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Background: Human blood metabolites have demonstrated close associations

with thyroid disorders in observational studies. However, it’s essential to

determine whether these correlations imply causation. Mendelian

Randomization (MR) offers a promising approach to investigate these patterns.

Aims: The primary aim of our investigation is to establish causality between blood

metabolites and three thyroid disorders: TC, GD, and HT.

Methods:Weemployed a two-sample bidirectionalMRanalysis approach to assess the

relationships between 452 blood metabolites and the three aforementioned thyroid

disorders. Causal links were estimated using the IVW method, with sensitivity analyses

conducted via MR-Egger, Weighted Median, and MR-PRESSO. We assessed potential

heterogeneity and pleiotropy using MR-Egger intercept and Cochran’s Q statistic.

Additionally, we conducted pathway analysis to identify potential metabolic pathways.

Results: We found 46 metabolites that showed suggestive associations with

thyroid disease risk, especially Aspartate (ORIVW=7.41; 95%CI: 1.51-36.27;

PIVW=0.013) and C-glycosyltryptophan (ORIVW=0.04; 95%CI: 0.00–0.29;

PIVW=0.001) impacted TC, Kynurenine (ORIVW=2.69; 95%CI: 1.08–6.66;

PIVW=0.032) and 4-androsten-3beta,17beta-diol disulfate 2 (ORIVW=0.78; 95%

CI: 0.48–0.91; PIVW=0.024) significantly impacted GD, and Alpha-ketoglutarate

(ORIVW=46.89; 95%CI: 4.65–473.28; PIVW=0.001) and X-14189–leucylalanine

(ORIVW=0.31; 95%CI: 0.15–0.64 PIVW=0.001) significantly impacted HT. We

also detected 23 metabolites influenced by TC and GD. Multiple metabolic

pathways have been found to be involved in thyroid disease.

Conclusion: Our MR findings suggest that the identified metabolites and

pathways can serve as biomarkers for clinical thyroid disorder screening and

prevention, while also providing new insights for future mechanistic exploration

and drug target selection.

KEYWORDS

metabolites, Mendelian randomization, bidirectional, thyroid cancer, autoimmune
thyroid disease
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Introduction

Thyroid diseases encompass a variety of disorders involving the

thyroid gland, including thyroid cancer (TC), Graves’ disease (GD),

and Hashimoto’s thyroiditis (HT). Thyroid cancer is the most

prevalent malignant thyroid tumor (1), while Graves’ disease and

Hashimoto’s thyroiditis are common organ-specific disorders (2),

with Th17 cells playing a foundational role in these conditions (3).

These three diseases notably affect both incidence rates and affected

individuals’ quality of life. Thyroid hormones play a pivotal role in

regulating numerous metabolic processes within the body, thereby

influencing the overall metabolic status of individuals. The

association between metabolic abnormalities and the incidence of

thyroid disorders is of significance, as it directly impacts the quality

of life for affected patients. Studying the relationship between

metabolic issues and these thyroid diseases has garnered

significant attention.

Observational research has shown a strong link between specific

blood metabolites and the development and advancement of

thyroid diseases. Regarding thyroid cancer, prior studies have

established a correlation between blood thyroid hormone levels

and thyroid cancer occurrence (4).. Additionally, some blood

metabolites such as vitamin D, lipid metabolites, and

carbohydrate metabolites have shown abnormal changes

associated with thyroid cancer (5, 6). There is relatively less

research on Graves’ disease and Hashimoto’s thyroiditis. Murdaca

et al. discovered a certain correlation between the development of

autoimmune thyroid diseases and factors such as vitamin D and the

microbiome (7). In another study, there was a noticeable association

between thyroid hormone levels in the blood of Graves’ disease

patients and lipid metabolites (8, 9).. In studies on Hashimoto’s

thyroiditis, the focus has been on the interaction between thyroid

antibodies and immune-related metabolites in the blood (10, 11).

Although prior research has explored the link between human

blood metabolites and thyroid diseases, there remains a need for

more extensive and systematic studies to fully determine the causal

relationship between these diseases and metabolites.

Mendelian randomization (MR), an analytical approach, is vital

for exploring the causal link between metabolites and thyroid

diseases. Given the absence of viable randomized controlled trials

or the practicality of initiating new ones, the MR method has

emerged as a crucial alternative for evaluating the causal connection

between metabolites and disease risk. Specifically, in the MR

approach, single nucleotide polymorphisms (SNPs) are employed

as instrumental variables (IVs) to represent the specific phenotype

(12). The MR approach’s main strength is utilizing the naturally

occurring genetic variations allocated randomly during fertilization.

