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Osteoporosis in childhood distinguishes itself from adulthood in four important

ways: 1) challenges in distinguishing otherwise healthy children who have

experienced fractures due to non-accidental injury or misfortunate during

sports and play from those with an underlying bone fragility condition; 2) a

preponderance of monogenic “early onset” osteoporotic conditions that unveil

themselves during the pediatric years; 3) the unique potential, in those with

residual growth and transient bone health threats, to reclaim bone density,

structure, and strength without bone-targeted therapy; and 4) the need to

benchmark bone health metrics to constantly evolving “normal targets”, given

the changes in bone size, shape, and metabolism that take place from birth

through late adolescence. On this background, the pediatric osteoporosis field

has evolved considerably over the last few decades, giving rise to a deeper

understanding of the discrete genes implicated in childhood-onset osteoporosis,

the natural history of bone fragility in the chronic illness setting and associated

risk factors, effective diagnostic and monitoring pathways in different disease

contexts, the importance of timely identification of candidates for osteoporosis

treatment, and the benefits of early (during growth) rather than late (post-

epiphyseal fusion) treatment. While there has been considerable progress, a

number of unmet needs remain, the most urgent of which is to move beyond the

monotherapeutic anti-resorptive landscape to the study and application of

anabolic agents that are anticipated to not only improve bone mineral density

but also increase long bone cross-sectional diameter (periosteal circumference).

The purpose of this review is to provide a practical guide to the diagnosis and

management of osteoporosis in children presenting to the clinic with fragility

fractures, one that serves as a step-by-step “how to” reference for clinicians in

their routine clinical journey. The article also provides a sightline to the future,

emphasizing the clinical scenarios with the most urgent need for an expanded

toolbox of effective osteoporosis agents in childhood.
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Introduction
Fractures in childhood are common, with about half of children

experiencing at least one fracture prior to adulthood (1, 2), and

more than 20% of children with fractures having sustained a prior

broken bone (3). This poses challenges for the pediatric

osteoporosis clinician, who must distinguish otherwise healthy

children who have experienced non-accidental injury or

misfortune during sports and play from those with an underlying

bone fragility condition. In some cases, the diagnosis is obvious as

the child walks into the assessment room (e.g., strikingly blue

sclera), or from the clinical context highlighted in the referral

note (e.g., a serious acute or chronic childhood illness). When the

diagnosis is not obvious, careful history-taking, thorough medical

and musculoskeletal physical examinations, and genetic, laboratory,

and imaging evaluations can channel the assessment to an

appropriate diagnosis and treatment plan.

In the course of addressing these challenges, it is important to

understand that osteoporosis in childhood distinguishes itself from

adulthood in a number of important ways, including 1) a

preponderance of monogenic “early onset” osteoporotic

conditions that unveil themselves during the pediatric years; 2)

the unique potential, in those with residual growth and transient

bone health threats, to reclaim bone density, structure, and strength

without bone-targeted therapy following fragility fractures; and 3)

the need to benchmark bone health metrics to constantly evolving

“normal targets”, given the dramatic changes in bone size, shape,

and metabolism that take place from birth through late adolescence.

At the same time, there are a number of diagnosis and management

principles that are similar across the lifespan, including the

importance of vertebral fractures as a major sign of osteoporosis-

related morbidity, and the need for timely identification and

treatment of osteoporosis in order to prevent the “fracture, re-

fracture cycle” that can lead to a downward health spiral (e.g. femur

fractures in boys with Duchenne muscular dystrophy (DMD) and

in the elderly leading to permanent loss of ambulation in both

settings). Overall, osteoporosis management should be viewed along

a continuum, with the stage set in childhood for optimization of

bone strength across the lifespan (4).

On this backdrop, the pediatric osteoporosis field has evolved

considerably over the last few decades, given the discovery of novel

genes implicated in childhood-onset bone fragility and their

associated phenotypes, improved understanding of the natural

history of bone fragility in the chronic illness setting and

associated risk factors, the development of effective diagnostic and

monitoring pathways in different disease contexts, evidence for the

importance of timely identification of candidates for osteoporosis

treatment, and robust clinical trials that have highlighted the impact

of bisphosphonate therapy in the pediatric setting. To this day,

intravenous (IV) bisphosphonates remain the cornerstone of

osteoporosis therapy in childhood, with a first-ever international,

randomized, IV placebo-controlled trial of zoledronic acid

published in 2021 (5) following decades of use on compassionate

grounds in various pediatric contexts.
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While there has been considerable progress, a number of unmet

needs remain, the most urgent of which is to move beyond the

monotherapeutic anti-resorptive landscape to the study and

application of anabolic agents that are anticipated to not only

improve bone mineral density but also cross-sectional bone

diameter in those with gracile bones (such as osteogenesis

imperfecta [OI] and neuromuscular disorders). The purposes of

this review therefore are two-fold. The first is to provide a practical

guide to the diagnosis and management of osteoporosis in

childhood, one that serves as a step-by-step “how to” reference

for clinicians faced with evaluating a child with a history of, or at

risk for, fractures. The second is to provide a sightline to the future,

emphasizing the clinical scenarios with the most urgent need for an

expanded toolbox of effective osteoporosis agents in childhood.

A step-by-step guide to the diagnosis
and management of children with a
history of fracture(s)

Step 1: Rule out rickets + non-accidental
injury and understand whether the child
presents with “undifferentiated bone
fragility” or in “a clinical context known to
be associated with bone fragility”

Step 1 is illustrated in Figure 1. Any child presenting with bone

fragility may have rickets as the causative etiology, or as a co-

morbid condition that exacerbates fracture risk. Therefore, all

children referred for an evaluation of fragility fractures should

undergo an initial biochemical assessment to rule out rickets

including serum calcium, phosphate, creatinine, alkaline

phosphatase, parathyroid hormone (PTH), 25-hydroxyvitamin D

(25OHD) and urinary creatinine, calcium, and phosphate. 1,25-

dihydroxyvitamin D may also be indicated if more rare causes of

rickets such as 1-alpha-hydroxylase deficiency or inactivating

pathogenic variants of the vitamin D receptor are suspected. This

rapid screen should be done soon after referral to the osteology

clinic, in order to identify children with bone fragility who, in fact,

have an underlying rachitic disorder. Following an assessment to

identify urgent, medically-actionable disorders of mineral ion

metabolism such as vitamin D deficiency or other forms of

rickets, more extensive evaluations that are specifically tailored to

the suspected rickets versus osteoporosis scenario can

be undertaken.

Unfortunately, non-accidental injury (NAI) is also on the

differential diagnosis of any child with a history of fractures; while

maltreatment is most common in infants and toddlers, an older

child is not exempt. Overall, maltreatment should be suspected if

there are delays in seeking medical attention, if the clinical

evaluation reveals unexplained bruising or other signs of injury

such as retinal or intra-cerebral hemorrhages, if there are multiple

fractures in various stages of healing, if physical stigmata of a

congenital bone fragility condition are lacking despite significant

fractures (e.g., absence of facial dysmorphism, blue sclerae,
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abnormal teeth, plagiocephaly, enlarged fontanelles, or skeletal

deformity), if the mechanism of injury is unknown, or if the

reported mechanism of injury does not correlate with the fracture

type. Our pediatric osteology clinic recommends a low threshold for

genetic testing in children referred under the umbrella of “child

protection”, with the goal of ensuring that no child with an

underlying monogenic cause of bone fragility is inappropriately

labeled as NAI. It is also important to appreciate that a child with

NAI may rarely have an underlying bone fragility condition that is

unveiled by the maltreatment. Since NAI is at once serious and

emotionally charged, and since accurate and timely diagnoses are

critical, the child and youth protection team is advised to work

closely with multi-disciplinary experts including geneticists,

orthopedic surgeons, radiologists, and pediatric osteologists.

