leads to increased rather than

decreased serum leptin levels. Indeed, high blood and adipose leptin

levels are associated with low serum zinc levels in obese mice (108,

150). As in mice, an inverse association between dietary zinc intake

and leptinemia has also been observed in young obese women

(151). Zinc deficiency may also exacerbate hyperleptinemia in

obesity by other mechanisms. In this context, as in the case of

insulin, PTP1B directly regulated leptin by controlling the
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phosphorylation state of the leptin receptor and negatively affecting

leptin sensitivity (152). Zinc deficiency could contribute to leptin

insensitivity in non-adipose tissues such as liver and muscle

through loss of the inhibitory effect of zinc on PTP1B. In

addition, a positive association between hyperinsulinemia and

hyperleptinemia in obesity has been observed. Specifically, higher

blood leptin levels reflect higher insulin resistance (153).

Mechanistically, chronic hyperinsulinemia resulting from

decreased responsiveness to insulin promotes excessive synthesis

and release of leptin from adipose tissue (91, 154).
5.2 Zinc and obesity-related inflammation

Obesity is an inflammatory disease (155). Indeed, inflammation

begins in adipose tissue and gradually spreads to adjacent sites such as

skeletal muscle and liver until a systemic, low-grade inflammatory

state, also known as metabolic inflammation, develops and fails to

resolve (156). Adipose tissue is able to synthesize and release locally

and systemically pro-inflammatory and anti-inflammatory cytokines,

such as leptin but also TNF-a, IL-6, adiponectin, and resistin. All fat

depots are composed of adipocytes, resident innate and adaptive

immune cells, represented mainly by macrophages, but also including

neutrophils, dendritic cells, eosinophils, natural killer cells, innate

lymphoid cells (ILCs), and B and T cells distributed in the stromal

vascular fraction surrounded by a dense blood network (157).

Excessive fat accumulation inflames adipose tissue during obesity

and favors adipose tissue macrophages (ATM) polarization from an

anti-inflammatory to a pro-inflammatory phenotype, leading to

further recruitment and infiltration of macrophages and other

immune cells. The latter, in turn, massively produce and release

pro-inflammatory cytokines, leading to an inflammatory cycle that

exacerbates adipose tissue inflammation and triggers a systemic

inflammatory cascade through immune cell infiltration of other

insulin-dependent tissues (22).

In this regard, the dual function exhibited by leptin, namely as

hormone and cytokine, is paradigmatic of the close and

evolutionary conserved tie between the metabolic and immune

system. Leptin acts as a modulator of the innate and adaptive

immune response and has immunological activity functioning as

cytokine (158–160). As such, leptin, like many immune system

mediators, functions as signaling molecules of both the immune

and metabolic systems and is considered the cornerstone signal that

links these two systems, as through which they regulate and

influence each other (158) . In fact , lept in acts as a

chemoattractant for monocytes/macrophages and is required for

macrophage activation and cytokines expression of TNF-a, IL-6,
and IL-12 (161). It derives that, in obesity, hyperleptinemia may

therefore contribute to macrophage accumulation in tissues (162–

164). An adequate dietary zinc intake is pivotal in the maintenance

of the delicate balance between inflammatory and metabolic

responses. In fact, in zinc deficient-obesity, leptin rise promoted

the increase in macrophage infiltration in adipose tissue of mice fed

a high-fat diet (108).

Yet, the influence of zinc on the immune response is not limited

to its regulatory role on leptin levels but refers to the specific role
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that zinc plays in immunity compared to all other microelements.

Indeed, zinc availability supports and influences both humoral and

cell-mediated immune responses, affects many aspects of the

immune system, and contributes to the maintenance of immune

system functions, including the inflammatory response (165–168).

Accordingly, both severe and mild zinc deficiency can weaken the

immune system (61). More interesting is the fact that zinc is an anti-

inflammatory agent that is able to reduce cytokine production (169)

and zinc deficiency is not only associated with immune deficiencies

but can also cause systemic inflammation (97). Therefore, zinc

deficiency may directly contribute to the inflammatory state of

adipose tissue in obese individuals, and it may also affect the

amount of leptin produced and released by this tissue which

ultimately has a proinflammatory effect itself and promotes the

secretion of other cytokines. Accordingly, obese subjects with a

lower zinc status displayed a sustained inflammation and activation

of the immune response (97). Likewise, lower dietary zinc intake

negatively associates with levels of IL-6 and leptin in young obese

women with respect to normal zinc intake counterparts (151).

Importantly, sex-related differences in the inverse relationship

between zinc status and inflammatory markers have been found

(170), which, in turn, may influence susceptibility to the

development of diseases, particularly in women. Regarding the

effects of zinc on obesity-related inflammation and its

complications, zinc supplementation combined or not with

restricted caloric diets has showed to modify inflammatory

markers, reducing the levels of IL-6 and C-reactive protein (CRP)

in obese individuals (100, 151). Of note, CRP levels are directly

related to those of IL-6 (171), and IL-6 together with TNF-a
concurs to reduce the sensitivity to insulin action (172, 173).