This mimics a randomized controlled trial, effectively minimizing
Abbreviations: TC, Thyroid cancer; GD, Graves’ disease; HT, Hashimoto

thyroiditis; AITD, Autoimmune thyroid diseases; MR, Mendelian

randomization; SNPs, Single nucleotide polymorphisms; IVs, Instrumental

variables; MR-PRESSO, MR pleiotropy residual sum and outlier; GWAS,

Genome-wide association study; IVW, Inverse variance weighted; WM,

Weighted median; LOO, Leave-one-out; KEGG, Kyoto encyclopedia of genes

and genomes.
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biases from confounding factors like gender and age in causal

analysis (13). Furthermore, genotype establishment happens

before the onset of disease and remains mostly uninfluenced by

disease advancement, thereby enabling the effective evaluation of

the causal links between metabolites and thyroid diseases (14, 15).

To identify potential candidate metabolites associated with the

etiology of thyroid diseases in a more exploratory manner, we

performed bidirectional two-sample MR analysis using the latest

and extensive genome-wide association study (GWAS) summary

data available (16). The purpose of this analysis was to explore

bidirectional causal associations between human blood metabolites

and both TC and AITD (including GD and HT). This research

approach enhances comprehension of thyroid disease pathogenesis

and metabolic pathways, while also furnishing dependable evidence

for devising viable strategies in thyroid screening and prevention

within clinical settings.
Materials and methods

MR design

We employed a bidirectional two-sample MR to evaluate the

causal link between 452 human blood metabolites and TC and

AITD. Figure 1 provides a schematic overview of the study

design and data sources. GWAS summary statistics were

o b t a i n e d t o e x t r a c t p r om in en t s i n g l e n u c l e o t i d e

polymorphisms [SNPs] serving as genetic instrumental

variables for 452 human blood metabolites, TC, and AITD.

Initially, we designated the 452 blood metabolites as the

exposure and TC, along with AITD, as the outcomes to

ascertain their potential roles in either inhibiting or fostering

the onset of TC and AITD. TC and AITD were then used as the

exposure and blood metabolites as the outcome to investigated

changes in metabolites after the occurrence of disease. The

summary-level data utilized in this study can be downloaded

and has been obtained with ethical approval from the respective

institutions overseeing each GWAS involved.

Analyses were executed using R statistical software (version

4.2.3). MR analyses were conducted with the R-based tools

“TwoSampleMR” and “MR-PRESSO,” and the meta-analysis

employed the “meta” package (13).
Data sources

The data for this study were sourced from two GWASs: one

focusing on metabolites and the other on thyroid disease. The

dataset comprising 452 metabolites for the GWAS was

amalgamated from a genome-wide association scan and high-

throughput metabolic analysis study conducted by Shin et al. This

study enrolled 7824 participants mainly from two European

population cohorts, with screening conducted for approximately

21,000 SNPs (12, 17). The participant pool comprised 1,768

individuals from the KORA F4 study in Germany and 6,056

participants from the Twin study. Both studies received approval
frontiersin.org

https://doi.org/10.3389/fendo.2023.1270336
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2023.1270336
from local ethics committees, and all participants provided

informed consent. This represents the most extensive

investigation to date on the genetic impact on human serum

metabolism. Following rigorous quality control, a total of 452

metabolites underwent genetic analysis in both cohorts. These

encompassed 275 recognized metabolites and 177 unidentified

ones. As detailed in the KEGG database, the 275 established

metabolites are categorized into eight major metabolic groups:

amino acids, carbohydrates, cofactors and vitamins, energy, lipids,

nucleotides, peptides, and allogenic metabolism (18).

The GWAS summaries for TC, GD, and HT were acquired from

the FINNGEN consortium (r9.finngen.fi). The FINNGEN

consortium is a Finnish national meta-analysis of GWAS that

analyzed 13 cohorts and biobanks. The GWAS summary data for

TC included 288,920 samples (1783 individuals with TC and

287,137 without) with a dataset of 18,707,521 SNPS. The

summary data for GD included 377,277 samples (2836 GD cases

and 374,441 controls), encompassing a dataset of 18,709,621 SNPs.

The GWAS summary data for HT contained 321,192 samples (489

Hashimoto’s thyroiditis and 320,703 controls) with a dataset of

18,708,398 SNPS. Supplementary Table S2 shows the

detailed information.
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Selection criteria for genetic variants

In the process of selecting instrumental variables (IVs) to signify

potential exposure-outcome links, varied thresholds were

established according to exposure variations. First, 452

metabolites were designated as the exposure. In this case, SNP

with an association threshold of P<1×10-5 were extracted (19),

mainly for MR Analysis, while a linkage disequilibrium parameter

(r2) of <0.001 was set in the 10,000 kb window of the European 1000

Genome reference Panel to obtain top-level independent SNP.

