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Background: High relapse rates remain a clinical challenge in the management

of breast cancer (BC), with distant recurrence being a major driver of patient

deterioration. To optimize the surveillance regimen for distant recurrence after

neoadjuvant chemotherapy (NAC), we conducted a comprehensive analysis

using bioinformatics and machine learning approaches.

Materials and methods: Microarray data were retrieved from the GEO database,

and differential expression analysis was performed with the R package ‘Limma’.

We used the Metascape tool for enrichment analyses, and ‘WGCNA’ was utilized

to establish co-expression networks, selecting the soft threshold power with the

‘pickSoftThreshold’ algorithm. We integrated ten machine learning algorithms

and 101 algorithm combinations to identify key genes associated with distant

recurrence in BC. Unsupervised clustering was performed with the R package

‘ConsensusCluster Plus’. To further screen the key gene signature of residual

cancer burden (RCB), multiple knockdown studies were analyzed with the

Genetic Perturbation Similarity Analysis (GPSA) database. Single-cell RNA

sequencing (scRNA-seq) analysis was conducted through the Tumour Immune

Single-cell Hub (TISCH) database, and the XSum algorithm was used to screen

candidate small molecule drugs based on the Connectivity Map (CMAP)

database. Molecular docking processes were conducted using Schrodinger

software. GMT files containing gene sets associated with metabolism and

senescence were obtained from GSEA MutSigDB database. The GSVA score

for each gene set across diverse samples was computed using the ssGSEA

function implemented in the GSVA package.
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Results: Our analysis, which combined Limma, WGCNA, and machine learning

approaches, identified 16 RCB-relevant gene signatures influencing distant

recurrence-free survival (DRFS) in BC patients following NAC. We then

screened GATA3 as the key gene signature of high RCB index using GPSA

analysis. A novel molecular subtyping scheme was developed to divide patients

into two clusters (C1 and C2) with different distant recurrence risks. This

molecular subtyping scheme was found to be closely associated with tumor

metabolism and cellular senescence. Patients in cluster C2 had a poorer DRFS

than those in cluster C1 (HR: 4.04; 95% CI: 2.60–6.29; log-rank test p < 0.0001).

High GATA3 expression, high levels of resting mast cell infiltration, and a high

proportion of estrogen receptor (ER)-positive patients contributed to better

DRFS in cluster C1. We established a nomogram based on the N stage, RCB class,

and molecular subtyping. The ROC curve for 5-year DRFS showed excellent

predictive value (AUC=0.91, 95% CI: 0.95–0.86), with a C-index of 0.85 (95% CI:

0.81–0.90). Entinostat was identified as a potential small molecule compound to

reverse high RCB after NAC. We also provided a comprehensive review of the

EDCs exposures that potentially impact the effectiveness of NAC among BC

patients.

Conclusion: This study established a molecular classification scheme associated

with tumor metabolism and cancer cell senescence to predict RCB and DRFS in

BC patients after NAC. Furthermore, GATA3 was identified and validated as a key

gene associated with BC recurrence.
KEYWORDS
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Introduction

Breast cancer (BC) is a leading cause of cancer among women

worldwide, with a constant rise in global morbidity rates (1).

Annually, approximately 1.7 million new cases of BC and 0.5

million BC-related deaths are reported (2). Neoadjuvant

chemotherapy (NAC) is a treatment strategy that involves

administering chemotherapy to treat invasive BC before local

treatment (3). NAC has been shown to decrease preoperative

tumor volume, faci l i tating complete resection of BC.

Furthermore, it is also used to estimate chemo-sensitivity and

eliminate occult metastasis (4). Therefore, NAC has become a

standard treatment for advanced BC, especially using

anthracycline followed by taxane (5). However, high rates of

relapse following treatment remain a significant challenge in BC

management (6). Recurrence, including local/regional cancer

recurrence, distant recurrence/metastasis, and contralateral

primary breast cancer (7), is a major cause of death among BC

patients. While locoregional recurrences represent significant
chemotherapy; RCB,

o-expression network
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clinical challenges, distant recurrence remains the leading cause of

deterioration in BC patients.