While experimental and clinical data consistently indicate that

long-term zinc supplementation directly improves inflammatory

markers (100), clinical studies showed conflicting results on the

effects of zinc on anthropometric measurements (e.g., weight, BMI,

waist and hip circumference) (143, 150, 174, 175). Of relevance, the

improvement in the inflammatory process observed following zinc

supplementation is comparable to that obtained in case of body

weight reduction. Moreover, weight loss alone produces the

normalization of reduced zinc levels (109).

Cytokines themselves may, at least in part, cause the

redistribution of zinc under inflammatory conditions (176).

Remarkably, IL-6 is able to regulate metallothionein expression

(177). Even more interestingly a polymorphism in the gene

encoding metallothionein 2A (MT2A) is associated with higher

plasma levels of IL-6, hyperglycemia, and marked zinc deficiency in

patients with the AA genotype than in carriers of the AG allele,

suggesting the presence of a specific genetic background that may

influence susceptibility to the development of zinc deficiency

associated with inflammation (177).
6 Zinc homeostasis

Eukaryotic cells have evolved a complex machinery consisting

of importer/exporter proteins, sensors, and MTs to ensure that free

zinc ion levels are in the femto/pico-molar range.
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However, even in a buffered environment such as the

cytoplasm, short-term intracellular increases in free zinc occur,

typically in a narrow concentration range from picomolar to low

nanomolar, referred to as “zinc transients” or “zinc signals”. In

contrast to structural and catalytic functions, such zinc changes are

due to a very small intracellular zinc pool that is not stably bound to

proteins and is therefore referred to as ‘labile’ or “rapidly

exchangeable”. It can be transiently released within and from cells

(178), allowing zinc to exert regulatory functions and act as a first

and second messenger.

Zinc signals originate from extracellular zinc translocation and

intracellular release of zinc from intracellular stores or MTs (116).

When zinc is released into the surrounding milieu, it can be taken

up by neighboring cells through transport mechanisms responsible

for translocating zinc into the cell (179). Extracellularly, zinc

concentrations are extremely low, and their increase is probably

due to the release of zinc stored in membrane-enclosed vesicles and

released by exocytosis. Well known examples are the zinc released

with glutamate at the synaptic level in the central nervous system

(180) and zinc delivered with insulin to secretory vesicles released

by pancreatic b-cells in response to stimulation with glucose (181).

Alternatively, zinc signals may originate from ions stored

intracellularly. Similar to calcium, eukaryotic cells store zinc ions

in some cellular compartments where they perform important

functions, and they can be released in response to various stimuli

(181–186). Remarkably, extracellular and intracellular zinc signals

trigger a zinc burst, but the time scale of zinc release from

intracellular stores is slightly slower than that of extracellular zinc

flux (116, 187).

Finally, cellular zinc signals may result from its oxidative release

from the thiol groups of MTs. In humans, at least 11 functional

isoforms of MTs are known, divided into four classes (MT-1 to MT-

4), all of which contain twenty conserved cysteine residues that give

them the ability to coordinate seven zinc ions (188, 189). The

unique intramolecular arrangement by which zinc ions are

coordinated in MTs gives them the ability to bind zinc tightly but

at the same time mobilize it readily without altering its valence.

Indeed, in biological systems, the zinc ion is relatively redox-inert,

exhibiting only one valence (Zn2+). In contrast, the thiol groups of

the cysteine residues of MTs can be oxidized and reduced, which

confers redox activity to the zinc clusters. Once oxidized or reduced,

the thiol groups release or bind zinc (188). Because of the coupling

of zinc binding/release with the ionization state of thiol groups of

MTs display two major functions, namely zinc acceptor and zinc

donor (190, 191). Certainly, such coupling links cellular zinc to the

cellular redox state, as a shift to more oxidizing conditions results in

the release of zinc, whereas a shift to more reducing conditions

results in its binding (192). This is particularly interesting as there is

growing evidence that redox signaling is critical for various cellular

functions (6, 193).

The ionization state of MTs can be altered by cellular oxidants

such as glutathione disulfide (GSSG) or ROS. Oxidation of the thiol

groups causes the release of zinc from its binding sites on the MTs

and the formation of disulfide bonds that can be reduced by

glutathione (GSH). In contrast, cysteine-sulfur reduction leads to

binding of zinc to MTs. Zinc released by MTs promotes further
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expression of MTs via the transcription factor Metal Regulatory

Transcription Factor 1 (MTF1), which acts as a sensor of labile zinc

levels (194, 195), to reduce zinc availability.
6.1 Pro-antioxidant actions of zinc

Although intimate relationship between zinc release from MTs

and cellular redox state, zinc cannot be considered an antioxidant

because it does not interact directly with oxidants to scavenge them.

In contrast, it exerts this effect indirectly by interfering with or

suppressing oxidative reactions and protecting cellular components

from oxidative damage. Therefore, it should be referred to zinc as a

pro-antioxidant (196).