When the chosen SNPs from the exposure dataset were not

present in the outcome dataset, proxy SNPs displaying substantial

association with the selected variants (R2>0.8) were employed

instead. Secondly, When TC and AITD were designated as

exposures, IV significance adhered to the genome-wide statistical

significance threshold (p<5×10-8) (20). Moreover, a linkage

disequilibrium threshold of 0.001 and a clumping window of

10,000 kb were established. MR Steiger filters were employed to

exclude SNPs with incorrect causal directions. Furthermore, R2 and

F-statistic of the IVs were computed to identify potential weak IV

bias (21). SNPs with F<10 were deemed weak instruments and

removed to guarantee ample variance from all SNPs for the
B

A

FIGURE 1

Schematic overview of the study design. (A) Mendelian randomization [MR] illustration. There are three principal assumptions in MR design: (1) IVs
must be strongly correlated with exposure factors; (2) IVs was associated with outcomes only by exposure; (3) IVs cannot be associated with any
confounding factors. (B) Bidirectional MR study of metabolites and thyroid disease TC, Thyroid cancer; GD, Graves' disease; HT, Hashimoto
thyroiditis; IVW, Inverse variance weighted; WM, weighted median; LOO, leave-one-out.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1270336
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2023.1270336
respective exposed group (22). The design formula is shown in

Table S1, adhering to the common recommendation of using a

threshold of F>10 for MR analysis. Then, exposure SNPs were

isolated from outcome data, while excluding SNPs associated with

the outcome. Following this, alignment of allele information for

exposure and outcome SNPs was performed during data

harmonization. Lastly, metabolites with a minimum of 2 SNPs

were retained for MR analysis.
Primary analysis

This study employed bidirectional two-sample MR to estimate

causal effects between metabolites and thyroid disease using

inverse variance weighting (IVW) (23). IVW is a prominent

method frequently employed in MR studies, effectively

aggregating Wald ratios for each SNP to yield a consolidated

estimate. The random effects model of IVW is utilized in cases of

heterogeneity, while the fixed effects model is applied in its

absence. We further applied a multiple-testing corrected

threshold of P<0.05/275 (where 275 represents the count of

known metabolites) using the Bonferroni correction to elucidate

statistical significance (24). P-values ranging from 1.82×10-4 to

0.05 were regarded as possible associations.
Sensitivity analysis and direction validation

To validate that IV influences the outcome solely through the

exposure, and to improve the robustness of the findings, sensitivity

analysis is also required. Therefore, Different approaches such as

weighted median, MR-Egger, MR-PRESSO, and leave-one-out were

employed in sensitivity analysis to validate the stability of the

significant estimates found (IVW P<0.05). Among them, The

weighted median method enhances causal effect detection and

reduces type I errors. MR-Egger identifies IV assumption

violations and offers unaffected effect estimates. Concurrently, we

examined the presence of horizontal pleiotropy using MR-Egger

regression and the MR-PRESSO Global test (25). Horizontal

pleiotropy suggests that IVs might be linked to outcomes through

non-causal pathways, possibly yielding false positives (p<0.05). The

leave-one-out method assesses whether individual SNPs influence

the results (26). Furthermore, the Cochran Q test was employed to

identify heterogeneity, with a resulting Cochran-Q derived p-value

below 0.05 indicating its presence (27). Lastly, the MR Steiger

directionality test was performed to validate if our findings

aligned with our hypothesis (28).
Replication analysis

We replicated the IVW analysis using GWAS data for TC, GD,

and HT from the IEU Open database (29), aiming to cross-validate

the reliability of our findings. (Table S2)
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Metabolic pathway analysis

The chosen metabolite metabolic pathways were investigated

using the web-based tool Metaconflict 5.0 (30) https://

www.metaboanalyst.ca/. MetaboAnalyst 5.0 serves as a user-

friendly online tool for efficient metabolomics data analysis. In

this study, only metabolites exceeding the advised threshold were

analyzed for metabolic pathways (PIVW<0.05).
Results

Causal effects of the human blood
metabolites on TC, GD, and HT

The metabolite instrumental variables ranged from 4 to 150,

with a median count of 12. SNP F-statistics exceeded 10, indicating

absence of weak instrumental variables. (Table S3). Based on these

instrumental variables we performed the IVWMRAnalysis for each

pair of metabolites and TC and AITD. A total of 46 metabolites

(PIVW<0.05) with significant associations were identified, including

22 known metabolites and 24 unknown metabolites. Among these,

10 (Figures S1-S4), 5(Figures S5-S8) and 7(Figures S9-S12)

associations of known metabolites (Table 1) and 9, 4 and 11

unknown metabolite associations were identified with increased

risk of TC, GD, and HT, respectively. Genetic variants elucidating

metabolite associations with three thyroid diseases were presented

in Tables S5-S7. Supplementary Figures displayed scatter plots,

funnel plots, and leave-one-out sensitivity analysis.

Specifically, Aspartate (ORIVW=7.41; 95%CI: 1.51-36.27;

PIVW=0.013), Kynurenine (ORIVW=2.69; 95%CI: 1.08–6.66;

PIVW=0.032), Alpha-ketoglutarate (ORIVW=46.89; 95%CI: 4.65–

473.28; PIVW=0.001) were the most notably risky metabolites for

thyroid cancer, Graves’ disease and Hashimoto’s thyroiditis. On the

contrary, C-glycosyltryptophan (ORIVW=0.04; 95%CI: 0.00–0.29;

PIVW=0.001), 4-androsten-3beta,17beta-diol disulfate 2

(ORIVW=0.78; 95%CI: 0.48–0.91; PIVW=0.024), X-14189–

leucylalanine (ORIVW=0.31; 95%CI: 0.15–0.64; PIVW=0.001) were

factors with highest protective value for TC, GD and HT (Table 2).