In light of the high degree of heterogeneity in BC, adopting a

predictive, preventive, and personalized medicine approach

represents a promising strategy for optimizing treatment

outcomes and enhancing patient prognoses (8). A critical element

of successful clinical management involves incorporating reliable

molecular biomarkers, encompassing both early diagnostic and

prognostic biomarkers to identify patients requiring prompt and

aggressive management, as well as predictive biomarkers to forecast

and stratify responses to novel targeted therapies (8). Recently,

microarray technologies have demonstrated immense potential for

high-throughput studies of gene expression, uncovering the

molecular mechanisms of tumor occurrence, development,

metastasis, and recurrence (9). Bioinformatics analysis has the

capability to reveal heterogeneity within molecular subtypes of

various cancers (10–12). While several studies have explored

biomarkers for BC distant recurrence, including residual cancer

burden (RCB) (13), few have delved into the pre-NAC risk of post-

NAC distant recurrence through bioinformatics analysis. In this

study, we collected microarray data from pre-NAC BC patients and

developed a novel molecular subtyping scheme to identify the risk

of distant recurrence after NAC, thereby contributing to the

enhancement of personalized clinical management and treatment

regimens for BC.
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Materials and methods

Microarray datasets acquisition

We conducted a comprehensive search of the Gene Expression

Omnibus (GEO) database to identify and evaluate microarray

datasets (14). Our inclusion criteria for the microarray datasets

were as follows: (1) the samples were collected from patients who

received neoadjuvant taxane-anthracycline chemotherapy; (2) the

samples were obtained prior to the initiation of NAC; (3) the follow-

up period included the RCB index. We identified two GEO datasets

that met these inclusion criteria (GSE25066 and GSE32603). The

microarray data and clinical information for GSE25066 (n=508)

and GSE32603 (n=248) were obtained from the GEO database

(https://www.ncbi.nlm.nih.gov/geo). We utilized the GSE25066

cohort, which comprised a relatively large number of samples, as

the training dataset, while GSE32603 served as the validation

dataset. Clinical data for BC patients in the GSE25066 cohort are

presented in Table 1.
Gene differential analysis and
enrichment analysis

We conducted differential expression analysis using the R

package ‘Limma’ (15). Differentially expressed genes (DEGs) were

identified with the following criteria: |Log2FC| > 1 and FDR < 0.05.

For DEG identification between different RCB index groups (RCBII/

III vs. RCB0/I), we performed Limma analysis. Enrichment analyses

were carried out using theMetascape tool (16), with all parameters set

to the recommended defaults. Enrichment terms meeting the criteria

of p-value < 0.01, minimum count of 3, and enrichment factor > 1.5

were selected for further analysis.

The Metascape tool employed hierarchical clustering to

categorize enrichment terms into distinct clusters based on

screening criteria of kappa scores = 4 and similarity > 0.3. From

each cluster, we selected the representative term with the minimum

p-value. Our findings are summarized through a presentation of the

top 20 clusters, each accompanied by their enriched terms.

We obtained GMT files containing gene sets linked to

metabolism and senescence from the GSEA MutSigDB database,

following selection based on default settings. The GSVA score for

each gene set across diverse samples was computed using the

ssGSEA function, which is implemented in the GSVA package.

The GSVA scores for gene sets associated with metabolism and

senescence were utilized to represent the metabolic and senescent

states in the studied samples.
Weighted correlation network analysis

We utilized microarray data from samples with RCB index

information in the GSE25066 cohort as input files for the R package

‘WGCNA’ to establish co-expression networks (17). WGCNA was
Frontiers in Endocrinology 03
TABLE 1 Clinical data of BC patients from GSE25066 cohort.

