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Diabetes mellitus is a prevalent chronic disease characterized by hyperglycemia.

Diabetic peripheral neuropathy (DPN) is one of the complications of diabetes

mellitus and is caused by neuron injury induced by hyperglycemic

circumstances. The incidence of DPN varies among different countries and

regions, ranging from nearly 20% to over 70%. Patients with DPN may

encounter symmetric pain or discomfort of the extremes, leading to reduced

quality of life and even amputation. The pharmacological management for

painful DPN mainly includes antidepressants due to their analgesic effects.

Nevertheless, effective therapies to impact the pathogenesis and progression

of DPN are lacking. Glucagon-like peptide-1 receptor (GLP-1R) agonists show

efficacy in controlling blood glucose and serve as a treatment modality for

diabetes mellitus. In recent years, evidence has been proposed that GLP-1R

agonists exert neuroprotective effects through modulating inflammation,

oxidative stress, and mitochondrial dysfunction. On the other hand, clinical

evidence on the potential of GLP-1R agonists for treating DPN is still

controversial and limited. This narrative review summarizes the preclinical and

clinical studies investigating the capacity of GLP-1R agonists as therapeutic

agents for DPN.
KEYWORDS

diabetic peripheral neuropathy, glucagon-like peptide-1 receptor agonists,
neuroprotection, inflammation, oxidative stress
1 Introduction

Diabetes mellitus (DM) is a chronic disease of the endocrine system characterized by

hyperglycemia mainly induced by insufficient insulin secretion or insulin resistance (1). It is

estimated that over 500 million individuals are affected by this disease in 2021, and the

prevalence of DM will be 1.3 billion by the year 2050 (2). The incidence of DM is

dramatically increasing in low- and middle-income countries. In China, it has been
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reported that 12.4% of adults are affected by DM, which accounts

for approximately a quarter of DM patients worldwide; by 2045, it is

estimated that there will be 174 million DM patients in China (3).

Patients with DM may encounter thirst, frequent urination, weight

loss, and other symptoms; moreover, complications of DM may

occur, such as diabetic retinopathy, diabetic nephropathy,

cardiovascular diseases, and diabetic neuropathy (4–6). These

complications put patients with DM at a high risk of low quality

of life, increasing treatment cost, disability, and even mortality (7,

8). Diabetic peripheral neuropathy (DPN) is the most common type

of diabetic neuropathy (9). It is estimated that in China,

approximately half of patients with DM are complicated with

DPN (10). Patients with DPN would likely experience symmetric

pain or discomfort, typically presenting as numbness, burn-like or

sting-like pain, and the feeling of wearing stockings or gloves (4).

These symptoms may severely decrease the quality of life and

induce anxiety and depression in patients (11). Unfortunately,

treatments for DPN are still largely insufficient.

Glucagon-like peptide-1 (GLP-1) is a peptide secreted by the

intestinal tract after the stimulation of food intake, which induces

the secretion of insulin by b cells, thus modulating blood glucose

(12). Based on this mechanism, GLP-1 receptor (GLP-1R) agonists

have been developed for the treatment of DM (13). Until now,

various clinical trials have demonstrated that GLP-1R agonists

show favorable efficacy and tolerable safety in lowering blood

glucose in patients with DM (14–16). Apart from the glycemic-

lowering effect, GLP-1R agonists are considered pharmacological

options for treating obesity and other complications of DM, such as

cardiovascular diseases and diabetic nephropathy (17–19). Notably,

evidence has been proposed that GLP-1R agonists present

neuroprotective effects (20–22). Several clinical studies have also

indicated that GLP-1R agonists may serve as a potential therapeutic

strategy for DPN (23–25).