It should be noted that rib and scapula “pseudofractures”,

otherwise known as “looser zones”, are typical features of rickets

and osteomalacia. In cases where rickets and osteomalacia have

been effectively ruled out, flat bone fractures (scapula, sternum,

skull, and rib) usually arise from significant trauma (i.e., falling off a

bike). Flat bone fractures without a known history of major trauma,

and in the absence of rickets and osteomalacia, raise red flags for

possible non-accidental injury. Exceptions do occur, such as low-

trauma skull and rib fractures in infants with OI, emphasizing once

again the need for experts in congenital bone fragility to be part of

the bone fragility evaluation team.

Once rickets and non-accidental trauma have been ruled out,

the next step is to determine whether the child has a congenital bone

fragility condition (primary osteoporosis) or an acute or chronic

illness known to be associated with an increased risk of fracture

(secondary osteoporosis). Since primary and secondary
Frontiers in Endocrinology 03
osteoporosis can co-occur, both diagnoses need to be considered

even when one or the other appears obvious.
Step 2: Assess the child for signs of
congenital bone fragility (primary
osteoporosis) or an acute or chronic
illness (secondary osteoporosis)

The approach to Step 2 (Figure 2) may be obvious when the

child is referred in a specific clinical context (such as leukemia,

glucocorticoid-treated diseases, or neuromuscular disorders), with a

family history of primary osteoporosis (such as OI), or with already-

identified physical stigmata of congenital bone fragility (such as

blue sclerae or extreme short stature). Whether clues to the etiology

are obvious or not, comprehensive skeletal phenotyping is

foundational to this second step, in order to provide information

about the potential diagnosis (if not already apparent), to establish

the child’s baseline skeletal status (against which treatment effect

may be benchmarked), to determine which of the multi-disciplinary

services need to be involved in the child’s care (such as orthopedics,

neurosurgery, dentistry, rehabilitation medicine, audiology), and to

develop goals for the patient’s management (e.g., pain relief,

reduced fracture rates, functional mobility).

Skeletal phenotyping: history and physical
examination

Despite advances in genetic testing and diagnostic imaging

(dual-energy x-ray absorptiometry [DXA], peripheral quantitative

computed tomography [pQCT], high-resolution pQCT, and
Step #1

bone fragility
setting

Clinical context
known to be

associated with
bone fragility

Rule out:

Rickets NAI*

ul ou

* Non-accidental injury

FIGURE 1

The first step in evaluating a child with bone fragility is to rule out rickets, consider that the child may have been subjected to non-accidental injury,
and understand whether the child presents in a clinical context known to be associated with bone fragility or not (the latter, referred to as
“undifferentiated bone fragility”).
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increased availability of magnetic resonance imaging), the history

and physical examination still provide most of the information

required to decide the extent to which a comprehensive skeletal

evaluation is necessary and/or to formally diagnose a child with

osteoporosis. The history is particularly important to understand

the mechanisms of injury resulting in fracture; to this end, some

basic “pediatric fracture statistics” are necessary to contextualize the

child’s fracture phenotype, as follows.

The risk of fracture between birth and 16 years ranges from 42%

to 64% for boys, and from 27% to 40% for girls (2). A consistent

finding across all epidemiological studies is that the most frequent

site of fracture is the forearm, which accounts for nearly half of all

pediatric fractures (2, 6). Sixty-five percent of long bone fractures in

childhood involve the upper extremity, and 7% to 28% the lower

extremity (2). The fracture rate during childhood is higher than

during adult life, hypothesized to result from the constant lag

during the growing years between the mechanical challenges that

induce bone tissue strain (muscle forces and longitudinal growth)

and the necessary adaptive changes in bone structure that foster

bone strength in response to tissue strain (7).

Recognizing that long bone fractures are extremely common in

childhood, the International Society for Clinical Densitometry

(ISCD) 2013 Position Statement defined a significant fracture

history as ≥ 2 long bone fractures by age 10 years or ≥ 3 long

bone fractures by age 19 years (8). These numbers are reasonable for

a child without physical stigmata or risk factors for fractures, to

avoid over-diagnosis of osteoporosis in a child who has been
Frontiers in Endocrinology 04
unlucky during sports or play. However, other factors should also

be considered in the decision to initiate a comprehensive bone

health evaluation and/or to diagnose a child with osteoporosis: the

clinical context in which the child presents with fractures, the

degree of trauma, and the location + radiographic features of the

fracture(s) are primordial to the assessment.

The importance of the clinical contexts in which children

present with fractures (and associated risk factors) cannot be

underestimated. Even a single long bone fracture can represent a

major osteoporotic event in children with first presentations of OI

or other skeletal dysplasias associated with bone fragility (9), and in

children with significant risk factors for osteoporosis, such as

neuromuscular disorders, leukemia, or other GC-treated

conditions (10–12) (Figure 3). In settings without a known

fracture risk, the degree of trauma associated with the fracture is

particularly important in adjudicating the fracture significance. The

ISCD (8) has defined low-trauma fractures as those occurring

outside of motor vehicle accidents or falling from 10 feet (3

meters) or less. With respect to falls in the high-risk chronic

illness setting, a more conservative definition has been used -

falling from a standing height or less, at no more than walking

speed (13). This latter definition has been shown to hold validity in

the pediatric chronic illness setting since vertebral fractures

predicted incident low-trauma long bone fractures that were

defined in this way (13).

At the same time, it is important to recognize that children with

high-trauma fractures may also have a bone fragility condition, a

reminder that screening for telltale stigmata, even at the time of first

presentation for fracture management in the orthopedic clinic, is

important. While femur fractures are particularly concerning, even

a single tibia or humerus fracture can represent an osteoporotic

event in those at risk and should, therefore, trigger careful

evaluation of the injury’s mechanism. Forearm fractures are so

common in children that usually recurrent fractures at this site are

needed to instigate a more comprehensive bone health evaluation

unless the clinical context suggests otherwise. Comminuted

fractures and those with atypical displacement are also significant

regardless of the long bone site, especially when they occur in the

absence of trauma. When in doubt, a multi-disciplinary approach

(including an orthopedic surgeon, radiologist, and osteologist) will

provide additional insight into the “typical” or “unusual” nature of a

given pediatric fracture.

Low-trauma vertebral fractures, both symptomatic and

asymptomatic, are a radiographic signature of osteoporosis in

both children and adults. To this point, the ISCD endorses that ≥

1 vertebral fracture, defined as a >20% loss of vertebral height ratio

according to the Genant semi-quantitative method (14), is

consistent with a diagnosis of osteoporosis in children (15).

Pediatric vertebral fractures are extremely rare in the absence of

trauma (1), but occur in 75% of children with even mild OI (16), in

one-third of children with leukemia (13), in >50% of boys with GC-

treated DMD (17), and in 16% of otherwise healthy fracture-prone

children (18). In a study of children with leukemia, the positive

relationship between Genant-defined vertebral fractures at

diagnosis and subsequent new vertebral and long bone fractures

provided validity for the use of the Genant method to define
Step #2

Evaluate the child's
skeletal phenotype for 

signs of:

Congenital
bone fragility

(Primary
Osteoporosis)

Acute or
chronic illness

(Secondary
Osteoporosis)

FIGURE 2

The second step in evaluating a child with bone fragility is to
comprehensively assess the child’s skeletal phenotype and, in so
doing, search for signs of primary versus secondary osteoporosis.
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vertebral fractures in children (13). The fact that vertebral fractures

can be a presenting sign of serious systemic diseases like leukemia

and inflammatory disorders underscores the importance of the

2013 ISCD recommendation that even a single low-trauma

vertebral fracture can be a manifestation of osteoporosis in

children (11, 19, 20). Vertebral fractures should be evaluated by a

health care professional with the appropriate trained expertise,

including the ability to distinguish vertebral fractures from

normal physiological rounding in the thoracic region and from

other normal variants (21).