Table 1 shows the characteristics of all significant pathogenic

relationships between known metabolites of different types of

thyroid disease. Subsequently, Bonferroni correction was

employed to identify causal association characteristics

(P<1.82×10-4). The results showed that the P-values of the

selected metabolites were all between 1.82×10-4 and 0.05,

indicating that some metabolites were potentially associated with

TC and ATD, but there was no clear causal relationship. Additional

research is necessary to validate their relationship.

Because IVW methods are susceptible to weak instrumental

bias, sensitivity analyses were conducted to ensure the robustness of

the causal assessment. The MR-Egger, weighted mode, simple

mode, and weighted median approaches yield consistent causal

estimates in terms of both strength and direction. Directed

pleiotropy was evaluated using MR-Egger intercept and
frontiersin.org
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TABLE 1 Effect of metabolites on thyroid disease.

neity Pleiotropy Steiger direction

P Intercept P correct_causal_direction steiger_pval

0.868 -0.0125196 0.802 TRUE 2.923E-38

0.438 -0.0740803 0.364 TRUE 5.46977E-27

0.894 0.0062277 0.854 TRUE 2.5161E-153

0.405 -0.013534 0.144 TRUE 0

0.308 -0.0328429 0.363 TRUE 9.0806E-80

0.895 0.0495728 0.639 TRUE 2.86814E-32

0.674 -0.0284283 0.115 TRUE 1.0729E-135

0.461 -0.0184384 0.221 TRUE 3.8975E-197

0.758 0.0165484 0.641 TRUE 3.49E-118

0.803 -0.0292185 0.206 TRUE 9.0905E-106

0.679 0.0030935 0.823 TRUE 3.3375E-260

0.778 -0.0282023 0.134 TRUE 3.8636E-99

0.226 0.0277824 0.346 TRUE 5.1913E-104

0.826 0.0211657 0.685 TRUE 5.87742E-25

0.473 -0.0348529 0.394 TRUE 4.17112E-28

0.157 0.012907 0.732 TRUE 1.6446E-257

0.205 -0.0195768 0.862 TRUE 1.55711E-71

0.439 -0.0009382 0.993 TRUE 1.41162E-77

0.376 -0.0139517 0.679 TRUE 4.571E-102

0.686 -0.0208127 0.644 TRUE 6.48194E-84

0.647 -0.019332 0.711 TRUE 6.5734E-104

0.354 -0.0087717 0.957 TRUE 1.6218E-113
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Outcome Exposure N IVW Heteroge

OR(95%CI) P IVW Q

Thyroid cancer Phenylalanine 5 258.64(2.30-29102.41) 0.021 1.260

Thyroid cancer Aspartate 4 7.41(1.51-36.27) 0.013 2.712

Thyroid cancer C-glycosyltryptophan* 20 0.04(0.00-0.29) 0.002 11.796

Thyroid cancer Carnitine 150 0.26(0.08-0.81) 0.020 152.504

Thyroid cancer 1-linoleoylglycerol (1-monolinolein) 13 0.54(0.30-0.98) 0.044 13.888

Thyroid cancer Stearoylcarnitine 6 5.77(1.11-29.90) 0.037 1.651

Thyroid cancer Gamma-glutamylglutamine 19 3.54(1.15-10.90) 0.028 14.826

Thyroid cancer Gamma-glutamylleucine 32 0.28(0.08-0.96) 0.043 31.096

Thyroid cancer Uridine 18 0.06(0.01-0.43) 0.006 12.667

Thyroid cancer Myristoleate (14:1n5) 14 0.35(0.17-0.72) 0.005 8.587

Graves’ disease Kynurenine 32 2.69(1.08-6.66) 0.033 26.860

Graves’ disease Taurochenodeoxycholate 11 0.70(0.50-0.98) 0.040 6.428

Graves’ disease 4-androsten-3beta,17beta-diol disulfate 2* 18 0.48(0.25-0.91) 0.024 21.012

Graves’ disease Phenylalanylphenylalanine 4 3.66(1.10-12.19) 0.035 0.899

Graves’ disease Phosphate 4 0.09(0.01-0.86) 0.037 2.511

Hashimoto thyroiditis Kynurenine 32 13.00(1.15-147.44) 0.038 38.838

Hashimoto thyroiditis 3-methylhistidine 8 0.29(0.09-0.91) 0.034 9.720

Hashimoto thyroiditis Phenol sulfate 10 0.21(0.05-0.85) 0.029 8.984

Hashimoto thyroiditis 2-palmitoylglycerophosphocholine* 17 9.83(1.19-81.37) 0.034 17.157