This narrative review aimed to summarize the currently

available perspective on the potential involvement of GLP-1R

agonists in DPN and shed light on the future direction of

clinical studies.
2 Current perspective on DPN

2.1 Prevalence of DPN

The prevalence of DPN varies among different countries and

regions. A cross-sectional study conducted in two cities of middle

China reported that the overall prevalence of DPN was 71.2% in

patients with DM (26). Another study conducted in the southern

region of China indicated that the overall prevalence of DPN is 33.1%

in patients with type 2 DM who are overweight or obese (27). In

Taiwan, the prevalence of DPN is 21.3% (28). A systematic review

and meta-analysis involving 29 studies from 8 countries found that in

Latin America and the Caribbean region, the incidence of DPN is

46.5% (95% confidence interval: 38.0-55.0%) (29). In the Middle East,

a study performed in Saudi Arabia reported that in patients with type

2 DM, the prevalence of DPN assessed by the Michigan Neuropathy

Screening Instrument (MNSI) is 27.7% (30). Another study
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conducted in Jordan showed that the incidence of DPN is 36% in

patients with DM (31). In the United States, a study assessed 11.9

million adults with DM and found that a total of 3.9 million (32.7%)

patients have symptomatic DPN (32). Another study performed on

youth (age < 20 years) reported that the prevalence of DPN assessed

by the MNSI is 7% in youth with type 1 DM and 22% in youth with

type 2 DM (33). The Diabetes Control and Complications Trial/

Epidemiology of Diabetes Interventions and Complications (DCCT/

EDIC) study evaluated the incidence of DPN in participants with type

1 DM, followed for over 23 years and illustrated that the incidence of

DPN is 33% (34). In Europe, a study randomly assessed 3,250

patients with DM from 31 centers in 16 European countries and

suggested that the overall prevalence of DPN is 28% without

significant geographical differences (the EURODIAB IDDM

Complications Study) (35). The KORA F4/FF4 Study conducted in

Germany reported a prevalence of DPN of 25% (36). The

ADDITION Demark study reported that the prevalence of DPN

was up to 34.8 (37). Generally, the prevalence of DPN in patients with

DM ranges from nearly 20% to over 70% in different countries and

regions, where studies in China reported the highest prevalence of

DPN in patients with DM, suggesting the urgent demands for proper

management of DPN in patients with DM, especially patients

in China.
2.2 Risk factors for DPN

On the other hand, the risk factors for DPN have been widely

reported. Most studies have recognized that older age, longer DM

duration, and worse glucose control are risk factors for DP.

Meanwhile, obesity or overweight, worse renal function,

unfavorable lipid profile (such as higher low-density lipoprotein

cholesterol and lower high-density lipoprotein cholesterol),

hypertension, and smoking are also associated with a higher risk

of DPN (28, 30, 32, 33, 35, 38). Notably, two studies reported that

insulin treatment is associated with a higher risk of DPN (28, 30).

Interestingly, a study conducted in Saudi Arabia reported that

females are more likely to suffer from DPN (30), while a study

performed in the United States suggested that in youth with type 2

DM, male sex is a risk factor for DPN (30). The UK prospective

diabetes study (UKPDS) revealed that age, female sex, poor glucose

control, weight, alcohol consumption, and current smoking are risk

factors for DPN (39). There are also several studies reporting novel

factors associated with DPN risk. For instance, lower education

level (26), lower vitamin D level or vitamin D deficiency (40),

receiving b-blocker treatment (34), the incidence of diabetic

retinopathy (41), and lower income (42).
2.3 Pharmacological treatments for DPN

According to the relevant guidelines in China released in 2021

(10), pregabalin and duloxetine are the first-line pharmacological

treatments for painful DPN. Meanwhile, considering the economic

burden and comorbidities, gabapentin could also serve as an initial

therapy. Tricyclic antidepressants such as amitriptyline and
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imipramine should be carefully administered due to the high

incidence of adverse events. Opioids such as tramadol are not

recommended due to the high incidence of adverse events and

addiction (10). These agents are recommended for the treatment of

DPN due to their analgesic effects. Nevertheless, they could not

reverse the injury of neurons in patients with DM. Therefore, it is of

great significance to search for potential treatment strategies to

alleviate the pathogenesis and progression of DPN.
3 Preclinical evidence of
neuroprotective effects of GLP-1R
agonists in DPN