The physical examination in a child presenting with fractures

involves assessment of anthropometry and body disproportionality

(for skeletal dysplasias associated with bone fragility), as well as

other hallmark features such as blue sclera, plagiocephaly, joint

hypermobility, skin laxity, scoliosis, limb deformity, tooth

abnormalities, easy bruising, facial dysmorphism, multiple

Wormian bones, and/or a positive family history. In the presence

of one or more of these signs, the threshold for initiating a bone

health evaluation is lower than in the absence of these features

(Figure 4). In children with physical stigmata which together

suggest the possibility of a congenital bone fragility disorder, the

osteoporosis assessment can be carried out even before presentation

with fractures, to pursue a monogenic form of osteoporosis (22),

and to detect asymptomatic vertebral fractures (10). In children

with history and physical examination features suggestive of an

underlying disease, basic laboratory testing with referral to the

appropriate specialty (oncology, gastroenterology, rheumatology,

neurology, etc.) is warranted. Rarely, both primary and secondary

osteoporosis can co-occur in the same patient, as highlighted in a

report describing three boys with DMD, two of whom had an

additional diagnosis of osteogenesis imperfecta (COL1A1

pathogenic variants) and a third with a mutation in the COMP
Frontiers in Endocrinology 05
gene causing pseudoachondroplasia. Therefore, a general rule of

thumb is that any child presenting to the osteology clinic with

fractures should undergo a thorough review with an open mind to

the diagnostic possibilities, even if the diagnosis initially

seems obvious.

Skeletal phenotyping: diagnostic imaging and
genetic testing

Once the decision has been made to proceed with further

investigations based on these guiding principles, the next step is

to carry out diagnostic imaging and, if appropriate for the clinical

context, genetic testing. As for any specialty, the pediatric

osteologist should develop a level of comfort reviewing the most

frequently-requested imaging including bone age (for skeletal

maturation), lateral spine x-rays (or DXA-based “vertebral

fracture assessment”) for vertebral fractures (15), and a skeletal

survey (in suspected skeletal dysplasias for basic radiographic signs

including Wormian bones, scoliosis, kyphosis, lordosis and limb

deformity; additional features may require the assistance of a

radiologist, depending on the clinician’s level of training and

expertise). BMD is also an important component of the

evaluation, albeit adjuvant due to the lack of sensitivity and

specificity for a given osteoporotic condition. Additional

challenges in the use of DXA-based BMD as a diagnostic tool

have been discussed extensively elsewhere (23), and are

recapitulated in brief here. A comprehensive description of bone

imaging assessment techniques in pediatric osteoporotic conditions

can be found in a recent review (24).

While a low DXA-based BMD raises the index of suspicion for

an osteoporotic fracture, it is not diagnostic, since BMD can be low

simply due to a size artifact (as in short stature), or in non-

osteoporotic conditions with fractures such as rickets.
FIGURE 3

It is now known that numerous underlying conditions can cause or exacerbate a predisposition to bone fragility in the chronic illness setting. The
most frequent diseases and their treatments which predispose to secondary osteoporosis in children, are listed here.
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Furthermore, BMD by DXA can be “normal” (i.e. Z-score -2 to +2)

in children with fractures due to both primary and secondary

osteoporosis. Broadly speaking, BMD is only one of many jigsaw

pieces that orient the clinician as to whether there are sufficient

clinical features to warrant expanded diagnostic testing, such as

genetic profiling for primary osteoporosis, or chronic illness

assessments. The main purpose of BMD in the childhood fracture

setting, then, is to provide additional supporting evidence to justify

a more comprehensive osteoporosis work-up in equivocal cases. In

uncertain cases, the BMD trajectory can be useful, with a loss of ≥

0.5 SD considered to be clinically significant, providing a threshold

to trigger more comprehensive bone health testing (25). The clinical

utility of DXA results when based on cross-sectional assessment

alone is challenging, since BMD Z-scores generated by different

normative data, even after undergoing DXA machine cross-

calibration, can vary by as much as 2 standard deviations (an

observation which invalidates the use of a Z-score threshold to

trigger care pathways) (26).

A number of other considerations are necessarily taken into

account when acquiring and interpreting DXA scans in children.

The choice of skeletal site should be informed by individual patient

characteristics, and local access to appropriate reference data is

paramount. Lumbar spine (L1-L4) and whole body (total body less

head) BMD have been the most widely used parameters in children

to date and are associated with fracture risk (13, 27). In 2019, the

ISCD recommendations were updated to additionally endorse

DXA-based BMD at the distal forearm, proximal hip, and lateral

distal femur in children who need additional information for

clinical decision-making, or in whom spine or whole body DXA
Frontiers in Endocrinology 06
scans cannot be obtained (e.g. indwelling hardware) (15). Areal

BMD by DXA is subject to size artifact; therefore, children with

short stature and/or pubertal delay will have artificially low BMD Z-

scores relative to healthy reference data. To better estimate BMD in

short children, size-adjustment techniques have been developed

including bone mineral apparent density (28, 29), and height Z-

score-adjusted BMD Z-scores (30).

Advances in our understanding of the genetic basis of

congenital bone fragility have been among the most important

discoveries in the pediatric osteology field since the turn of the

century, with numerous reviews describing what now approaches

nearly two dozen monogenic causes of primary, juvenile-onset,

monogenic osteoporosis (22, 31–34). In children with a significant

fracture history but a negative work-up for an acute or chronic

illness, the hunt for a genetic cause of osteoporosis is reasonable

(even in the absence of hallmark signs such as blue sclerae or

dentinogenesis imperfecta, which are not always present in primary

osteoporosis). Children with heterozygous, loss of function

mutations in LRP5, for example, present with clinically significant

(long bone and vertebral) fractures, in the absence of classic OI

features, and a small sub-group of patients with OI due to

pathogenic variants in COL1A1 and COL1A2 will lack typical

stigmata as well. A list of genes implicated in OI due to aberrant

primary or secondary type 1 collagen function is shown in

Figure 5A. Other (non-type I collagen) causes of primary

osteoporosis in childhood are shown in Figure 5B.