Hashimoto thyroiditis X-14189–leucylalanine 11 0.31(0.15-0.64) 0.002 7.408

Hashimoto thyroiditis Gamma-tocopherol 11 0.21(0.06-0.71) 0.012 7.813

Hashimoto thyroiditis Alpha-ketoglutarate 11 46.89(4.65-473.28) 0.001 11.052
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Mendelian randomized pleiotropy residuals (MR-PRESSO),

indicating no significant findings (all P > 0.05). Heterogeneity was

assessed through IVW test and Cochran Q statistic in MR-Egger

regression. There was also no indication of significant heterogeneity

between instrument SNP effects. We further performed Steiger tests

to verify the direction of effects from metabolites to TC, GD and

HT. The Steiger P-value suggests no reverse causality bias in the

identified causality (Table 1).
Causal effects of TC, GD, and HT on
human blood metabolites

To assess any reverse causal effects, we performed a reverse MR

Analysis using TC, GD and HT as exposures and 452 blood

metabolites as results. Among them, the number of instrumental

variables for each disease ranged from 4 to 11, and all IVs had F-

statistics considerably > 10. (Table S4) Results suggested a causal

effect of TC on Glutamine (ORIVW=1.00, 95%CI=0.99–1.00, PIVW =

0.016), Ornithine (ORIVW=0.99, 95%CI=0.98–1.00, PIVW = 0.036),

5-oxoproline (ORIVW=0.99, 95%CI = 0.99–1.00, PIVW= 0.037), X-

12095–N1-methyl-3-pyridone-4-carboxamide (ORIVW=1.01, 95%

CI = 1.00–1.02, PIVW= 0.021), and Taurolithocholate 3-sulfate

(ORIVW=0.98, 95%CI = 0.96–1.00, PIVW = 0.009) (Figures S13-

S16). GD has potential causal relationship with 13 metabolites such

as Glutamine (ORIVW=1.00, 95% CI = 0.99–1.00, PIVW= 0.027)

(Table 3; Figures S17-S20). The Q statistic of Cochran showed no

heterogeneity (P>0.05). An MR-Egger intercept revealed no

horizontal pleiotropy (P>0.05), while Cochran’s Q statistics

indicated no heterogeneity (P>0.05). By conducting MR Steiger’s

directionality test, SNPs with wrong directionality were excluded,

and the results showed that HT had no causal relationship with

metabolites. Tables S8-S9 provide the genetic variants responsible

for the association between the three thyroid diseases and

identified metabolites.
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Replication analysis

To further validate our findings, we conducted replication

analyses using GWAS data from IEU for TC, GD, and HT. The

results demonstrated that the three metabolites, 1-linoleoylglycerol

(1-monolinolein), Gamma-tocopherol, and 2-hydroxyisobutyrate,

all passed the replication test based on IVW analysis. Subsequent

combined analyses of FINNGEN and IEU Open GWAS datasets

further confirmed that higher levels of 1-linoleoylglycerol (1-

monolinolein) and Gamma-tocopherol were associated with

reduced risk of TC and HT in individuals with genetic

susceptibility. Additionally, fluctuations in 2-hydroxyisobutyrate

levels were observed following the occurrence of GD (Figure 2).
Metabolic pathway analysis

We further carried out the metabolite pathway analysis using all

metabolites discovered through the IVW approach (P<0.05).

Through forward MR Analysis, we detected six potential metabolic

pathways for thyroid cancer and four for Hashimoto’s thyroiditis.

(Table S7). The results show that “Aminoacyl-tRNA biosynthesis”

(P=0.002), “Phenylalanine, tyrosine and tryptophan biosynthesis”

(P=0.007) pathway might be participated in the genesis of TC

(Figure 3A). “D-Glutamine and D-glutamate metabolism” (P=0.01)

and “Butanoate metabolism” (P=0.03) pathway might be associated

with HT (Figure 3B). Among them, there exists a common metabolic

pathway (i.e., “Arginine biosynthesis” and “Histidine metabolism”)

shared by TC (P=0.02, P=0.03) and HT (P=0.03, P=0.04).

In reverse MRAnalysis, we observed that TC (Figure 3C) and GD

(Figure 3D) may increase or decrease the levels of related metabolites

in vivo through four potential metabolic pathways. Among them,

“arginine biosynthesis”, “D-glutamine and D-glutamate metabolism”,

and “nitrogen metabolism” were three shared metabolic pathways

present in both TC and GD (P < 0.05) (Table S8).
TABLE 2 The most detrimental and protective factors for the three thyroid diseases.

Trait Exposure IVW MR-Egger Weighted median

OR (95% CI) P
value

OR (95% CI) P
value

OR (95% CI) P
value

Thyroid cancer Aspartate 7.41(1.51-36.27) 0.013 89.24(1.01-7882.92) 0.188 6.67(0.80-55.52) 0.079

Thyroid cancer C-glycosyltryptophan 0.04(0.00-0.29) 0.001 0.02(0.00-14.33) 0.261 0.04(0.00-0.88) 0.041

Graves’ disease Kynurenine 2.69(1.08-6.66) 0.033 2.10(0.21-21.28) 0.533 1.05(0.26-4.19) 0.945

Graves’ disease 4-androsten-3beta,17beta-diol
disulfate 2

0.48(0.25-0.91) 0.024 0.17(0.02-1.53) 0.133 0.40(0.17-0.94) 0.036

Hashimoto
thyroiditis

Alpha-ketoglutarate 46.89(4.65-
473.28)

0.001 74.02(0.00-
875286845)

0.617 11.17(0.46-
268.59)

0.137

Hashimoto
thyroiditis

X-14189–leucylalanine 0.31(0.15-0.64) 0.001 0.40(0.11-1.50) 0.209 0.34(0.13-0.92) 0.033
fron
IVW, inverse variance weighted.
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TABLE 3 Effect of thyroid disease on metabolites.