Zinc acts as a pro-antioxidant with multiple actions integrated

into the cellular system to defend against oxidants (197). First, zinc

generally binds the negative charge of cell membrane phospholipids

and, together with nonenzymatic antioxidants, protects membrane

lipids from peroxidative damage caused by heavy metals. In

particular, it competes with redox-active metals such as iron and

copper, preventing the formation of highly oxidant lipid peroxides

(198–200) (Figure 2A).

Besides to reduced free zinc levels, zinc binding to MTs directly

protects the sulfhydryl groups of MTs from oxidation. In addition,

the oxidation of MT causes zinc release and is coupled to MTs

expression to confer protection against OS. In fact, zinc release from

MTs contributes to counteract OS inducing MT expression by

activating MTF1. A similar mechanism is observed after MTs

thiol oxidation by nitric oxide (NO), H2O2, and GSSG (201–

204) (Figure 2B).

Similarly, zinc released by MTs is capable of modulating the

expression of antioxidant enzymes under the control of other zinc-

modulated transcription factors. Interestingly, Nrf2 is emerging as

an important regulator of cellular resistance to oxidants and OS

(205). Under basal conditions, Nrf2 signaling is suppressed as it is

sequestered in the cytosol by interacting with zinc metalloprotein

Keap1 (Kelch-like erythroid cell-derived protein with CNC

homology-associated protein 1) (206), which promotes its

degradation via a ubiquitination proteasome system. As a result

of various stimuli, the Nrf2/Keap1 complex can be dissociated and

Nrf2 is free to migrate to the nucleus (207). In both healthy and

stressed cells, released zinc from MTs can alter the conformation of

Keap1 by binding to cysteine residues on Keap1, thereby reducing

its affinity for Nrf2. As a result, Nrf2 migrates to the nucleus where

it promotes the expression of genes involved in antioxidant defense

(208) (Figure 2B).

In addition to MTs, zinc can be bound by other cellular

components containing cysteine residues such as GSH (209). As

with MTs, zinc binding to thiol groups protects them from

oxidation. Furthermore, zinc/GSH interaction confers to the cell

the capability to counteract redox changes, controlling zinc release

from MTs. In fact, GSH binding to MTs provokes an increase in

labile zinc levels affecting MT conformation and displacing zinc

from its binding sites (210). In turn, zinc positively modulates the de

novo synthesis of GSH through induction of Nrf2 transcription

factor, which is responsible for the upregulation of the gene coding
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for the rate-limiting enzyme of GSH synthesis, glutamate cysteine

ligase (GCL) (211). In addition, zinc stabilizes GCL preventing its

cleavage by caspase 3 (212, 213) (Figure 2B).

Similarly, zinc exerts pro-antioxidant actions also as a cofactor

of antioxidant enzymes. A well-known example of a zinc

metalloenzyme is the copper/zinc superoxide dismutase (Cu/Zn

SOD, SOD1), which rids the cells from superoxide radicals turning

it into water and H2O2. Notably, zinc binding is needed for the

proper functioning of SOD1. In fact, zinc stabilizes the native

structure of each SOD1 monomer, accelerating its folding and

promoting its dimerization. In contrast, zinc mis-metalation alters

SOD1 folding and indirectly affects its catalytic activities

(214) (Figure 2C).

There is convincing evidence that zinc also controls the

expression and activity of NADPH oxidase (Nox), a superoxide-

producing enzyme. Seven Nox catalytic components have been

identified, namely Nox 1-5, Duox1, and Duox2. Interestingly, Nox

1, 2, 3, and 5 produce superoxide anions, whereas Nox4, Duox1, and

2 mainly generate hydrogen peroxide and release it into the

extracellular space. However, the superoxide anion is rapidly

disproportionated to the more stable product H2O2 by SOD.

Moreover, unlike other members of the Nox family, Nox4 is

constitutively activated, suggesting that it is actively involved in
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generating ROS, which plays a second messenger role in numerous

physiological and biochemical processes (215). Interestingly, several

lines of evidence suggest that Nox2- and Nox4-containing NADPH

oxidase are differentially regulated by zinc. Specifically, intracellular

zinc exerted an inhibitory effect on Nox2, as demonstrated by

increased expression, activation, and activity of Nox2 under zinc

deficiency, which was greatly attenuated by zinc enrichment (216).

Accordingly, silencing of Nox2 attenuates the OS observed under

zinc deficiency, suggesting that Nox2 is an essential regulator of OS

under reduced zinc availability due to its ability to produce

superoxide. Of note, by contrast, Nox4 is downregulated in zinc

deficiency (216). This evidence is undoubtedly important

considering the endogenous mechanism of coupling oxidative

signaling via Nox4 and the insulin signaling cascade (15). In this

context, the downregulation of Nox4 observed in zinc deficiency

could promote depression of the insulin cascade (Figure 2D).