Current genetic testing typically is based on sequence analysis

of genomic DNA, to assess targeted gene panels or the whole

exome. Although this approach is frequently successful, there are
FIGURE 4

This figure describes the magnitude of supporting evidence that is needed to trigger a bone health evaluation in relationship to fracture
characteristics, a key component of the bone fragility assessment. For example, a single low-trauma femur, humerus, or vertebral fracture at
presentation means that “ less clinical supporting evidence” is needed to trigger the bone health evaluation, given the seriousness of such fractures.
On the other hand, more trivial fractures such as fingers and toes may necessitate “more supporting clinical evidence” to trigger the bone health
evaluation (depending on whether there is a clinical context known to be associated with bone fragility, in which case even more trivial fractures
may be significant). A comprehensive history, physical examination, and review of the x-ray fracture features provide the necessary information to
help guide the decision to proceed with a formal bone health evaluation.
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situations where the analysis of genomic DNA is not able to

definitively establish a diagnosis; for example, variants affecting

splice sites may be missed if they do not impact the splice

consensus site, or they may be difficult to prove as having

functional consequences. When analysis of genomic DNA is

inconclusive, RNA sequencing may fill in the gaps. One of the

challenges, though, is that genetic variants can only be detected

and characterized by RNA sequencing if the genes of interest are

expressed in sufficiently high quantities in the cells that are

acquired from the patient. Recently, urine-derived stem cells

from children and adolescents with suspected or confirmed OI

were shown by the Rauch lab to produce type 1 collagen RNA in

sufficient quantities to detect abnormal splicing in 7 of 8 patients

with pathogenic or likely pathogenic variants in the splice site
Frontiers in Endocrinology 07
region or deep within the intron; abnormal deletions and

duplications were also observed in urine-derived stem cell

transcripts (35). Together, these results provided proof of

principle that patients with negative type I collagen genetic

testing on genomic DNA may nevertheless harbor type 1

collagen pathogenic variants with functional consequences.

At the same time, it is recognized that not all clinicians have

access to state-of-the-art genetic testing. In such cases, careful

history and physical examination documentation combined with

accurate interpretation of diagnostic imaging (radiography and

DXA-based BMD) will form the basis for a clinical diagnosis of

osteoporosis, as mapped out sequentially in this review. Figure 6

provides an overview of the diagnostic pathway for children

presenting with fractures at the pediatric osteology clinic.
Genes Implicated in Osteogenesis Imperfecta: A Type I Collagenopathy

Functional Classification System

C
Collagen folding

and cross-
linking defects

B
Collagen 

defects

E
Defects in osteoblast

development (secondary

D

or mineralization
defects

A
Primary defects in
collagen structure

or processing

COL1A1
COL1A2
BMP1
SPARC
TENT5A (FAM46A)
MBTP52
SEC24D  
CCDC134
KDELR2

CRTAP
LEPRE1
PPIB
TMEM38B

SERP1NH1
FKBP10
PLOD2
P4HB

IFITM5
SERPINF1
SGMS2

WNT1
CREB3L1
SP7
MESD
LRP5

BS = Bruck Syndrome
CCS = Cole-Carpenter Syndrome
CDL = Calvarial Doughnut Lesions

OPG = Osteoporosis Pseudoglioma Syndrome
SMD = Spondylometrophyseal Dysplasia

OI 1-4

OI 13

 OI 17

OI 18

      OI 19
      Clinical OI 3,
      overlap with CCS-1

         Clinical OI 3
     Clinical OI 2b,3

   OI 7

     OI 18

OI 9

          OI 14

                  OI 10

          OI 11 BS1

        BS2

    CCS-1

              OI 5

                     OI 6
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                   OI 15

                           OI 16

             OI 12

                   OI 20

                 OPG

Abbreviations:

Primary Osteoporosis with Distinguishing Features

Skeletal
dysplasia
features

Spondylo-
ocular

dysplasia
(XYLT2)

Gnatho-
diaphyseal
dysplasia 

(AN05)

Cleidocranial
dysplasia
(RUNX2)

Geroderma 
osteodys-
plasticum 
(GORAB)

Cutis laxa 
(ARCL2B)

Ehlers-
Danlos*

Singleton-Martin
dyslasia

• Type 1 (IFIH1)
• Type 2 (DDX58)

SMABF1 (TRIP4)
SMABF2 (ASCC1)

Marfan’s
(FBN1)

Loeys-Dietz
(SMAD3)

Homocystinuria
(CBS)

Vascular Spinal muscular atrophy
with congenital bone

fractures

Tall Stature
Syndromes

Skin
laxity

* Multiple genes are implicated in the various forms of EDS, including COL1A1

A

B

FIGURE 5

These figures (A, B) provide a framework for classifying primary osteoporosis presenting in childhood.
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Step 3: Evaluate the child’s potential for
“spontaneous” (i.e., medication-unassisted)
recovery from bone fragility

Once the diagnosis of osteoporosis has been established in a

given patient, the next step is to determine whether the child or

adolescent has the potential to undergo spontaneous (i.e.,

medication-unassisted) recovery from bone fragility (Step 3,

Figure 7). Unlike the adult (post-epiphyseal fusion) skeleton, the

juvenile skeleton has tremendous potential to recover from

osteoporosis, provided threats to bone health have abated and,

relevant to vertebral fractures, there is sufficient residual growth

potential. Indeed, recovery from osteoporosis does not only involve

reclamation of BMD; restoration of normal vertebral dimensions

(and thereby spinal height), a growth-mediated process, is also a key

index of recovery.
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The disease that best exemplifies structural recovery from bone

health threats in the absence of bisphosphonate treatment is acute

lymphoblastic leukemia. In this setting, vertebral body reshaping

has even been observed while on leukemia therapy (13). The fact

that vertebral body reshaping can take place while on leukemia

therapy (which includes high-dose glucocorticoid (GC) treatment)

is hypothesized to result from the intermittent nature of the GC

prescription that is the backbone of current leukemia treatment

protocols. By studying children with leukemia in the 6 years

following diagnosis who had baseline or incident vertebral

fractures, the Canadian STOPP Consortium showed using the

Spinal Deformity Index (36, 37) that 77% of children had

complete reshaping by their last follow-up visit, 18% had

incomplete reshaping, and 5% had no change in their vertebral

dimensions. Children with incomplete or absent vertebral body

reshaping were older (on average 8 years of age at diagnosis,
FIGURE 6

A proposed approach to the diagnosis of osteoporosis in children. After a careful diagnostic pathway, children will typically fall into one of three
categories: a. primary osteoporosis due to a confirmed monogenic etiology, b. secondary osteoporosis due to an underlying medical condition or its
treatment which predisposes to an increased risk of fractures, or c. “fractures in otherwise healthy children” (middle bottom). In cases of primary and
secondary osteoporosis, even a single, low-trauma fracture may be sufficient to diagnose the child with osteoporosis, even if BMD Z-scores are
normal. In the absence of a discrete etiology uncovered by the diagnostic process (middle bottom), a more conservative definition of osteoporosis is
proposed in order to prevent children who were unfortunate during sports or play from being over-diagnosed with osteoporosis.
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compared with 4.8 years in those with complete reshaping), and

more frequently experienced moderate and severe collapse. In

practical terms, these data revealed that younger children, and

those with less severe collapse, appeared to reshape vertebral

bodies more frequently in this context.

The long-term consequences of permanent vertebral deformity

remain unknown. Adult studies have shown reduced quality of life

due to chronic back pain, and also significant functional limitations

(38, 39). Whether this is true in adults who experienced permanent

vertebral deformity as children merits further study. In aging,

vertebral fractures contribute to excess mortality (40) as well as

restrictive pulmonary function compared to those without vertebral

fractures (41), due to the well-known loss of spinal height in the

elderly that is associated with vertebral collapse. Loss of vertebral

height contributing to loss of linear height in children has also been

suggested in pediatric leukemia (42), a clinical context where up to

1/3 of children will experience at least one vertebral fracture in the 6

years following diagnosis (13). Together, these adult studies suggest

that permanent reductions in vertebral height sustained in

childhood may have important consequences later in life. The

GC-treated disease where this dialogue is particularly relevant is

DMD, given the shortened lifespan due to cardiorespiratory failure.