Heterogeneity Pleiotropy Steiger direction

IVW Q P Intercept P correct_causal_direction steiger_pval

0.469 0.926 -0.0007116 0.745 TRUE 0.323031496

1.687 0.640 0.0046533 0.375 TRUE 0.605736847

3.150 0.369 -0.0034355 0.315 TRUE 0.780286918

0.171 0.982 0.0011305 0.835 TRUE 0.409721711

0.593 0.898 0.0058003 0.637 TRUE 0.777404811

5.464 0.858 -0.000132 0.896 TRUE 0.480345297

6.283 0.791 0.0019111 0.273 TRUE 0.176588404

7.492 0.678 0.0021971 0.272 TRUE 0.27966876

7.539 0.674 0.0009299 0.832 TRUE 0.946667749

2.819 0.728 0.008937 0.268 TRUE 0.916619542

5.290 0.382 -0.0063934 0.437 TRUE 0.379018338

4.350 0.825 -0.00558 0.149 TRUE 0.452788967

6.976 0.728 -0.0007676 0.760 TRUE 0.598643183

5.263 0.873 -0.0014652 0.578 TRUE 0.523981309

4.268 0.934 -0.0015551 0.592 TRUE 0.238630271

2.120 0.832 0.00183 0.371 TRUE 0.536838388

10.978 0.359 -0.0020548 0.335 TRUE 0.290557508

3.766 0.957 -0.0009854 0.737 TRUE 0.144661835
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Outcome Exposure N IVW

OR(95%CI) P

Glutamine Thyroid cancer 4 1.00(0.99-1.00) 0.017

Ornithine Thyroid cancer 4 0.99(0.98-1.00) 0.036

5-oxoproline Thyroid cancer 4 0.99(0.99-1.00) 0.037

X-12095–N1-methyl-3-pyridone-4-carboxamide Thyroid cancer 4 1.01(1.00-1.02) 0.022

Taurolithocholate 3-sulfate Thyroid cancer 4 0.98(0.96-1.00) 0.009

Glutamine Graves’ disease 11 1.00(0.99-1.00) 0.028

Stearate (18:0) Graves’ disease 11 1.00(1.00-1.01) 0.049

2-hydroxystearate Graves’ disease 11 1.01(1.00-1.01) 0.047

1-oleoylglycerol (1-monoolein) Graves’ disease 11 1.02(1.00-1.03) 0.008

2-hydroxyisobutyrate Graves’ disease 6 1.00(0.99-1.01) 0.041

3-(4-hydroxyphenyl)lactate Graves’ disease 8 1.00(0.99-1.00) 0.043

Scyllo-inositol Graves’ disease 9 1.01(1.00-1.02) 0.046

1-arachidonoylglycerophosphocholine* Graves’ disease 11 1.01(1.00-1.02) 0.007

1-palmitoleoylglycerophosphocholine* Graves’ disease 11 1.01(1.00-1.02) 0.003

1-docosahexaenoylglycerophosphocholine* Graves’ disease 11 1.01(1.00-1.02) 0.014

N2,N2-dimethylguanosine Graves’ disease 6 0.99(0.99-1.00) 0.049

Glutaroyl carnitine Graves’ disease 11 1.01(1.00-1.01) 0.044

1-myristoylglycerophosphocholine Graves’ disease 11 1.01(1.00-1.02) 0.029
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Discussion

Observational studies have reported associations between

metabolites and certain types of thyroid disorders. In this study,

we conducted a two-sample bidirect ional Mendel ian

Randomization (MR) analysis using publicly available GWAS

summary statistics to investigate the causal relationships between

human blood metabolites and various thyroid disorders, including

Graves’ disease, Hashimoto’s thyroiditis, and thyroid cancer. Our

findings revealed intricate interactions between metabolites and

thyroid diseases. To the best of our knowledge, this represents the

inaugural MR investigation into establishing causality between

blood metabolites and thyroid disorders. In the forward MR

Analysis, we found a total of 46 suggestive associations. Thyroid

disease is linked to risk factors like Aspartate and protective factors

like C-glycosyltryptophan. In the replication analysis, the results

revealed that each of the three thyroid disorders had one

overlapping metabolite in different datasets. Extensive sensitivity

analyses showed that these associations were robust to the

pleipotency of the MR Methods and tools used, using MR-

PRESSO and leave-one analyses, and showed consistent findings.