Moreover, zinc is not only a critical structural component of all

isoforms of nitric oxide synthase (NOS) (217, 218) but also a key

player in regulating both their expression and activity. More deeply,

the ability of zinc to inhibit the production of NO through inducible

(iNOS) and constitutive NOS (cNOS) is responsible for the reported

anti-inflammatory effect of zinc (219). This zinc effect is based on

the central role of MTs in affecting NO-mediated changes in labile
A C

B D

FIGURE 2

Mechanisms of pro-antioxidant actions of zinc in living organisms. (A) Zinc stabilizes the cell membrane by competing with redox-active metals and
preventing the formation of highly oxidant lipid peroxides; (B) NO- and ROS-induced zinc release from MTs helps to counteract OS through the
translocation of MTF1 and NRF2 to the nucleus, which in turn activate the transcription of genes encoding MTs and antioxidant defenses; (C) SOD1
and (D) NOXs as examples of enzymes in which zinc is an essential structural component and a regulator of the activity of ROS-producing enzymes.
Created with BioRender.com.
frontiersin.org

https://www.biorender.com/
https://doi.org/10.3389/fendo.2023.1273177
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Franco and Canzoniero 10.3389/fendo.2023.1273177
zinc (203, 220). Indeed, iNOS-derived NO can nitrosate the cysteine

thiol groups of MTs and other zinc-containing intracellular

proteins, releasing bound zinc and increasing labile zinc (221).

In turn, the increase in intracellular zinc may have a

cytoprotective effect by limiting the production of NO through

the inhibition of iNOS (222). Spahl et al. (223) demonstrated that

iNOS-derived NO causes a transient increase in free zinc

concentration in the nucleus that correlates with the translocation

of MTs to the nucleus, where they rapidly exchange zinc with zinc-

finger transcription factors and regulate gene expression. Indeed,

under the influence of NO, zinc released from MTs suppresses the

expression of iNOS, through inhibition of NF-kB transactivation

(222, 224), whereas it promotes the expression of MTs, which, in

turn, can scavenge NO through covalent binding to form S-

nitrothiols (223) (Figure 2B). In addition, Berendji et al. (225)

demonstrated that labile zinc increased in the nucleus after

exposure to NO. The local release of zinc appears to be associated

with the release of the metal from zinc-containing domains of

transcription factors as a result of nitrosylation of zinc thiolate

clusters and consequent disruption of these domains, which affects

gene expression. These results suggest that the cytotoxicity of

excessive and long-term NO exposure, as in inflammation,

directly targets zinc clusters in transcription factors that destroy

DNA-binding activity (202). Prolonged exposure to NO disrupts

zinc homeostasis in pancreatic islet cells and reduces the pool of

labile zinc (226). In addition, NO could S-nitrosate the thiols of the

MTs and cause dissociation of the zinc from the sulfur ligands of the

MTs. As indicated by the reduction in zinc levels, it is conceivable

that the zinc released from MTs is not properly handled during

nitrosative stress, suggesting that pancreatic islet cells lose the ability

to efficiently complex and store zinc under these conditions (226).

On the other hand, NO as well as other free radicals have been

shown to play a key role in the dysfunction and damage of

pancreatic b-cells in diabetes, in part due to the intrinsic

susceptibility of b-cells to OS (227). The role of NO in insulin

secretion is less clear and sometimes contradictory. Indeed,

physiologically low levels of NO, produced by cNOS, stimulate

insulin secretion. In contrast, cytokines induce iNOS expression in

islet b-cells in response to inflammatory stimuli, resulting in the

production of an excessive amount of NO (228), which is directly

involved in cytokine-mediated inhibition of insulin secretion and

islet degeneration (229). In this regard, zinc dyshomeostasis

induced by excessive amounts of NO could have an important

impact on the ability of pancreatic b-cells to release insulin because

zinc is involved in the crystallization and storage of insulin in

secretory granules (113).

Although the role of NO in regulating adipocyte differentiation

is still unclear, a similar mechanism has been proposed to be

responsible for the upregulation of adipocyte differentiation

leading to the development of obesity. Specifically, abnormal

production of NO could trigger intracellular zinc mobilization

that positively affects adipocyte differentiation (230). However,

the role of isoforms of NOS in this process remains to be

elucidated (231, 232).
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6.2 Zinc muffling and buffering

The short lifetime of zinc signals themselves implies that when

cytosolic zinc concentration increases, cells are able to control it, i.e.,

they generate zinc signals of different amplitudes, minimize

cytosolic zinc fluctuations, and eventually restore the equilibrium

state of zinc concentration. As for calcium (233), all processes

involved in the control of zinc transients are referred to as zinc

“muffling”. Together, the buffering and muffling processes not only

ensure that the free cytosolic zinc concentration remains low,

thereby protecting the cell from the toxic effects of zinc overload

but also modulate the availability of zinc ions for binding to

proteins that require them. The molecular basis of the buffering

and muffling processes is based on the interplay between MTs, and

spec ific z inc- t ransport ing prote ins involved in z inc

distribution (116).