To date, there are no published reports of vertebral body reshaping

without bisphosphonate therapy in pediatric DMD, an aggressive

form of osteoporosis. This is likely because the GC prescription is

long-term, growth is limited by the toxic effect of GC on the growth

plate, and the myopathy is progressive.

Increases in bone turnover markers and improvements in BMD

are also important signs of recovery. Thayu et al. (43) reported that

reductions in bone turnover markers in pediatric Crohn’s disease

were inversely associated with disease activity and that treatment

with infliximab was associated with dramatic increases over one

year. In childhood leukemia, studies have shown degrees of BMD

restitution in the years after chemotherapy (44, 45). Cranial and
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spinal radiation predict a lack of BMD restitution, particularly at

doses ≥ 24 Gy (45), related in part to growth hormone deficiency

and short stature. In leukemia survivors, other reported risk factors

for incomplete BMD restitution include vitamin D deficiency,

hypogonadism, and reduced physical activity (46). In practical

terms, pediatric osteologists look for normalization of the BMD

Z-score for height as a sign of BMD restitution, along with a return

to a normal rate of BMD accrual for age/pubertal stage and sex (47).

Together, vertebral body reshaping, absence of new low trauma

long bone fractures, and normalization of BMD for age, sex, and

height are all indicators of recovery from osteoporosis in the

pediatric setting. Figure 8 outlines the criteria for gauging the

child’s ability to undergo “spontaneous” BMD reclamation and

reshaping of vertebral bodies following demonstrated bone fragility.

Note is made of the fact that while the notion of vertebral body

reshaping is largely restricted to the secondary osteoporosis setting

(due to the potential for osteoporosis risk factors to abate), partial

vertebral body reshaping has been described in a young patient with

mild OI, providing proof of principle that milder forms of primary

osteoporosis may also have some potential for recovery in the

absence of bisphosphonate therapy (48).
Step 4: Once a diagnosis of osteoporosis
is established and it is estimated that the
patient has limited potential for recovery,
prepare the patient for (ideally intravenous)
bisphosphonate therapy

The decision to treat a child with a bisphosphonate determines the

nature and frequency of follow-up. For children anticipated to recover

from osteoporosis, annual follow-up for 1-2 years to affirm the

anticipated, favorable prognosis is a reasonable approach (including

BMD studies, lateral spine imaging if vertebral fractures were part of

the osteoporotic phenotype, and a 25OHD level). For patients with

limited potential for spontaneous recovery, treatment with

intravenous bisphosphonate therapy is the standard of care

(see Step 4, Figure 9). Importantly, a patient’s “fitness” for

bisphosphonate therapy should be assessed prior to embarking on

treatment, including adequate dietary and/or supplemental intake of

calcium and vitamin D, euphosphatemia and eucalcemia, 25-

hydroxyvitamin D sufficiency (serum 25OHD level at least 50 nmol/

L or 20 ng/mL), and adequate renal function. IV zoledronic acid is

contraindicated in patients with acute renal failure, and dose

adjustments to IV therapy are required for patients with estimated

glomerular filtration rates less than 60 ml/min/1.73 m2.

Bisphosphonate-induced hypocalcemia is a well-known

phenomenon; however, it is less appreciated that hypophosphatemia

is also frequent post-bisphosphonate therapy, particularly in patients

with chronic illness osteoporosis (49, 50), and may require phosphate

supplementation to restore euphosphatemia. The first infusion side

effects of IV bisphosphonate therapy can also precipitate adrenal

insufficiency in patients on chronic GC therapy, even when they are
FIGURE 7

Once the child has been diagnosed with osteoporosis, the next step
is to determine whether the child has the potential for
“spontaneous, medication-unassisted recovery.” This is important
because the pediatric skeleton has tremendous potential to recover
from osteoporosis in those with waning risk factors plus residual
growth potential.
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taking supra-physiological doses. The reason for this is that although

children with chronic illnesses may be receiving supra-physiological

GC doses on a once-daily regimen for the treatment of their

underlying illnesses, the GC duration of action may not be sufficient

to cover the entire 24-hour period leading up to the next GC dose (51,

52). Therefore, it is prudent to recommend steroid stress dosing

following the first dose of IV bisphosphonates in patients on chronic

GC therapy, either prophylactically, or upon developing symptoms

that would prompt such intervention in routine clinical practice (e.g.,

fever, vomiting, etc.) (53, 54).

The use of oral versus intravenous (IV) bisphosphonate

therapy for pediatric osteoporosis has long been debated (55).

Overall, IV pamidronate is the most extensively reported agent in

children following the inaugural observational study in the late

1990s which showed improved pain, mobility, and reshaping of

vertebral bodies on pamidronate in children with moderate to

severe OI (56). Children were treated with cyclical, IV

pamidronate at a dose of 9 mg/kg/year divided every 2 to 4

months for up to 5 years’ duration (56). IV zoledronic acid has

since been introduced, given the advantage that it can be given

over a shorter period of time and less frequently (57, 58);
NO

Continue monitoring:
• If osteoporosis risk factors persist

• Primary osteoporosis
• Sub-normal mobility (e.g.

Duchenne muscular
dystrophy)

• Poorly-controlled underlying

Monitoring includes:
• Annual spine imaging* and BMD
• Spine imaging should be done

sooner if:
Back pain

OR
≥ 0.5 decline in BMD Z-score on
two consecutive measurements

Early signs of vertebral collapse

• > 20% loss of vertebral height ratio, or
• Loss of endplate parallelism, or
• Endplate interruption, or
• Anterior cortical buckling

OR

   Low-trauma** long bone fracture

BMD = Bone mineral density  
* Spine imaging by lateral spine radiograph or “vertebral fracture assessment” (VFA) by DXA

** Low trauma defined as falling from a standing height or less, at no more than walking speed
*** Older age defined as ≥ 8 years in girls or ≥ 9 years of age in boys

YES

NOYES

Less Potential More Potential

vertebral
body reshaping and restitution of bone density, obviating the

need for osteoporosis therapy 

        Persistent risk factors
• ≥ 3 months of steroids
• Sub-normal mobility
• Poorly-controlled underlying

disease or genetic conditions

Older age***
Less residual growth potential

More severe collapse
Higher fracture grade

         Transient risk factors
• < 3 months of steroids
• Short-term immobilization

(< 2 weeks)
• Well-controlled underlying disease

Younger age
More residual growth potential 

Milder collapse
Lower fracture grade

Follow the
left side of

the algorithm

Continue to monitor, to ensure
spontaneous recovery, including:
• BMD Z-scores appropriate for

height
• Normalization of bone mineral

accrual rates appropriate for
age/bone age, sex and height

• Reshaping of vertebral bodies
following vertebral fractures

• Absence of new low-trauma**
vertebral and non-vertebral
fractures

Continue to monitor

Steps to gauge the child's ability to undergo "spontaneous" (bisphosphonate-unassisted") restitution of bone density
and reconstitution of normal vertebral dimensions (i.e. vertebral body reshaping)

Early signs of vertebral fracture (> 20% loss of vertebral height ratio, 
loss of endplate parallelism, endplate interruption, or anterior cortical buckling)*

OR
Low-trauma** long bone fracture

Asses the child's potential to undergo
bisphosphonate-unassisted restitution of BMD and

reshaping of fractured vertebral bodies

Treat with intravenous bisphosphonate
therapy (see Figure 11)

FIGURE 8

This figure provides an approach to gauge whether a child has the capacity to undergo spontaneous (medication-unassisted) recovery from
osteoporosis, obviating the need for osteoporosis drug therapy.
FIGURE 9

If a child has limited potential for spontaneous recovery from
osteoporosis, the next step is to treat with the current standard of
care, intravenous bisphosphonate therapy (or oral bisphosphonate
therapy if intravenous is not available). If a child has significant
potential for spontaneous reclamation of BMD and reshaping of
vertebral bodies, the child can be monitored until resolution of risk
factors and affirmation of recovery.
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zoledronic acid is 100 times more potent than pamidronate (59).