In patients with DM, the metabolism of glucose, lipids, proteins,

and nuclear acids is largely dysregulated. Under hyperglycemia,

lipids, proteins, and nuclear acids can form advanced glycation end

products, interact with the corresponding receptor and finally

trigger the activation of inflammation, oxidative stress, and

mitochondrial dysfunction, which ultimately induces neuronal

injury (43–46).
3.1 In vitro evidence

Qi et al. used methylglyoxal, a byproduct of glucose metabolism,

to treat neuroblastoma SH-SY5Y cells to mimic diabetic neuropathy

(47). The authors then used GLP-1R agonist liraglutide to treat the

methygluoxal-induced SH-SY5Y cells. Liraglutide treatment

decreased the levels of superoxide dismutase (SOD) and reactive

oxygen species (ROS), suggesting that liraglutide reduced oxidative

stress inmethygluoxal-induced SH-SY5Y cells. Moreover, the authors

also used 1H nuclear magnetic resonance and disclosed that

liraglutide altered energy metabolism and elevated gluconeogenesis;

it also increased oxidative phosphorylation while suppressing

glycolysis in methygluoxal-induced SH-SY5Y cells (47).

Pandey et al. used high-glucose treatment in SH-SY5Y cells to

mimic diabetic neuropathy and explored the effect of the GLP-1R

agonist exendin-4 on diabetic neuropathy (48). The data showed

that exendin-4 treatment elevated the levels of p-protein kinase B

(Akt) and B-cell lymphoma 2 (Bcl-2) and suppressed the level of

Bax, which indicated a lower level of cell apoptosis. The authors also

found that exendin-4 treatment inhibited the level of oxidative

stress. In addition, exendin-4 treatment repressed mitochondrial

dysfunction, as shown by lower levels of the mitochondrial

function-associated genes MCU and UCP3, as well as the

mitochondrial fission genes DRP1 and FIS1. More importantly,

the authors demonstrated that exendin-4 treatment exerted the

abovementioned functions through the Epac/Akt pathway (48).
3.2 In vivo evidence

Liu et al. established a DM rat model by injection of

streptozotocin; then, they treated the DM rats with intraperitoneal

injection of exendin-4 at 1 nmol/kg for 24 weeks (49). The authors
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found that compared with placebo injection, the 2000 and 250 Hz

current perception threshold values were reduced by exendin-4

injection, indicating a lower level of nerve dysfunction. They also

revealed that the reduction in the axon/fibre area ratio of the sciatic

nerve and intraepidermal nerve fibre loss were relieved by exendin-4

injection (49).

Jolivalt et al. treated streptozotocin-induced DM rats with

exenatide, a GLP-1R agonist, for 8 weeks and found that

exenatide treatment attenuated the reduction in motor nerve

conduction velocity and paw intraepidermal fibre density (50).

The authors a lso e lucidated that exenat ide e levated

phosphorylation of extracellular signal-regulated kinases 1/2

(ERK1/2) leve l , suggest ing that exenat ide exerted a

neuroprotective effect through activating the ERK signaling.

Interestingly, the authors also found that exenatide did not vary

the blood glucose, insulin level, or body weight in streptozotocin-

induced DM rats. The findings of the authors suggested that the

neuroprotective effect of exenatide was independent of the glycemic

control effect of exenatide (50).

Himeno et al. dissected GLP-1R-expressing lumbar dorsal root

ganglion neurons from mice and cultured them with Schwann cell-

conditioned media to mimic diabetic conditions (51). The authors

then treated dorsal root ganglion neurons with exendin-4. The data

revealed that exendin-4 significantly promoted the neurite

outgrowth that was previously impaired by Schwann cell-

conditioned media. In the in vivo experiments, the authors

treated the streptozotocin-induced DM mice with exendin-4 at 10

nmol/kg for 4 weeks and found that exendin-4 promoted the

peripheral nerve function as reflected by improved current

perception threshold and motor and sensory nerve conduction

velocity. Interestingly, the authors revealed that the dose of

exendin-4 at 10 nmol/kg for 4 weeks had no effect on blood

glucose, body weight, or HbA1c levels in streptozotocin-induced

DMmice. These findings indicated that the neuroprotective effect of

exendin-4 was independent of its blood glucose-lowering effect (51).