In this context, in addition to their frequently cited function as

zinc buffers, MTs also function as zinc attenuators. Because MT-

bound zinc can be mobilized, they are not only zinc scavengers but

also able to dynamically release zinc ions to or accept them from

other metal-binding proteins and make the metal ion available to

other proteins. Although these two functions appear quite different

at first glance, they are closely related and depend on the

coordination of zinc binding sites on MTs and thiol reactivity.

The partial saturation of the zinc-binding sites of MTs in the resting

state allows them to bind additional zinc ions in the event of an

increased concentration of free zinc (178, 234). Although important,

either the binding affinity or even cellular expression of MTs alone

is sufficient to account for total cellular zinc buffering while

ensuring maintenance of zinc concentration at a critical level and

subsequent return to baseline (235). On the other hand, excessive

cytosolic zinc buffering capacity prevents zinc fluctuations rapidly

extinguishing any zinc signals. In this context, several studies have

shown that MTs play a role in controlling the intracellular free zinc

pool by zinc muffling. It is based on the ability of MT to attenuate

the increase in cytosolic zinc by translocating into cells and

supplying zinc to their specific transporters located at the plasma

membrane or the membrane of subcellular compartments when the

concentration of free zinc is elevated (236, 237). Indeed, in addition

to the cytosol, MTs have been found in various cellular

compartments such as the nucleus and the intermembrane space

of mitochondria (238–240).

As for MTs, the activity of zinc transporters, which transport

zinc from the cytosol to the extracellular space or sequester zinc in

intracellular compartments, contributes to zinc buffering, allowing

the cell to store zinc and rapidly release it when needed temporarily.

The zinc buffering capacity of MTs, in conjunction with their

translocation within cells and the activity of zinc transporters, are

collectively responsible for zinc muffling.

Hitherto, twenty-four mammalian transporters have been

described. They belong to two complementary protein families:

the Zinc Transporter (ZnT) and the Zrt, Irt-like Protein (ZIP),

which in humans are encoded by the Slc30a1-10 and Slc39a1-14

genes, respectively (241). In addition to the plasma membrane,
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zinc-transporting proteins have been found on ER membranes, in

mitochondria, in the Golgi apparatus, intracellular vesicles, and

lysosomes; in contrast, the nuclear membrane appears to be devoid

of specific zinc transporters (237). Although both protein families

share selectivity for zinc binding, ZnT and ZIP transporters move

zinc in opposite directions. ZnTs are responsible for removing

excess zinc from the cytoplasm and transporting it out of cells or

into the lumen of intracellular compartments, whereas ZIPs

promote the influx of zinc from the extracellular space or

intracellular stores into the cytoplasm. Thus, ZnTs prevent

cellular overaccumulation of zinc, whereas ZIPs replenish

cytosolic zinc. While most ZIPs are localized at the plasma

membrane, most ZnTs are localized in the intracellular

compartments, except ZnT1, which is on the cell surface, where it

functions as the major pathway of zinc efflux and provides control

of metal ion levels (242–244).

In addition to maintaining zinc homeostasis, ZnTs and ZIPs

enable the compartmentalization of zinc and play an important role

in zinc movement across the compartment membrane in which

they are localized (245). They promote zinc entry into the lumens of

subcellular compartments, where it is required (for zinc proteins,

e.g., zinc-containing enzymes (246); on the other hand, they

mediate the local release of zinc in the cell, which is accompanied

by zinc transients through which the zinc ion affects gene

expression and cell signaling (247). The cooperative regulation of

MTs and ZnT transporters, whose expression is tissue- and cell-

specific, is essential for zinc homeostasis (35).

The expression and cellular distribution of several physiological

mediators regulating MTs and specific ZnT and ZIP proteins are

strictly regulated by zinc availability (248, 249). For instance,

excessive zinc boost increases ZnT1 surface expression, whereas

zinc deficiency causes ZnT1 internalization and degradation (250).
7 Zinc transporters and obesity

Because zinc homeostasis is primarily controlled by zinc

transporters, a possible explanation for the different zinc levels

and distribution in obesity could be changes in the expression and

activity of these zinc-regulating proteins. Changes in the expression

of zinc transporters may be due, at least in part, to the inflammatory

state characteristic of obesity. Indeed, an inverse relationship

between inflammatory markers, BMI, and body fat percentage

and the expression of various zinc transporters such as ZnT4,

ZnT5, ZnT9, ZIP1, ZIP4, and ZIP6 was found in obese women

(251). Similarly, the expression of ZnT1 and ZnT5 was upregulated

in leukocytes in another zinc intervention study in obese subjects.

Most importantly, an increase in the expression of both zinc

transporters was positively correlated with zinc intake in both

females and males, although it reached a higher statistical

significance in females (251). This suggests that changes in

expression levels, mainly of ZnT1, are a more sensitive marker of

zinc status than circulating zinc concentrations. ZnT1 upregulation

was also observed in the blood samples of obese women, followed by

ZIP1 (252). Not surprisingly, the expression of ZnT1, the only

transporter responsible for the efflux of zinc from cells, is directly
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controlled by the availability of zinc and its expression decreases

with low zinc intake to protect cells from excessive zinc loss (253).