Both agents are nitrogen-containing bisphosphonates that inhibit

farnesyl diphosphate synthase and thereby protein prenylation, a

process crucial for osteoclast survival. A randomized study

comparing pamidronate to zoledronic acid in OI showed that

zoledronic acid had similar effects on LS BMD Z-scores and

fracture rates over 12 months (57).

Of the oral agents, alendronate and risedronate have been the

most extensively studied, with reports confirming that the oral

bioavailability of alendronate in children is < 1%, similar to adults

(60, 61). Given the low oral bioavailability of oral agents, it is not

surprising that side effects are also reduced, though at an apparent

cost to treatment efficacy (see next).

Despite the formidable challenges in conducting clinical trials

among children with osteoporosis, there are now a number of

randomized controlled trials of oral and IV bisphosphonates that

have been carried out in primary (62–68) and secondary (5, 69–74)

osteoporosis of childhood. Collectively, nearly all of the controlled

IV and oral bisphosphonate therapy trials have shown significant

increases in lumbar spine BMD Z-scores. The two routes of

administration more clearly distinguish themselves, however, with

respect to the direction of effect for fracture rates (recognizing that

no studies were specifically powered to detect differences in fracture

outcomes), changes in bone turnover (expected to decline on an

effective anti-resorptive agent) and the capacity to bring about

vertebral body reshaping (a key metric of a robust therapy in

children, known to be particularly sensitive in children with OI)

(75). Therefore, it is on these grounds that we adjudicate the

response to IV versus oral bisphosphonate therapy.

Based on observational studies, it is expected that fractured

vertebral bodies will undergo reshaping with bisphosphonate

therapy (58, 75–77), thereby providing a key index of benefit

(provided the child is growing). The controlled trials to date in

growing children with OI that quantified vertebral body height

clearly showed increases in those receiving IV bisphosphonate

therapy (67, 78, 79), whereas none of the controlled oral

bisphosphonate studies in OI where it was measured showed a

positive effect on vertebral height (62–64, 80). In fact, vertebral

fracture rates were more frequent in patients with OI on risedronate

(62), and bone turnover markers increased (instead of the expected

decrease) on risedronate in a study of children with rheumatic

disorders by Rooney et al. (70). In a large, randomized trial of daily

oral alendronate for moderate and severe pediatric OI (66), there

was no effect of alendronate on the cortical width of trans-iliac

specimens. In contrast, this is a key structural index derived from a

precise measurement with a known positive response to IV

bisphosphonate therapy in OI (81). Another compelling

observation that supports IV over oral therapy is from a

controlled OI trial (64), where risedronate did not lead to an

increase in the trabecular volumetric BMD at the distal radius

compared to placebo; on the other hand, IV therapy caused

significant increases in BMD at this site (82). Overall, these data

support the use of IV instead of oral bisphosphonate therapy first-

line; the increases in BMD on oral agents nevertheless suggest that

oral may be a reasonable therapy in situations where IV

bisphosphonates are unavailable.
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Step 5: Start (ideally intravenous)
bisphosphonate therapy at initiation
doses, followed by dose titration to
achieve normal BMD Z-score trajectories
for age, sex, and height. Aim to discontinue
therapy at the time of epiphyseal fusion in
children with primary osteoporosis or
following the resolution of risk factors
in children with secondary osteoporosis

Figure 10 (Step 5) and Figure 11 provides a practical algorithm

for the treatment of primary and secondary osteoporosis in

childhood. A frequently prescribed IV bisphosphonate regimen is

cyclical IV pamidronate (maximum dose 9 mg/kg/year for children

≥ 3 years, 3 mg/kg divided equally over 3 days given every 4

months) (56, 83–86). Due to high bone turnover in younger

children, pamidronate is dosed more frequently (2.25 mg/kg

divided equally over 3 days, every 3 months for children 2 to 3

years of age, and 1.5 mg/kg divided equally over 3 days, every 2

months to children < 2 years of age). Zoledronic acid is increasingly

used in clinical care due to the ease of less frequent dosing intervals

and shorter infusion time compared to pamidronate (maximum

dose 0.1 mg/kg/year given as two equal doses (0.05 mg/kg) every 6

months in children ≥ 2 years, and 0.025 mg/kg every 3 months in

children < 2 years) (57, 87, 88). Some clinicians favor a lower annual

starting dose (such as a single-day pamidronate infusion of 1 mg/kg

every 3 months, 4 mg/kg/year) (89, 90). Apart from these regimens,
FIGURE 10

Children with osteoporosis should be treated with bisphosphonate
therapy at published doses and in specialized centers by
practitioners with experience in the care of such children.
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other IV doses and intervals have also been reported, though none

has gone head to head in controlled, comparative trials, the

exception being pamidronate versus zoledronic acid which

showed similar effects on BMD and fracture rates in OI (57).

With such little controlled comparative data, it is impossible to

state which IV agents and intervals achieve the best results for
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mitigating fractures and pain and improving overall function.

Regardless, bisphosphonate therapy should only be administered

by clinicians with the appropriate expertise and infrastructure to

support peri-infusion care, and the maximum, published annual

doses should not be exceeded so as to avoid iatrogenic osteopetrosis

arising from toxic doses (91).
Reduce bisphosphonate therapy
to maintenance doses**:

Continue bisphosphonate therapy at 
initiation doses*

If bone fragility is ongoing (provided BMD 
Z-scores are not excessive for age, sex and 

height). Titrate doses down once stabilization 
of the osteoporosis is achieved.

&A single, low-trauma vertebral fracture is a valid criterion for the diagnosis of osteoporosis in children, even in the absence of a specific diagnosis, and even 
in the absence of a BMD Z-score ≤ -2. In such cases, it is imperative to distinguish a fracture from a normal variant (such as anterior wedging due to
physiological rounding of the vertebrae (for further details, see text).

For children with low-trauma long bone fractures and lack of an apparent etiology (i.e. absence of secondary osteoporosis,  of osteogenesis 
stigmata, and congenital bone fragility genetic testing), a diagnosis of osteoporosis may be best reserved for those with more frequent fractures. 
According to the 2013 ISCD Position Statement, a diagnosis of osteoporosis in such cases reserved for children with two or more low-trauma long bone
fractures by 10 years of age or 3 or more low-trauma long bone fractures by 19 years of age plus a BMD Z-score ≤ -2. This approach avoids over-diagnosis of 
osteoporosis in a child with long bone fractures and absence of an apparent cause who may have been unlucky during sports or play.  At the same time, the 
ISCD recognized that BMD Z-scores > -2 do not preclude the possibility of skeletal fragility and increased fracture risk; therefore, a degree of judgment is 
involved in the overall assessment of children with a history of bone fragility  absence of an apparent cause a comprehensive work-up (for
further details, see text).