Over the past decade, continuous discoveries of metabolic

biomarkers related to thyroid disorders have emerged in the field

of metabolomics research. Tissues, blood, urine, and feces are

typical sample sources for metabolomic profiling. Among these,

blood serves as a rich reservoir of readily accessible metabolites,

making it valuable for identifying circulating biomarkers in thyroid

disease screening. In metabolomic studies pertaining to plasma/

serum, alterations in the metabolic profiles of three thyroid

disorders have been observed, with the most common metabolic

categories being amino acids, fatty acids, and lipids. For instance, in
Frontiers in Endocrinology 08
a study by Zhao et al. (31), metabolic differences were compared

between thyroid cancer patients and healthy controls. This analysis

revealed a significant increase in serum amino acid metabolite levels

in thyroid cancer patients, while levels of lipid and choline

metabolites were comparatively lower. Our research indicates that

Aspartate, Stearoylcarnitine, and Gamma-glutamylglutamine are

associated with a higher risk of thyroid cancer. Furthermore, after

the onset of TC and GD, there is a decrease in glutamine levels. In

TC patients, Taurolithocholate 3-sulfate increases, while GD

patients exhibit higher levels of N2,N2-dimethylguanosine.

Similar results were reported by Liu et al. (9) in their serum

metabolomics pattern analysis of autoimmune thyroid disease

patients, revealing differences in amino acids, fatty acids, and

lipid-related metabolites among all subjects. Conversely, the

occurrence of thyroid disorders also leads to fluctuations in

metabolite levels. Patients with thyroid dysfunction exhibit more

significant variations in metabolite levels. In our reverse MR

analysis, we identified 23 metabolites with suggestive associations,

suggesting that the onset of TC and GD alters the composition of

metabolites. These findings may have implications for public health

interventions aimed at reducing the risk of thyroid disease.

This MR analysis additionally recognized specific metabolites,

some of which had been previously reported in other studies. C-

glycosyltryptophan is a blood metabolite in the tryptophan

pathway, and as a strong protective factor of TC, it has been

shown to have a causal association with chronic kidney disease

(CKD) in Cheng et al. (32). In our study, phenylalanine increased

the risk of TC and kynurenine increased the risk of GD. This echoes

prior discoveries. For instance, in line with metabolomics,

heightened phenylalanine levels were observed in TC patients,

and seven metabolites, including kynurenine, showed marked
B

C

A

FIGURE 2

Associations of genetically predicted three metabolites with risk of thyroid disorders using IVW method with different GWAS datasets. OR, odds ratio;
CI, confidence. (A) 1-linoleoylglycerol (1-monolinolein) shows potential causal association in two different thyroid cancer datasets (FinnGen
Consortium and IEU Open GWAS); (B) Gamma-tocopherol shows potential causal association in two different Hashimoto's thyroiditis datasets; (C)
Potential causal effects of 2-hydroxyisobutyrate in two different Graves' disease datasets.
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elevation in GD patients when compared to healthy controls (33).

Nonetheless, the sample sizes in these investigations span from

dozens to hundreds, which might not adequately represent the

broader population. The metabolite and thyroid disease data in this

study included a larger sample size, making this study more

representative. Carnitine is a quaternary ammonium compound

synthesized from phosphatidylcholine, as well as the amino acids

lysine and methionine. It has been studied as a therapy or protective

agent for many diseases (34). Marie-Josée et al. discovered (35) that

carnitine can enhance the in vivo bioavailability of butyrate. When

combined, butyrate—a potential anticancer compound—can

inhibit proliferation and induce apoptosis in human colon cancer

cells. Another study (36) confirmed that carnitine reduced the effect

of butyrate as an HDAC inhibitor and restrained the induction of

H3 acetylation by butyrate in colorectal cancer cells. Our results

confirm that carnitine is a protective factor for TC, further research

is needed to explore the potential mechanisms underlying the

combined impact of carnitine and butyrate in thyroid cancer. g-
tocopherol has demonstrated a protective effect against HT in two

different GWAS databases. Previous analyses have reported unique

antioxidant and anti-inflammatory activities associated with g-
tocopherol, suggesting its potential role in preventing thyroid

disorders through the regulation of inflammation-related

mechanisms (37). Future functional analysis is necessary,
Frontiers in Endocrinology 09
substantial experimental endeavors are still required in later

stages to establish a more precise assessment of the

initial speculation.

In this study, we identified ten significant metabolic pathways

associated with TC and HT through pathway enrichment analysis.

Among these pathways, “Arginine Biosynthesis” and “Histidine

Metabolism” were found to be linked to both TC and HT.