Ma et al. also used streptozotocin injection to establish a DM rat

model (22). Subsequently, the daily GLP-1R agonist liraglutide at

200 mg/kg was used to treat the DM rats for 8 weeks. The authors

observed that the loss of myelin nerve fibre density was partly

restored by liraglutide treatment, and the nerve conduction velocity

of motor and sensory nerves was improved by liraglutide treatment.

The authors also noticed that the levels of proinflammatory

cytokines (including cytokines tumor necrosis factor-a (TNF-a),
interleukin-1b (IL-1b), and IL-6), intercellular adhesion molecule 1

(ICAM1), and NADPH oxidase 4 (NOX4)) in the sciatic nerve were

all reduced by liraglutide treatment. The authors further explored

the relevant signaling pathways and found that mitogen-activated

protein kinase (MAPK) and nuclear factor-kB (NF-kB) were

repressed by liraglutide treatment (22).

Moustafa et al. established a DM rat model by injecting

streptozotocin and nicotinamide (21). Then, they treated DM rats

with liraglutide or pregabalin, a therapeutic agent for neurological

pain in patients with DPN. The data showed that both liraglutide

and pregabalin showed similar effects on the neurological behaviors

of DM rats as assessed by motor coordination and latency

withdrawal time of tail flick and hind paw cold allodynia tests.
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Meanwhile, liraglutide ameliorated the dysregulation of

malondialdehyde (MDA), nitric oxide (NO), SOD, matrix

metalloproteinase (MMP)-2 and -9, as well as IL-6 and IL-10 in

the sciatic nerve, while pregabalin had less effect on them. These

findings suggested that liraglutide may have similar effects on

ameliorating neurological symptoms of DPN as pregabalin, and it

also mitigated oxidative stress, inflammation, and matrix

remodelling in DPN (21).

Apart from the abovementioned studies, there are also several

studies demonstrating the neuroprotective effects of GLP-1R

agonists in DM, and we have listed these studies (including the

abovementioned studies) in Table 1. Combined with the above-

described studies, it is clear that GLP-1R agonists reduced

inflammation, oxidative stress, mitochondrial dysfunction, and

matrix remodelling to improve neuron functions in DPN

(Figure 1). Notably, two studies controlled the dosage of GLP-1R

agonists at a level that would not affect the blood glucose of in vivo

DM models, and these two studies demonstrated that the

neuroprotective effects of GLP-1R agonists are independent of

their blood glucose-lowering effects. The molecular mechanisms

of the neuroprotective effects of GLP-1R agonists include signaling

pathways such as ERK signaling, PI3K signaling, RhoA activity,

MAPK/NF-kB signaling, and the Epac/Akt pathway. These studies

have laid a solid basis for the clinical application of GLP-1R agonists

for treating DPN.
4 Clinical evidence of GLP-1R agonists
in managing DPN

Unlike preclinical evidence, studies investigating the effect of

GLP-1R on DPN are quite rare. Most studies reported diabetic

neuropathy as one of the endpoints, rather than classifying it into

peripheral neuropathy and autonomic neuropathy. A brief

description of the studies is listed in Table 2.

Sullivan et al. conducted an analysis of the long-term

effectiveness of liraglutide and glimepiride monotherapies in

patients with DM from the LEAD-3 trial (56). The LEAD-3 trial

assigned patients to randomly receive monotherapies of liraglutide

1.2 mg/day, liraglutide 1.8 mg/day, and glimepiride 8 mg/day (61).

The analysis of Sullivan et al. revealed that the rates of neuropathies

leading to first/recurrent amputation within 30 years were higher in

patients receiving glimepiride 8 mg/day (N=248) than in patients

receiving liraglutide 1.2 mg/day (N=251) or liraglutide 1.8 mg/day

(n=247), while they were numerically similar between patients

receiving liraglutide 1.2 mg/day and liraglutide 1.8 mg/day.

Meanwhile, the incidence of minor hypoglycemia was higher in

patients receiving glimepiride 8 mg/day than in those receiving

liraglutide 1.2 mg/day or liraglutide 1.8 mg/day (56). The findings of

this study disclosed that liraglutide showed a better effect on

treating DPN. Nevertheless, the main populations of this study

are Caucasian, Hispanic, and African-American. Therefore, the

findings of this study could not be expanded in Asia. In addition,

the sample size of this study is not large enough to drive a solid
Frontiers in Endocrinology 04
TABLE 1 Preclinical studies exploring the neuroprotective effects of
GLP-1R agonists.