Characteristics Total (N=508)

RCB class

0/I 118 (23.23%)

II/III 299 (58.86%)

Unknown 91 (17.91%)

AGE (years)

Mean ± SD 49.80 ± 10.46

Median[min-max] 49.00[24.00,75.00]

Grade

1 32 (6.30%)

2 180 (35.43%)

3 259 (50.98%)

Indeterminate 15 (2.95%)

Unknown 22 (4.33%)

GGI class

High 336 (66.14%)

Low 172 (33.86%)

Pathologic Response

RD 389 (76.57%)

pCR 99 (19.49%)

Unknown 20 (3.94%)

ER status

Negative 134 (43.23%)

positive 176 (56.77%)

PR status

Negative 258 (50.79%)

Indeterminate 5 (0.98%)

positive 243 (47.83%)

Unknown 2 (0.39%)

Her2 status

Negative 485 (95.47%)

Indeterminate 4 (0.79%)

positive 6 (1.18%)

Unknown 13 (2.56%)

Pam50 class

Basal 189 (37.20%)

Her2 37 (7.28%)

LumA 160 (31.50%)

LumB 78 (15.35%)

(Continued)
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executed with the default-recommended parameters, with the

parameter settings of a minimum module size of 30 and a

merging threshold of 0.25. For the establishment of co-expression

networks, a soft threshold power was implemented to distinguish

modules exhibiting distinct expression patterns. The selection of the

soft threshold power was performed using the ‘pickSoftThreshold’

algorithm from the WGCNA R package (18). We conducted

Pearson’s correlation analysis to estimate the correlation between

Module Eigengenes (MEs) and the RCB index. The module with the

highest Pearson’s coefficient was then identified as the key module

most relevant to the RCB index.
Machine learning framework

In order to identify key genes associated with distant recurrence

in breast cancer, a machine learning framework was utilized that

integrated ten different machine learning algorithms and 101

algorithm combinations. The employed machine learning

algorithms encompassed a range of models, including random

survival forest (RSF), elastic network (Enet), Lasso, Ridge,

stepwise Cox, CoxBoost, partial least squares regression for Cox

(plsRcox), supervised principal components (SuperPC), generalised

boosted regression modelling (GBM), and survival support vector

machine (survival-SVM). The methodology comprised the use of an
Frontiers in Endocrinology 04
input file derived from the intersection of Limma-DEGs and

WGCNA-key module, performing 101 algorithmic combinations

on the input file to develop prediction models via leave-one-out

cross-validation (LOOCV) in the GSE25066 cohort, validating all

models in various AJCC stages, assessing the Harrell’s concordance

indexes (C-index) for all models across the complete GSE25066

cohort and different AJCC stages, and selecting the model with the

highest average C-index as the optimal model.
Consensus clustering

Unsupervised clustering was conducted using the

‘ConsensusCluster Plus’ R package. Agglomerative PAM

clustering was performed using 1-Pearson correlation distances

and resampling 80% of the samples for 10 iterations. The optimal

number of clusters was determined by analyzing the empirical

cumulative distribution function (CDF) plot. Microarray data’s

gene expression values were used as input files for the

cluster analysis.
Genetic perturbation similarity analysis

Genetic perturbation methods, such as siRNA, shRNA, and

CRISPR/Cas9, are considered indispensable in scientific research.

When investigating the mechanism of a specific gene in cells, RNA-

seq is commonly performed following gene knockdown or

knockout. The GPSA database (http://guotosky.vip:13838/GPSA/)

was utilized to identify genes that induce similar downstream effects

to the input data when knocked down or knocked out. The GPSA

database contains a collection of 6,096 gene sets derived from 3,048

gene perturbation RNA-seq datasets (refer to Supplementary

Table 1). These gene sets are categorized based on upregulation

or downregulation patterns. Subsequently, GSEA analysis was

conducted using the complete input dataset in conjunction with

the aforementioned 6,096 gene sets. The GPSA applies filters to

gene set terms using the following principles: 1) gene set terms from

the same datasets should both exhibit enrichment, and 2) the NES

(Normalized Enrichment Score) of the two gene set terms should

be opposite.
Analysis of single-cell RNA
sequencing data

The scRNA-seq expression profile matrix for GSE114727 (in-

Drop) was obtained from the GEO database. The cellular

annotations for GSE114727 were established using the Tumour

Immune Single-cell Hub (TISCH) database (12, 19). The expression

levels of individual genes were compared between different cell

types using median values. UMAP analysis was performed on the

expression levels of genes in the ‘Hallmark-Estrogen Response

Early’ and ‘Hallmark-Estrogen Response Late’ pathways. The

landscape of 22 infiltrating immune cells was assessed using the R

package ‘CIBERSORT’ in microarray datasets.
TABLE 1 Continued

Characteristics Total (N=508)