Medullary thyroid carcinoma is a malignant tumor originating

from the C-cells of the thyroid, which synthesize and secrete

calcitonin (38, 39), with arginine serving as a precursor for

calcitonin synthesis (40). Patients with this condition typically

require lifelong arginine supplementation to maintain normal

arginine levels in their bodies. Additionally, thyroid hormone

synthesis depends on both arginine and histidine (41), with

tyrosine in the histidine metabolism pathway being a precursor

for thyroid hormone synthesis (42). In individuals with

Hashimoto ’s thyroiditis, the production of anti-thyroid

peroxidase antibodies (anti-TPO antibodies) and anti-

thyroglobulin antibodies can lead to attacks on thyroid tissue,

affecting thyroid hormone synthesis and causing inflammation

and damage (43). Furthermore, we also identified “Aminoacyl-

tRNA Biosynthesis” as the most strongly associated pathway with

TC, while “D-Glutamine and D-Glutamate Metabolism” pathway

was primarily linked to GD and HT. Aminoacyl-tRNA is
B

C

D

A

FIGURE 3

Potential metabolic pathways associated with thyroid disease. (A) Potential metabolic pathways involved in the pathogenesis of thyroid cancer in
positive MR Analysis; (B) Hashimoto thyroiditis (The positive MR Analysis); related to Additional File 2 Table S7 (C) Thyroid cancer (The reverse MR
Analysis); (D) Graves' disease (The reverse MR Analysis). related to Additional File 2 Table S8 Pathway analysis based on "Kyoto Encyclopedia of Genes
and Genomes" (KEGG). The color and size of each circle is based on p-values (yellow: higher p-values and red: lower p-values) and pathway impact
values (the larger the circle the higher the impact score) calculated from the topological analysis, respectively. Pathways were considered
significantly enriched if p < 0.05, impact >0.1 and number of metabolite hits in the pathway >1.
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synthesized through esterification of tRNA with the appropriate

amino acid at its 3’-end. Oxidative stress induces the rapid

translocation of TyrRS from the cytoplasm to the nucleus to

prevent DNA damage (44). Inhibiting tRNA aminoacylation has

proven to be an effective antibacterial strategy, impeding a critical

step in protein synthesis. Furthermore, Yu et al. (45) observed

microbial changes in TCs that led to alterations in aminoacyl-tRNA

biosynthesis. In humans (46), autosomal recessive mutations in

glutamate-pyruvate transaminase 2 (GPT2) cause a neurological

syndrome characterized by intellectual disability, microcephaly, and

progressive motor symptoms. Thyroid dysfunction is a major

contributor to muscle weakness. Thyroid hormones (TH) serve as

crucial metabolic regulators that coordinate short-term and long-

term energy demands (47). Related research has shown that THs

regulate glutamine and glucose metabolism through GPT2,

coupling glycolysis with the TCA cycle to maintain muscle mass.

In summary, these findings suggest that aminoacyl-tRNA

biosynthesis and glutamine metabolism may play vital roles in the

biological mechanisms of thyroid disorders. Our research findings

provide a profound perspective in understanding the relationship

between metabolites and thyroid disorders, revealing strong

associations between various metabolites and thyroid diseases.

These insights pave the way for future investigations to enhance

the diagnosis, prevention, and treatment of thyroid disorders.

This study boasts several key strengths. Firstly, it stands as the

most comprehensive MR investigation concerning the metabolite-

thyroid disease association, boasting the largest sample size to date.

Secondly, we meticulously opted for GWAS data from the

FINNGEN Consortium as a primary analysis, and corroborated

our findings using IEU Open GWAS datasets, markedly enhancing

result reliability. Thirdly, both reverse MR Analysis and sensitivity

analysis indicated the absence of pleiotropy or heterogeneity,

underscoring the statistical robustness of our outcomes.

Nonetheless, certain limitations should be acknowledged in this

study. Initially, owing to the constrained count of SNPs achieving

genome-wide significance, we opted for a relaxed P threshold—a

prevalent practice employed in similar contexts. Furthermore, the

veracity of SNPs with relaxed P-values is corroborated by the

genuine direction ascertained from the Steiger test. Secondly,

while it’s generally advisable to employ sizable GWAS sample

sizes for MR Studies, our research employed a relatively modest

metabolite GWAS sample size, potentially impacting the robustness

of our MR findings. Another limitation pertains to the

predominantly European ancestry of our participants. Caution

must be exercised when generalizing these findings to other

ethnic groups, necessitating further investigation. Fourthly,

metabolite levels exhibit variation across diverse cell and tissue

types. Our study solely examines the causal link between blood-

measured metabolites and thyroid disease, failing to address the

relevance of metabolite levels in more biologically pertinent tissues,

such as the thyroid. Finally, post Bonferroni correction, we didn’t

ascertain a distinct causal connection between metabolites and
Frontiers in Endocrinology 10
thyroid disease, implying the requirement for additional research

to corroborate this relationship.
Conclusion

In summary, this study establishes a bidirectional causal link

between human blood metabolites and thyroid disease. Our forward

MR Analysis pinpointed 46 metabolites potentially influencing

thyroid disease progression, while reverse MR Analysis identified

23 metabolites possibly influenced by thyroid disease development.

Additionally, potential metabolic pathways underlying metabolite-

thyroid disease association were identified. Yet, comprehensive

clinical investigations are required to unveil the precise

metabolite-thyroid disease relationship and unravel the

mechanistic underpinnings further.
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