Author Model
GLP-1R
agonists

Findings

In vitro evidence

Tsukamoto
et al. (52)

Insulin removed
medium-cultured
rat dorsal root
ganglion neurons

Exendin-4

Exendin-4 promoted
neurite outgrowth and
viability of dorsal root

ganglion neurons through
activation of

PI3K signaling.

Mohiuddin
et al. (20)

Hydrogen
preoxide-treated
dorsal root
ganglion neurons

Exendin-4

Exendin-4 reduced
oxidative stress and

promoted
neurite projection.

Kornelius
et al. (53)

High glucose and
high free fatty
acid-treated
RSC96
Schwann cells

Liraglutide

Liraglutide increased cell
viability, reduced oxidative

stress, inhibited
inflammation, and

upregulated
neurotrophic factors.

Qi
et al. (47)

Methylglyoxal-
treated SH-
SY5Y cells

Liraglutide
Liraglutide repressed
oxidative stress and

promoted gluconeogenesis

Pandey
et al. (48)

High glucose-
treated SH-
SY5Y cells

Exendin-4

Exendin-4 inhibited cell
apoptosis, suppressed
oxidative stress, and
relieved mitochondrial

dysfunction through Epac/
Akt signaling

In vivo evidence

Liu
et al. (49)

Streptozotocin-
induced
diabetic rats

Exendin-4
Exendin-4 promoted
neuron functions.

Jolivalt
et al. (50)

Streptozotocin-
induced
diabetic mice

Exenatide

Exenatide did not affect
blood glucose and

promoted
neuron functions.

Himeno
et al. (51)

Schwann cell
conditioned
media-cultured
GLP-1R-
expressing dorsal
root
ganglion neurons

Exendin-4

Exendin-4 promoted
neurite outgrowth of

dorsal root
ganglion neurons.

Streptozotocin-
induced
diabetic mice

Exendin-4 did not affect
blood glucose and

promoted
neuron functions.

Gumuslu
et al. (54)

Streptozotocin/
nicotinamide-
induced
diabetic mice

Exenatide

Exenatide promoted
hippocampal genetic level
of GLP-1R and nerve

growth factor

Ma
et al. (22)

Streptozotocin-
induced
diabetic rats

Liraglutide

Liraglutide elevated
neuron function, reduced

inflammation, and
suppressed p-p38 MAKP/

NF-kB signaling

(Continued)
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conclusion. Meanwhile, the evaluation of neuropathy was not

mentioned in this article.

In a pilot study, Jaiswal et al. enrolled 46 type 2 DM patients

with mild to moderate DPN (23). The 46 patients were randomized

to receive open-label twice-daily exenatide (N=22) or daily insulin

glargine (N=24). The primary outcome was the prevalence of

confirmed clinical neuropathy assessed by nerve conduction

studies of the median, peroneal motor, and sural sensory nerves

with a standard protocol. The secondary outcomes included

individual electrophysiology measures, vibration perception,

clinical neuropathy changes, etc. After 18 months of follow-up,

blood glucose control was similar between the groups. Meanwhile,

the prevalence of confirmed clinical neuropathy, intraepidermal

nerve fibre density, and nerve conduction were all similar between

groups. Nevertheless, limited by the small sample size and the open-

label study design, the findings may be biased. In addition, the
Frontiers in Endocrinology 05
abnormal nerve conduction study measures at baseline were slightly

different (although not statistically significant); this could also affect

the findings (23).

Brock et al. conducted a randomized, double-blinded, placebo-

controlled trial to explore the effect of liraglutide on neuropathies in

patients with type 1 DM (57). The patients in the liraglutide group

received 1.2-1.8 mg daily liraglutide for 26 weeks. The primary

outcome was the change in latency of early brain evoked potentials.