Normal 44 (8.66%)

T stage

T0 3 (0.59%)

T1 30 (5.91%)

T2 255 (50.20%)

T3 145 (28.54%)

T4 75 (14.76%)

AJCC stage

I 8 (1.57%)

IIA 121 (23.82%)

IIB 151 (29.72%)

IIIA 121 (23.82%)

IIIB 80 (15.75%)

IIIC 23 (4.53%)

Inflammatory 4 (0.79%)

Clinical nodal status

N0 157 (30.91%)

N1 244 (48.03%)

N2 66 (12.99%)

N3 41 (8.07%)
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Discovery of potential drugs by
computational methods

A similarity scoring algorithm known as eXtreme Sum (XSum)

was utilized to identify candidate small molecule drugs from the

Connectivity Map (CMAP) database (20). The DEGs between

different RCB index groups (RCBII/III vs. RCB0/I) were used as

input files for the XSum algorithm. Subsequently, an XSum score

was calculated for each drug in the CMap database, where a lower

score indicates a higher potential for therapeutic use in reversing the

high RCB.

The crystal structures of proteins encoded by the hub gene were

obtained from the RCSB Protein Data Bank (PDB) website

(www.rcsb.org/pdb/home/home.do) (21). Additionally, the 3D

structures of small molecule drugs were retrieved from PubChem

(https://www.ncbi.nlm.nih.gov/pccompound). The molecular

docking process involved preparing the proteins and ligands,

setting up a grid, and docking the compounds, all performed

using the Schrödinger software (21). The optimal pose was

selected based on the docking score and the plausibility of the

molecular conformation.
Chemical-gene interaction analysis

As endocrine-disrupting chemicals (EDCs) found in the

environment can mimic endogenous hormones, they may activate

molecular pathways involved in the growth and development of BC.

Therefore, exposure to EDCs has been linked to a poor prognosis in

patients with prostate cancer. Further research is required to fully

elucidate the mechanisms by which EDCs impact BC growth and

prognosis. To explore the interplay between EDCs and the RCB and

DRFS of BC after NAC, we conducted an analysis utilizing the

meticulously curated research studies on the Comparative

Toxicogenomic Database (CTD). In our analysis, we scrutinized

EDCs affecting the gene expression of all key genes previously

identified. Our analysis is limited to the human species only. The

information about EDCs was obtained from previous literature (22).
Real time quantitative PCR and
immunohistochemistry

RNA was extracted utilizing TRIzol reagent (Ambion, USA),

followed by conversion of mRNA to cDNA using PrimeScriptTM

RT Master Mix (Takara, Japan). Gene transcripts were quantified

through the RT-qPCR assay utilizing ChamQ SYBR qPCR Master

Mix (Vazyme, China). The relative expression levels of genes were

evaluated using the 2-DDCT method with GAPDH as the internal

reference. To measure the expression levels of GATA3 and

GAPDH, GATA3’s forward primer was 5′-AAGGCAGGGA
GTGTGTGAAC-3′, and reverse primer was 5′-CGGTTCTGTC
CGTTCATTTT-3′; while GAPDH’s forward primer was 5′-
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TGTTCGTCATGGGTGTGAAC-3′ and its reverse primer was 5′-
ATGGCATGGACTGTGGTCAT-3′. The experiment was repeated

thrice to calculate the average. Gene expression was determined

using the RT-qPCR method. The study utilized samples from 8 BC

patients from The Second Affiliated Hospital of Anhui Medical

University. The samples were employed for RT-qPCR. All patients

involved in the study provided informed consent prior to their

inclusion in the study.