Similarly, the upregulation of ZnT5 serves to restore zinc levels in

cellular secretory pathways, particularly in the Golgi apparatus,

where luminal zinc is loaded onto secreted proteins that require zinc

for their catalytic activity (254).

Since the first report on the expression pattern of ZIPs and

ZnTs in adipose tissue, it has become apparent that the biology of

the different fat depots, namely subcutaneous and visceral fat

(VAT), correlate to different expression levels of zinc-transporting

proteins (255). Further changes observed in these depots from lean

and obese individuals have reinforced the notion that zinc

differentially affects lipid metabolism according to metabolic

contest, ultimately reflecting the differential expression of

zinc transporters.

In this regard, alterations in the expression of zinc transporters

were found in the subcutaneous adipose tissue (SAT) of obese

patients. In particular, the expression of ZIP14 showed a significant

and reversible reduction in these fat depots of obese individuals,

which was restored after a period of weight loss (256). Interestingly,

ZIP14 expression increased sharply during the early differentiation

of preadipocytes into mature adipocytes, suggesting a role for this

transporter in adipogenesis and not during lipogenesis (257). It is

likely that the localization of ZIP14 to the plasma membrane is

responsible for zinc influx into preadipocytes and controls the

intracellular zinc increase that regulates the final differentiation of

preadipocytes into mature adipocytes. Therefore, reduction or

deletion of ZIP14 negatively affects adipose function, impairs late

adipocyte differentiation, and promotes the acquisition of a

hypertrophic phenotype often associated with insulin resistance.

Notably, Troche and coworkers (258) elegantly demonstrated that

deletion of ZIP14 alters the metabolism of white adipose tissue

(WAT), rendering it insulin insensitive and increases the expression

of cytokines such as leptin and IL-6 by disinhibiting NK-kB and

JAK2/STAT3 signaling pathways (Figure 3A a, b). The reduction of

ZIP14 in obese patients negatively correlated with both leptinemia

and adipose tissue leptin levels in obesity, as in ZIP14 knockout

mice, which exhibited higher levels of leptin. Altogether, knockout

of ZIP14 mimics a state of zinc deficiency similar to that observed in

obese individuals, and the occurrence of metabolic changes similar

to those observed in adipose tissue of obese individuals

demonstrates that ZIP14 is critical for controlling zinc availability

in metabolism and in inhibiting inflammatory processes.

Remarkably, ZIP14 knockout mice showed hyperinsulinemia and

body fat accumulation, two major features of type 2 diabetes and

obesity (259). Moreover, in obese adipose tissue, ZIP14

downregulation has been associated with the increased expression

of several cytokines, such as TNF-a and IL-10 (256).

Similarly, ZIP14 expression has functional significance in

hepatocytes under physiological conditions. Up-regulation of

ZIP14 is responsible for an increase in liver zinc content and a

concomitant decrease in serum zinc, which, in turn, is directly

related to zinc transport into hepatocytes. Accordingly,

downregulation of ZIP14 and consequent zinc deficiency was

observed in a mouse model of alcoholic liver disease (260),

Moreover, the lack of ZIP14 upregulation in both IL-6 and iNOS
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knockout mice clearly suggests that the expression of this zinc

transporter is under the control of pro-inflammatory cytokines,

namely IL-1 b and IL-6 (261, 262). Interestingly, inflammation-

induced increase in zinc levels regulates inflammatory response

inhibiting further IL-6 release and interfering with NF-kB activation

(262) (Figure 3A a, c).

ZIP14 is also involved in regulating hepatic glucose metabolism

with opposite effects compared to adipose tissue. The abundance of

ZIP14 on the plasma membrane of hepatocytes is strongly regulated

by postprandial glucose metabolism. At this stage, higher ZIP14

expression regulated the intensity and duration of insulin action.

Indeed, ZIP14 directly controlled insulin signaling through the

activation of the two endosomal enzymes, cathepsin D and

insulin-degrading enzyme (IDE), which are responsible for

dissociating insulin from its receptor (263). ZIP14 KO mice had a

higher glucose transport rate and higher glucose concentration in

the liver than WT mice, due to a stronger expression of the glucose

transporter GLUT2 at the plasma membrane. Interestingly,

decreased expression of ZIP14 not only did not affect the insulin

sensitivity of hepatocytes but also potentiated hepatic glucose

metabolism and promoted glycogen synthesis. Hence, it is

conceivable that ZIP14-mediated zinc influx is essential for fine-
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tuning insulin signaling in hepatocytes and positively regulates

glucose metabolism by promoting both glycolysis and

gluconeogenesis (263) (Figure 3A a, c).