Secondary outcomes included cortical evoked potential, peripheral

neurophysiological testing, proinflammatory cytokines, and

autonomic function. Peripheral nerve function was assessed by

nerve conduction velocities, amplitudes and F‐waves on the

motor and sensory nerves. The data showed that liraglutide

significantly decreased the level of IL-6 and numerically reduced

the levels of other proinflammatory cytokines, including interferon-

g and IL-10. However, the functions of central, autonomic, or

peripheral neurons were not affected by liraglutide treatment (57).

This study could still be limited by the small sample size. In

addition, all patients had type 1 DM, and the neuroprotective

effect of liraglutide in patients with type 2 DM was unclear.

Ponirakis et al. conducted a subgroup analysis of the Qatar

study, an open-label, randomized controlled trial (62), and

compared the peripheral neurological outcomes in patients

receiving a combination of exenatide (2 mg/week) and

pioglitazone (30 mg/day) and those receiving glargine plus aspart

insulin (58). The primary outcome was the findings of corneal

confocal microscopy assessing small nerve fibres. The secondary

outcomes were vibration perception threshold assessed by the

Neurothes iometer , sudomotor funct ion evaluated by

electrochemical skin conductance, and neuropathic pain assessed

by the Douleur Neuropathique en 4 questionnaire. The authors
TABLE 1 Continued

Author Model
GLP-1R
agonists

Findings

Moustafa
et al. (21)

Streptozotocin/
nicotinamide-
induced
diabetic rats

Liraglutide

Liraglutide increased
animal behavior and

inhibited oxidative stress,
inflammation, and
matrix remodelling.

Zhang
et al. (55)

Streptozotocin-
induced
diabetic mice

Liraglutide

Liraglutide relieved
neuropathic pain and
inhibited cortical

microglia activation.
GLP-1R, glucagon-like peptide-1 receptor; PI3K, phosphoinositide 3-kinase; MAKP,
mitogen-activated protein kinase; NF-kB, nuclear factor-kB; Akt: protein kinase B.
FIGURE 1

GLP-1R agonists reduce inflammation, oxidative stress, mitochondrial dysfunction, and matrix remodelling to improve neuron functions.
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disclosed that compared with baseline, the combination treatment

group (N=21) showed an increase in corneal nerve branch density

but worsened vibration perception and unchanged sudomotor

function as well as neuropathic pain after 1 year of treatment.

Inheriting from the main study, this subgroup analysis has the

limitations of small sample size and open-label study design (58).

Issar et al. reported an observational comparative study that

compared nerve excitability in patients with type 2 DM who

received exenatide (n=32), a dipeptidyl peptidase-4 (DPP-4)

inhibitor (n=31), or a sodium-glucose cotransporter-2 (SGLT-2)

inhibitor (n=27) (59). Motor nerve excitability was assessed by the

function of voltage-gated sodium and potassium ion channels and

sodium-potassium pumps. The authors disclosed that in patients

who received a DPP-4 inhibitor or an SGLT-2 inhibitor,

abnormalities were found in peak threshold reduction, S2

accommodation, and subexcitability and superexcitability,

whereas patients who received exenatide showed normal nerve

excitability. Moreover, the authors found that exenatide treatment
Frontiers in Endocrinology 06
was associated with elevation of nerve function, which was

independent of blood glucose control (59). Although these

findings were encouraging, further randomized, controlled trials

are needed to verify them.

In a retrospective cohort study, Lin et al. (60) reviewed patients

with DM who received GLP-1R agonists (n=20,288) and SGLT-2

inhibitors (n=81,152). The primary outcome was the incidence of

major adverse limb events (defined as either one of the following

events: newly diagnosed critical limb ischemia, percutaneous

transluminal angioplasty or peripheral bypass of peripheral artery

disease, or nontraumatic amputation). The secondary outcome was

major adverse cardiovascular events. The incidence of major

adverse limb events was lower in patients who received GLP-1R

agonists than in those who received an SGLT-2 inhibitor. In

addition, the association of GLP-1R agonists with the low

incidence of major adverse limb events was notable in patients

with DPN. In fact, DPN is closely associated with adverse limb

events. For instance, a post hoc analysis of the Action to Control
TABLE 2 Clinical evidence of GLP-1R agonists for treating DPN.