The data pertaining to IHC analysis was sourced from the HPA

database. The Average Optical Density (AOD) was employed as a

scoring method for statistical analysis. The professional pathologists

used the ImageJ software to measure the AOD, with at least three

measurements per sample taken to determine the mean

AOD values.
Meta analysis

As of July 2023, we conducted a search for BC microarray

datasets in the GEO database. The included datasets fulfilled the

following criteria: (1) presence of complete GATA3 gene expression

data; (2) availability of RFS data in clinical information; (3) samples

size not less than 10. Meta-analysis was conducted using the “meta”

R package to integrate hazard ratio (HR) and 95% confidence

interval (CI) data from all included cohorts. Heterogeneity

between the study results was determined by the I2 statistics. If a

significant level of heterogeneity was observed, the fixed-effect

model was utilized (I2 < 50%, P > 0.10, Mantel-Haenszel

method); alternatively, the random effect model was used (I2 ≥

50%, P ≤ 0.10, Der Simonian and Laird method). Publication bias

was assessed using funnel plots, and their asymmetry was measured

by Begg’s test and Egger’s test.
Data sources of mendelian
randomization analysis

We conducted Mendelian randomization using summary-level

da ta f rom the IEU Open GWAS database (ht tps : / /

gwas.mrcieu.ac.uk). Notably, all participants included in the IEU

Open GWAS database provided informed consent in the

corresponding original studies. The GATA3 GWAS summary

dataset (GWAS ID: eqtl-a-ENSG00000107485) comprised a total

of 31,684 individuals of European ancestry. The BC GWAS meta

dataset (GWAS ID: ieu-a-1126) provided data on 228,951

individuals of European descent, consisting of 122,977 cases and

105,974 controls. Additionally, the ER+ BC GWAS meta dataset

(GWAS ID: ieu-a-1127) included a total of 175,475 individuals of

European descent, with 69,501 cases and 105,974 controls.

Similarly, the ER- BC GWAS meta dataset (GWAS ID: ieu-a-

1128) provided information on 127,442 individuals of European

descent, with 21,468 cases and 105,974 controls. Finally, the BC

Survival GWAS dataset (GWAS ID: ieu-a-1165) had a sample size
frontiersin.org
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of 37,954 individuals of European descent, including 2,900

individuals who had succumbed to BC.
Instrumental variable selection

Genetic variations are employed as instrumental variables (IVs)

in MR to obtain unconfounded estimates for the causal effect of an

exposure of interest on an outcome variable. Initially, we identified

single-nucleotide polymorphisms (SNPs) that were statistically

significant (p < 5*10^-8) across the genome and were associated

with the exposure. To exclude SNPs that were in significant linkage

disequilibrium (LD), we adopted a clumping technique with a

window size of 10,000 kb and an R^2 value < 0.001.