*Annual maximum initiation doses: pamidronate 4.5 to 9 mg/kg/year, every four months; zoledronic acid 0.05 to 0.1 mg/kg/year, every six months
**Annual maintenance doses: pamidronate 4.5 mg/kg/year, every four months; zoledronic acid 0.025 to 0.05 mg/kg/year, every six to 12 months

NO

  Primary or Secondary Osteoporosis

Start intravenous bisphosphonate therapy at published, initiation doses* for children with:

≥ 1 low trauma vertebral fracture& or ≥ 1 low trauma long bone fracture
(multiple fractures are not required for children with a known clinical context associated with osteoporosis) 

#For children with an 
see text at the end of the algorithm

• Absence of new vertebral fractures on annual spine imaging, AND
• Reshaping of previously fractured vertebral bodies, AND
• Absence of back pain, AND
• Absence of new long bone fractures, AND
• Restoration of normal mobility (as appropriate for the underlying disease), AND
• Normalization of BMD Z-score trajectories for age, sex and height

YES

Plus less potential for spontaneous recovery:
• Older age (≥ 8 years in girls or ≥ 9 years of
age in boys), irrespective of ongoing risk
factors

OR 
• Younger age, but persistence of risk factors, 
including:

- Primary osteoporosis
- Secondary osteoporosis (e.g. ongoing

glucocorticoid exposure, sub-normal
mobility, poorly-controlled illness)

Intravenous bisphosphonate therapy may 
still be indicated in younger children with 
bone fragility, in the absence of persistent 

impact the young child’s quality of life
(e.g. back pain due to vertebral fractures)

• Primary osteoporosis: 
o Until epiphyseal fusion 

• Secondary osteoporosis: 
o For as long as risk factors persist

FIGURE 11

This figure provides an algorithm for the treatment of osteoporosis with intravenous bisphosphonate therapy, the standard of care, including
initiation doses (during the stabilization phase) plus dose titration (during the maintenance phase).
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The approach to dose adjustments and the duration of

bisphosphonate therapy are also questions frequently posed by

pediatricians. A number of key observations unique to children have

influenced practice in this regard. The first observation has led to

continuing bisphosphonate therapy until final height attainment in

those with permanent or persistent risk factors, as follows. Among

children with open epiphysis and therefore ongoing endochondral

bone formation, following treatment discontinuation the newly formed

bone adjacent to the growth plate will be “treatment naïve” and thereby

lower density, creating a stress riser between high (previously treated)

and low (untreated) density bone (82). Not surprising, metaphyseal

fractures have occurred post-bisphosphonate discontinuation in

children with OI who are still growing, since the newly formed bone

will invariably be low density (92). In fact, metaphyseal fractures have

even occurred during intermittent IV bisphosphonate therapy at the

interface between the dense metaphyseal lines created at the time of

therapy and the (2 mm) adjacent treatment-naïve bone (93). This latter

report raises the question of whether IV bisphosphonates should be

administered with as short an infusion interval as possible, a line of

thinking that is challenged by the demands on the patient and the

health care system arising from frequent infusions.

Further support for continuation of therapy to final height in

those with persistent or permanent risk factors arises from a study

by Rauch et al. (92). These investigators showed using pQCT that

there were significant declines in trabecular BMC Z-scores at the

distal radius following pamidronate discontinuation in children

with OI who were still growing. On the other hand, discontinuation

after epiphyseal fusion was associated with more stable BMD Z-

scores 2 years later. Balancing these observations with lingering

concern about over-suppression with longer-term therapy, the

current recommended approach is to treat patients initially with a

higher dose regimen until the patient is clinically stable. Typically,

this equates to a minimum of 2 years, the time point at which the

maximum benefit from bisphosphonate therapy has been observed

in children with OI (81). Once the patient is clinically stable, a lower

(half-dose or less) (75, 94) maintenance protocol is given until the

patient attains final adult height, at which time treatment can be

discontinued if the patient is stable (75). The goal of the

maintenance phase of therapy in children with permanent or

persistent risk factors is to preserve the gains realized during

high-dose therapy while avoiding over-treatment (75, 94). To this

end, the dose of IV bisphosphonate therapy in the maintenance

phase may require further downward titration to avoid

unnecessarily high BMD Z-scores – this can be achieved by

decreasing the dose or by increasing the interval between

infusions. Palomo et al. (75) recently reported that long-term (at

least 6 years) bisphosphonate therapy with downward dose titration

in pediatric OI led to higher BMD Z-scores compared to historical

controls, and also resulted in vertebral body reshaping, although it

was notable that non-VF rates were still high (reduced by 50% by on

a high pre-treatment fracture burden) and most patients developed

scoliosis. An outstanding question about the duration of therapy in

those who stop around the time of adult height attainment but have

persistent risk factors for fractures (e.g. OI, ongoing GC exposure) is
Frontiers in Endocrinology 13
whether they will require re-introduction of bisphosphonate

therapy in the adult years and, if so, at what time point.

In children with resolution of risk factors during growth (i.e.,

cessation of GC therapy, remission of inflammation, recuperation

of mobility), discontinuation of therapy can be considered once the

child has been fracture-free (VF and non-VF) for at least 6 to 12

months, previously fractured vertebral bodies have stabilized or

undergone reshaping and BMD Z-score velocities are appropriate

for age, sex, and height. Re-introduction of therapy may be required

during growth if the prior risk factors for osteoporosis recur and

patients once again meet the criteria for treatment initiation.

The long-term effects of bisphosphonate therapy have been

discussed in detail previously (95). In brief, despite decades of

searching for osteonecrosis of the jaw in children on bisphosphonate

therapy, to date, there are no reports of this phenomenon in the

childhood and adolescence settings (50, 96). Nevertheless, a proactive

approach to dental surveillance and home oral care is advised (97).

Similarly, a review of femur fractures with atypical characteristics in

children with OI by two different groups showed that such fractures

were no more frequent on bisphosphonate therapy; instead, both

groups concluded that femur fractures with atypical features were

related to the severity of the OI (98, 99). While the timing of dental

development is not delayed in children with OI who have received

bisphosphonate therapy, IV bisphosphonates have been associated

with delayed osteotomy healing (100). To mitigate this phenomenon,

Anam showed that a combination of delaying bisphosphonate

infusions until there is sufficient callus formation (usually 4 months

following surgery) plus using an osteotome instead of a power saw are

effective in reducing the frequency of delayed osteotomy healing (101).
Unmet needs and future directions

The need for an efficacious
osteoporosis agent with a convenient
route of administration and favorable
side effect profile

While there is now higher quality evidence for the use of

intravenous bisphosphonate therapy in both primary and

secondary osteoporosis of childhood (as discussed earlier), the

first-infusion side effects of IV bisphosphonate therapy, along

with the inconvenience of the IV route, have spurred interest in

alternative forms of anti-resorptive therapy. RANKL is a critical

mediator of osteoclast formation, function, and survival (102), and

denosumab is a fully human, monoclonal antibody that targets

RANKL to prevent the activation of RANK, thus inhibiting cortical

and trabecular bone resorption without directly interacting with the

skeletal surface (103). Large studies in adults showed that

denosumab 60 mg every 6 months reduces hip, vertebral, and

non-vertebral fracture rates compared with placebo, in the

absence of an increased frequency of adverse events (104). Other

adult studies have also confirmed that adverse events with

denosumab are similar to an active comparator (oral
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alendronate), including the frequency and magnitude of

hypocalcemia (104, 105). Denosumab is approved for

osteoporotic men and post-menopausal women with a high risk

for fracture; it is also approved for adult GC-induced osteoporosis.