Consistent with the role played by ZIP14 in regulating glucose-

lipid metabolism, induction of ZIP14 in hepatocytes also assumes a

relevant role in adaptation to ER stress induced by high-fat diet

(HFD). Indeed, ZIP14 increased cellular zinc availability and

reduces the risk of liver disease (264). Mechanistically, ZIP14

mediated the influx of zinc that inhibits PTP1B activity in the

liver and negatively affects the hepatic synthesis of fatty acids and

storage of triglycerides during HFD feeding (265). In contrast, the

ablation of ZIP14 has a negative effect favoring triglyceride

accumulation because PTP1B activity is not inhibited due to the

reduced availability of zinc (264) (Figure 3A a, c).

Similarly, studies recapitulating high-fat diets indicate the

involvement of the zinc transporter ZIP7 in insulin signaling and

glucose metabolism in skeletal muscle cells (266). ZIP7 is responsible

for the zinc homeostasis of the Golgi apparatus transporting zinc out

of the lumen of this subcellular compartment and contributing to an

increase in intracytoplasmic zinc concentration (267).

Physiologically, the function of ZIP7 is associated with glycemic

control through a positive modulation of the molecular components
A
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FIGURE 3

Zinc-dependent pathways in obesity: role of ZIPs and ZnTs. (A) Localization (a) and role of Zip14 in the SAT (b) and liver (c); (B) Zip7 functional role in
the Golgi apparatus of muscle, (C) Zip13 and (D) ZnT7 functional role in the Golgi apparatus of SAT; (E) ZnT8 role in the regulation of insulin release
(a) and insulin sensitivity (b, c). Created with BioRender.com.
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of the insulin signaling pathway. ZIP7 thus supports glucose uptake

and its use for glycogen synthesis in skeletal muscle. Interestingly,

mice fed a high-fat diet exhibited lower expression of ZIP7, consistent

with the onset of insulin resistance in muscle (266) (Figure 3B). The

exact mechanism by which ZIP7 is involved in insulin resistance and,

more importantly, how its zinc transport activity relates to its

physiological effects in skeletal muscle requires further

investigation, as opposite changes in ZIP7 expression have been

found in diabetic cardiomyocytes (268).

Recently, ZIP13, a transporter localized in the Golgi apparatus

that mediates zinc transport into the cytoplasm (269), has been

linked to the biogenesis of the so-called “beige adipocytes”. They

derive from the browning of white adipose cells in visceral tissue

and display functional properties intermediate between brown

(BAT) and white adipocytes (270). Indeed, beige adipocytes

accumulate lipids like white adipocytes and produce heat like

brown adipocytes, improving insulin sensitivity and glucose

metabolism. They are a potential new therapeutic target for

treating metabolic disorders such as obesity, which is known to

be associated with decreased thermogenesis. In this context, ZIP13

has attracted interest because it is highly expressed in pancreatic b-
cells and the gene encoding this zinc transporter is one of the genes

involved in glucose homeostasis during fasting (271). A loss-of-

function mutation in the ZIP13 gene has been associated with

Ehlers-Danlos syndrome, which is characterized by decreased white

adipose tissue mass, among other pathological manifestations (269).

Interestingly, ZIP13-deficient mice show increased biogenesis of

beige adipocytes due to accelerated differentiation of preadipocytes

into beige cells, suggesting that ZIP13 physiologically acts as a

negative regulator of adipocyte browning. ZIP13 likely provides

zinc ions for modulating the activity of enzymes responsible for

degradation of the key components of the adipocyte browning

process (272) (Figure 3C).

Further evidence supporting the role of zinc transporters in

adipose tissue metabolism was provided by ZnT7 KO mice. ZnT7 is

ubiquitously expressed and localized in the Golgi apparatus,

promoting zinc influx into this subcellular compartment’s lumen

(273). Huang and colleagues (274) have observed that ZnT7 KO

mice display a lower body fat percentage than their counterparts

WT. These results were subsequently confirmed by Tepaamorndech

and coworkers (275), which elegantly demonstrated that adipose

tissue is the only tissue affected by ablation of ZnT7, with no

relevant differences in other body tissues. Accordingly, since the

synthesis and release of leptin are directly dependent on the extent

of fat mass, in parallel with a reduction in fat depots, ZnT7 KOmice

exhibit decreased circulating leptin levels (276). The main effect on

lipid metabolism observed in knockout mice can be attributed to the

reduced availability of zinc in the Golgi apparatus which is required

for the proper activity of enzymes and transporters involved in

triglyceride synthesis.

In addition, ZnT7 is differentially expressed in subcutaneous

and visceral fat pads, with a higher expression of ZnT7 in SAT. As a

result, the main effects of ZnT7 deficiency have been observed in

SAT fat cells, showing a size reduction, probably due to reduced

lipid accumulation. Importantly, ZnT7 expression within SAT is
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controlled and occurs only when adipocyte lipogenesis and not

differentiation is induced (275). Genetic ablation of ZnT7 impaired

the ability of fat cells to synthesize lipids resulting in insulin

insensitivity and glucose intolerance in SAT adipocytes

(Figure 3D). Reduction of ZnT7 expression impaired insulin

signaling pathway activity and decreased glucose uptake by

quantitatively reducing insulin-stimulated activation of Akt.