Subsequently, we consulted the Phenoscanner database (http://

www.phenoscanner.medschl.cam.ac.uk/) to explore potential

associations of SNPs with confounding variables and outcomes (p

< 5*10^-8), and manually removed them to ensure the

independence of our genetic instrumental variables from

outcomes and confounding factors. Additionally, we employed

the MR-Pleiotropy Residual Sum and Outlier technique (MR-

PRESSO) to identify outlier variations and account for horizontal

pleiotropy in our results. Furthermore, we used the following

equation to cumulatively determine the F statistics for SNPs: F =

(N - k - 1)R^2/k(1 - R^2), where R^2 represents the variation in the

exposure explained by each IV. The F-statistics were used to assess

the strength of the instruments, with an F value greater than 10

indicating substantial statistical power.
MR analysis

Mendelian Randomization Analyses Were Executed Using R

Version 4.2.1 and the ‘TwoSampleMR’ Packages to Validate the

Causal Association between Exposure and Outcome. Multiple MR

approaches, including the inverse variance weighted (IVW), the

weighted median (WM), the Mendelian randomization-Egger (MR-

Egger) methods, simple mode, and weighted model, were employed

in our investigation to ascertain the causal relationship between

exposure and outcome. The IVW method was predominantly

selected, as it demonstrated superior statistical validity among the

available methods and consistently estimated the causal effect of

exposure on the outcome.
Statistical analyses

Statistical analyses were performed using R software (version

4.0.4). The Wilcoxon/Kruskal-Wallis Test was used to compare

continuous variables, while the Chi-Square test was used to assess

differences in proportion. A p-value of less than 0.05 was considered

statistically significant. Subgroup comparisons were analyzed

using Kaplan-Meier (KM) survival analysis for DRFS and

recurrence-free survival (RFS), followed by the log-rank test.
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Receiver operating characteristic (ROC) curve was utilized to

observe the diagnostic value. Spearman’s correlation was

employed for correlation analysis.
Results

Identification of DEGs between RCBII/III
and RCB0/I

The KM survival analysis revealed that DRFS was worse in BC

patients with RCBII/III (HR: 6.06; 95% confidence interval: 2.64–

13.88; log-rank test p < 0.0001; Figure 1A). By utilizing the “Limma”

R package, we identified 181 down-regulated and 130 up-regulated

genes in patients with RCBII/III before the commencement of NAC

(Figure 1B). The heatmap displaying the top 20 up-regulated and

down-regulated genes can be observed in Figure 1C. We subjected

the 311 DEGs to analysis using Metascape tools, revealing that the

top 20 enriched pathways were primarily related to humoral

immune response, mitotic cell cycle, and tissue homeostasis

(Figure 1D and Supplementary Table 2).
Identification of key gene module
associated with RCB index using WGCNA

We utilized the “WGCNA” R package to construct a gene co-

expression network with an optimal power value (b=4) (Figure 2A).
Within the GSE25066 cohort, 6759 genes were categorized into 18

co-expression modules, inclusive of the grey module. The cluster

analysis outcomes for all samples are depicted in Figure 2B, while

the co-expression modules are visually represented using distinct

colors in Figure 2C. The gene assignments to various modules are

detailed in Supplementary Table 3. Furthermore, the network

heatmap indicated minimal correlation among all 18 co-

expression modules (Figure 2D). The findings from the modules

correlation analysis demonstrated the brown module as the most

relevant module with RCBII/III (correlation coefficient r = 0.30, p <

0.0001; Figure 3A). Moreover, a noteworthy positive correlation

existed between the module membership (MM) of the brown

module and the gene significance (GS) for RCBII/III (correlation

coefficient R = 0.70, p < 0.0001; Figure 3B). Metascape analysis

unveiled that the 1014 genes within the brown module primarily

participated in monocarboxylic acid metabolic processes, regulation

of hormone levels, and embryonic morphogenesis (Supplementary

Table 4). The top 20 enriched pathways are illustrated in Figure 3C.
Identification of candidate genes related
to DRFS of BC

We intersected the module genes obtained from WGCNA with

the DEGs acquired through limma analysis, resulting in 156 RCB-

related genes (Figure 4A). These 156 RCB-related genes underwent a
frontiersin.org
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machine learning-based integrative procedure to further refine the

core gene signatures that significantly influence the DRFS of BC.

Within the GSE25066 cohort, we employed the leave-one-out cross-

validation (LOOCV) framework to build 101 prediction models and

calculated the C-index for each model across various American Joint

Committee on Cancer (AJCC) stages. Consequently, the optimal

model was the random survival forest (RSF), exhibiting the highest

average C-index (0.964), which outperformed all other models across

different AJCC stages (Figure 4B). Employing the RSF algorithm, we

pinpointed a total of 16 RCB-related gene signatures that impact

DRFS (Supplementary Table 5). Among these signatures, TMSB15B,

UGT8, and ASS1 displayed elevated expression in the RCB0/I group,

while the other genes exhibited higher expression in the RCBII/III

group (Supplementary Figure 1A).
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A newly developed molecular subtyping to
predict the DRFS of BC