In children, however, the denosumab-related “rebound” or

“overshoot” phenomenon, previously mainly characterized in

adults as loss of BMD and an increase in vertebral fractures

following denosumab discontinuation (106), appears amplified due

to its association with severe (even life-threatening) hypercalcemia

(107). In a variety of disease states in which denosumab has been used

in children including classic forms of OI, OI type VI, giant cell

tumors, aneurysmal bone cysts, and fibrous dysplasia (108–113), the

hypercalcemic rebound phenomenon has occurred both following

denosumab discontinuation and while on active treatment. In

children with surgically-unresectable giant cell tumors, aneurysmal

bone cysts, and fibrous dysplasia lesions, the benefits of denosumab

may outweigh the risks, although studies are needed to determine the

optimal dosing regimens to achieve maximum benefit and to

minimize to side effects (including the rebound phenomenon).

While a moratorium has essentially been placed on denosumab in

classic forms of OI, there does appear to be rationale for its use in OI

type VI in combination with IV zoledronic acid as alternating therapy

(the latter, to prevent the rebound phenomenon, while allowing the

child to benefit from the denosumab otherwise) (110). OI type VI is

an unusual form of the condition whereby the abnormal

(osteomalacic) bone is hypothesized to interfere with

bisphosphonate adherence to the bone surface, which in turn may

result in reduced bisphosphonate efficacy (114). A recent report

describing alternating short- (denosumab) and long- (zoledronic

acid) acting anti-resorptive therapy in a child with OI VI was

successful in mitigating the rebound phenomenon, thereby

allowing the child to benefit from the potent anti-resorptive effect

of denosumab (110).

Since the rebound phenomenon arises from exuberant skeletal

resorption following reactivation of osteoclasts when the effect of

the antibody wanes, it is unclear whether this phenomenon will be a

concern in low bone turnover states such as pediatric GC-induced

osteoporosis. On the other hand, rebound may theoretically occur

when bone turnover increases at the time of spontaneous or

induced puberty, or following GC cessation. As such, denosumab

in low bone turnover states merits careful study in clinical trials and

should not be administered outside of highly specialized pediatric

osteology clinics. Since RANKL is also implicated in the

inflammatory pathway that contributes to muscle destruction in

DMD (115), studies assessing the impact of denosumab on muscle

strength in DMD show promise in pre-clinical models (116).
Prevention of first-ever fractures using
drugs that are anabolic to bone and
sequential therapy

The BMD of trabecular-rich bone such as the spine is more readily

modifiable by anti-resorptive therapy than cortical bone, because

porous (spongy) bone has greater surface area to accommodate a

bone density-altering therapy compared with compact bone. In
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addition, while anti-resorptive therapy increases the cortical width of

long bones in children who are growing, the reductions in long bone

periosteal circumference that are germane to diseases like DMD andOI

are not modifiable by any therapy that acts only on endocortical and

trabecular surfaces (such as anti-resorptive drugs); therefore,

medications are needed that also target periosteal apposition.

As such, the door is decidedly open for novel therapies that are

anabolic to bone, and which would be ideal in children with a need

for prolonged GC therapy, with poor growth, and with reductions

in periosteal circumference (the latter whether due to myopathies as

in DMD or due to the periosteal apposition-limiting effects of

prolonged GC). The overall goal of such an approach would be to

prevent first-ever fractures in children with the greatest risk of bone

fragility and the least potential for recovery.

Teriparatide, recombinant human PTH (1–34), is approved by

the United States Food and Drug Administration (FDA) for initial

treatment of post-menopausal osteoporosis with a high risk of

fracture for patients who have failed prior osteoporosis therapy

and for adults with GC-associated osteoporosis (117). Teriparatide

reduces the risk of VF and non-VF in post-menopausal women; the

effect on fractures of the hip was inconclusive due to a low incidence

of hip fractures in a large, randomized controlled trial (118).

Overall, teriparatide positively affects spine BMD, but not BMD

at the hip or forearm (118). Where children are concerned, this

anabolic drug recently had an FDA black box warning lifted,

initially in place due to the development of osteosarcoma in

growing rats treated at doses that were three to 50 times higher

than human, adult equivalents (119). Subsequent studies in the

same strain of rats found no evidence of malignancy with doses that

were three times higher than the human equivalent (120).

BMD declines rapidly in the 12 months following teriparatide

cessation, although fracture reductions persist for up to 2 years

(121). Teriparatide, followed by alendronate, mitigates this loss

(122). A recent case report of teriparatide in a 20-year-old man with

DMD described improvement in back pain due to VF after 6

months of teriparatide, plus increases in LS BMD, improvement

in quality of life, and increases in suppressed bone biomarkers

(123). These findings support further study of PTH in DMD post-

epiphyseal fusion. On the other hand, the impact of PTH on bone is

attenuated in adults when administered after bisphosphonate

therapy (124). This may undermine its use in men with DMD

who received bisphosphonates in childhood.

Sclerostin is a potent inhibitor of bone formation, secreted by the

osteocyte to inhibit the anabolic Wnt signaling pathway. Sclerostin

antibody therapy releases the inhibition on sclerostin-mediated bone

formation and has been approved for women with post-menopausal

osteoporosis (romosozumab). Mice treated with anti-sclerostin

antibody show not only increases in BMD and bone formation

markers but also positive changes in bone geometry (including

increases in periosteal circumference) (125). In adults receiving anti-

sclerostin antibody, bone formation returns to baseline by about six

months after the first sub-cutaneous injection, and subsequent doses

appear to have less of a beneficial effect on bone formation (126). As a

result, it has been recommended to “seal in” the gains of sclerostin

antibody treatment with a sequential therapy approach using an anti-

resorptive treatment (126, 127). Anti-sclerostin antibody (BPS804) has
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been used in a phase 2 study of adults with OI (128), showing a

significant increase in markers of bone formation and reduction in

bone resorption. International pediatric OI trials are now underway

investigating the use of BPS804 in this setting (clinicaltrials.gov

NCT05768854, and NCT05125809).
Prevention of first-ever fractures in high-
risk settings and treatment of residual
bone health deficits following major
threats to bone health

The time is nigh to focus efforts on prevention of first fractures

in high-risk settings. Children with OI who are in the greatest need

of prevention offirst fractures typically present with bone fragility in

the first few years of life; as a result, treatment at a young age/early

stage is already often inherent to this genetic bone fragility

condition. On the other hand, fracture rates increase precipitously

in boys with DMD following GC initiation (which typically starts

around 4 to 6 years of age), with an ongoing high probability of

fractures thereafter (129). Death due to fat embolism syndrome has

been described following fractures in this setting (130), and long

bone fractures are associated with premature, permanent loss of

ambulation (10). Recent observations have provided insight into the

clinical variables that are associated with bone loss and vertebral

fractures in DMD, including systemic signs of GC exposure such as

bone age delay, short stature, and excess weight (131) as well as loss

of ambulation (132). These characteristics will guide future efforts

to identify the best candidates for early anticipatory osteoporosis

prevention in DMD and other conditions with a high probability of

childhood fractures.

Another clinical scenario that prompts consideration for a

modified approach is patients who have escaped significant enough

bone fragility during chronic illness management to dodge

osteoporosis therapy, but who nevertheless are left with residual

BMD deficits: examples include leukemia and other cancer survivors,

and adolescents with chronic GC administration. In order to

optimize BMD accrual during the critical years of bone mass

acquisition, the question has been raised whether IV (or oral, given

the lack of overt bone fragility) bisphosphonate therapy may reduce

the reported increased fracture rates later in life (133, 134).
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With these unmet needs in mind, the pediatric osteology field

has its work cut out for the next decade on a background of

significant progress already made in osteoporosis diagnosis,

monitoring and treatment since the most recent turn of the century.
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