Author Design Patients Grouping
Treatment duration
of Randomized,
controlled trial

Neurological findings

Sullivan
et al. (56)

Randomized,
controlled

trial
Type 2 DM

Liraglutide 1.2
mg/day
(N=251)

Liraglutide 1.8
mg/day
(N=247)

Glimepiride 8
mg/

day (N=248)

52 weeks
Neuropathies leading to first or recurrent amputation was higher for

glimepiride compared to both doses of liraglutide.

Jaiswal
et al. (23)

Randomized,
controlled

trial
Type 2 DM

Exenatide
(N=22)
Insulin

glargine (N=24)

18 months
No difference was found in confirmed clinical neuropathy,

intraepidermal nerve fibre density, or findings of nerve conduction
studies between groups.

Brock
et al. (57)

Randomized,
controlled

trial

Type 1 DM
with DPN

Liraglutide
(N=19)

Placebo (N=20)
26 weeks No difference was found in neuronal function between groups.

Ponirakis
et al. (58)

Randomized,
controlled

trial

Poorly
controlled
type 2 DM

Exenatide plus
pioglitazone
(N=21)

Aspart insulin
with

glargine (N=17)

1 year
Corneal nerve branch density was increased, but vibration

perception was worsened in exenatide plus pioglitazone group
after treatment.

Issar
et al. (59)

Cohort study Type 2 DM

Exenatide
(N=32)
DDP-4
inhibitor
(N=31)
SGLT-2
inhibitor
(M=27)

– Exenatide was associated with an improvement in nerve function.

Lin
et al. (60)

Cohort study DM

GLP-1R
agonists

(N=20,288)
SGLT-2
inhibitor

(N=81,152)

–

GLP-1R agonists usage was associated with lower risk of major
adverse limb events (including nontraumatic amputation), especially

in patients with DPN.
GLP-1R, glucagon-like peptide-1 receptor; DPN, diabetic peripheral neuropathy; DM, diabetes mellitus; DDP-4, dipeptidyl peptidase-4; SGLT-2, sodium-glucose cotransporter-2.
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Cardiovascular Risk in Diabetes (ACCORD) trial illustrated that

DPN was a strong predictor of lower-limb amputations (63).

Meanwhile, DPN is independently associated with the risk of

diabetic foot ulcers, which could lead to nontraumatic lower-limb

amputations (64). Although the findings of Lin et al. did not directly

point out the treatment potential of GLP-1R agonists for DPN,

these results may support the peripheral neuroprotective effect of

GLP-1R agonists considering the close association of DPN with

adverse limb events (60).

Based on these studies, the treatment efficacy of GLP-1R agonists

in patients with DPN is still controversial. In addition, most studies

are limited by small sample sizes. On the other hand, only a few

studies clearly reported DPN rather than combining it with

autonomic neuropathy. Moreover, the assessments of neurological

function varied greatly among studies, which may also lead to

inconsistent findings among studies. Therefore, further large-scale

studies are needed to further explore the therapeutic efficacy of GLP-

1R agonists in patients with DPN.Meanwhile, since this study is not a

meta-analysis, the association of GLP-1R agonists with outcomes of

patients with DPN could not be fully addressed.
5 Conclusion

In conclusion, the incidence of DPN varies from nearly 20% to

over 70% in patients with DM, which severely hampers quality of

life and even leads to amputation. The currently recommended

pharmacological treatments for DPN mainly include

antidepressants due to their analgesic effects, while a strategy for

the pathogenesis and progression of DPN is lacking. GLP-1R

agonists exert neuroprotective effects in DPN by reducing

neuronal apoptosis, inflammation, oxidative stress, mitochondrial

dysfunction, and matrix remodelling. Nevertheless, the available

clinical evidence on the neuroprotective effects of GLP-1R agonists

in DPN is still controversial and limited. Therefore, it is urgent to

validate the therapeutic effect of GLP-1R agonists with large-scale
Frontiers in Endocrinology 07
studies and well-designed randomized, controlled trials.

Additionally, systematic review and meta-analysis would be

helpful to address the role of GLP-1R agonists in treating DPN.
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