These changes decrease the glycolysis rate and thus the

availability of metabolic intermediates necessary for fatty acid

production, altering lipogenesis within SAT. From a whole-body

perspective, the reduced sensitivity of SAT to insulin action results

in a significantly poorer ability of the body to store excess glucose

and lipids. In light of these findings, it can be argued that the higher

expression of ZnT7 in SAT appears to confer unique properties to

this fat depot that predispose it to the accumulation of excess fat,

reducing the risk of developing metabolic abnormalities associated

with obesity (277). It is worth noting that ZnT7 deficiency is

associated with a negative zinc status in the body that cannot be

corrected by zinc supplementation. This suggests that ZnT7

expression is not dependent on and cannot be modulated by

dietary zinc intake.

Significant alterations in body fat homeostasis and glucose

tolerance have been observed in ZnT8 knockout mouse strains.

ZnT8 was first identified on insulin granules in pancreatic b-cells,
where ZnT8 operates by accumulating cytoplasmic zinc inside the

granules (278). The identification of polymorphisms in the gene

encoding ZnT8 associated with type 2 diabetes in nonobese

individuals (279, 280) and the presence of autoantibodies to ZnT8

in patients with type 1 diabetes has generated considerable interest

in the specific role of this transporter in obesity. However, it has

been shown that specific deletion of ZnT8 in pancreatic b-cells does
not increase the risk of developing obesity but, on the contrary,

protects against insulin resistance induced by a high-fat diet (281).

Indeed, ZnT8 deficiency prevents the hyperinsulinemia often

observed with high fat intake and maintains insulin sensitivity. It

is conceivable that reduced zinc accumulation in insulin granules

due to specific ZnT8 deficiency of b-cells does not lead to

hyperinsulinemia because hepatic clearance of pancreatic

hormone is increased (282). Zinc contained in insulin granules

and released along with insulin reduces hepatic degradation of the

hormone by inhibiting its endocytosis and subsequent degradation,

thus ensuring proper insulin delivery to target tissues. Hence, the

loss of this endocrine effect of zinc in ZnT8 KO mice affects the rate

of hepatic insulin excretion (Figure 3E a, b).

The scenario changes dramatically in global ZnT8 knockout

mice exhibiting severe insulin resistance and obesity. Indeed, Mao

and colleagues (283) found that global KO mice, in contrast to

conditional b-cell ZnT8 KO mice, exhibited adipocyte hypertrophy

due to lipid accumulation in all major white adipose depots (VAT

and SAT), accumulation of lipids in the liver, and increased

expression of genes related to fatty acid synthesis and uptake.

Notably, BAT also accumulated more lipids upon ZnT8 ablation,

although the expression of genes controlling energy expenditure

through heat production was not affected. In this contest, ZnT8

deficiency combined with a high-fat diet significantly exacerbated
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the effects caused by the absence of this zinc store alone and

contributes to increased obesity (283) (Figure 3E a, c).
8 Conclusions

Zinc abnormalities are considered a common feature of obesity,

and zinc supplementation strategies are attracting considerable

interest as a potential strategy to improve body weight

management, inflammatory biomarkers, and insulin resistance in

obese individuals. However, zinc supplementation does not produce

consistent results and is not always successful. Zinc deficiency likely

exacerbates the general state of micronutrient deficiency

characteristic of obese individuals. At the same time, the diversity

of mechanisms affected by zinc deficiency underscores the

indispensable role that zinc plays physiologically and, more

importantly, in pathological conditions.

In recent years, new insights have been gained into the function

of various zinc transporters. The strict interplay between MTs and

members of the ZIPs and ZnTs families is critical for zinc buffering

and muffling. In addition, there is a close functional relationship

with redox metabolism. Changes in zinc buffering and muffling

capacity assume a central role under physiological conditions, but

even more so under conditions characterized by oxidative stress, as

in obesity. We are beginning to determine how individual zinc

transporters may be involved in obesity. However, a more

comprehensive view of the full spectrum of alterations in zinc

homeostasis can improve the understanding of the mechanisms

underlying obesity and its associated comorbidities and develop

novel therapeutic strategies aimed at reducing the impact of obesity.
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20. Milagro FI, Campión J, Martıńez JA. Weight gain induced by high-fat feeding
involves increased liver oxidative stress. Obes (Silver Spring). (2006) 14:1118–23.
doi: 10.1038/oby.2006.128

21. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in
adipose tissue macrophage polarization. J Clin Invest. (2007) 117:175–84. doi: 10.1172/
JCI29881

22. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr.
Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest.
(2003) 112:1796–808. doi: 10.1172/JCI19246

23. Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance.
Gastroenterology (2007) 132:2169–80. doi: 10.1053/j.gastro.2007.03.059

24. Yu Z, Shao W, Chiang Y, Foltz W, Zhang Z, Ling W, et al. Oltipraz upregulates
the nuclear factor (erythroid-derived 2)-like 2 [corrected](NRF2) antioxidant system
and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6J
mice. Diabetologia (2011) 54:922–34. doi: 10.1007/s00125-010-2001-8
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