We performed unsupervised clustering using the R package

“ConsensusCluster Plus” on the 16 RCB-related gene signatures in

GSE25066. The ideal cluster number was identified based on the

empirical cumulative distribution function (CDF) plot (Figures 5A,

B), with the best partition efficiency achieved at k = 2 based on

consensus scores (Figures 5C, D). As a result, we divided BC

patients into different molecular subtypes (cluster C1 & cluster

C2), and the heat-map indicated distinct gene expression patterns

of the 16 RCB-related gene signatures between the clusters

(Figure 5E). Notably, patients in cluster C2 had a poorer DRFS

than those in cluster C1 (HR: 4.04; 95% CI: 2.60–6.29; log-rank test
B

C

D

A

FIGURE 1

Gene differential analysis between RCB0/I and RCBII/III groups. (A) KM survival analysis of RCB0/I and RCBII/III groups in training dataset
(GSE25066). (B) Volcano plot of DEGs between RCB0/I and RCBII/III groups (Green: down-regulated genes; Red: up-regulated genes). (C) Heatmap
of the top 20 up-regulated genes and top 20 down-regulated genes according to p value. (D) The top 20 enrichment results for the DEGs based on
the Metascape database.
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p<0.0001; Figure 6A). We investigated whether the DRFS

differences were attributed to RDB and found no significant

difference in the proportion of RDB III patients between the

clusters (27% vs. 26%), but a greater proportion of patients who

achieved a pathological complete response (pCR) after NAC were

observed in cluster C1 (Supplementary Figure 1C). To further

validate the predictive capability of the novel molecular subtyping

scheme for DRFS, multivariate analysis was performed and showed

that our molecular subtyping scheme was an independent strong

predictor for DFRS in BC (HR: 5.20; 95% CI: 3.13–8.60; p<0.0001)

(Supplementary Figure 1D).

A stratified analysis of the prognosis for DRFS based on the

RCB index and pathologic response was performed (Supplementary

Figure 2), which isolated patients with greater risk of distant

recurrence from the RCB II, RCB III, and residual disease (RD)

subcategories based on the molecular subtyping scheme. We
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investigated the possible reasons for the better DRFS of cluster

C1, which had fewer pCR patients. CIBERSORT algorithm analysis

indicated that 16 types of immune cells were significantly differently

infiltrated in different clusters (Supplementary Figure 3A), with the

most significant difference being the higher number of resting mast

cells in cluster C1 (p<0.0001). Furthermore, KM analysis revealed

that higher resting mast cell infiltration is a significant protective

factor of distant recurrence for BC patients with NAC (HR: 0.42;

95% CI: 0.25–0.71; log-rank test p=0.00087; Supplementary

Figure 3C). The vast majority (96%) of cluster C1 patients had

estrogen receptor (ER)-positive tumors, which were observed rarer

(19%) in pCR patients. In summary, resting mast cell infiltration

and ER status may contribute to the different risks for distant

recurrence between cluster C1 and C2.

Incorporating the RCB index with the molecular subtyping

scheme could improve the predictive accuracy of DRFS before the
B
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A

FIGURE 2

The results of WGCNA. (A) Determination of the soft threshold in the WGCNA algorithm. (B) Sample dendrogram and clinical-traits heatmap. (C)
Cluster dendrogram and module assignment for modules from WGCNA. (D) Interactions among different gene coexpression modules.
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FIGURE 3

Screening results of gene modules. (A) Correlation between modules and clinical traits (RCB). (B) The scatter plot of gene significance (GS) versus
module membership (MM) in the brown module. (C) The top 20 enrichment results for the brown module based on the Metascape database.
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start of NAC (Figure 6B). Within the overall follow-up time (mean:

3.76 years), no patients experienced a distant recurrence in the

“RCB 0/I & C1” group. The “RCB I/II & C2” subcategory had the

poorest prognosis in terms of DRFS, with the median time to distant

recurrence being 2.52 years. To aid in clinical use, a nomogram was

established based on the independent prognostic factors (N stage,

RCB class, molecular subtyping) identified by multivariate analyses

(Figure 6C).To evaluate the accuracy of the nomogram, we drew a

ROC curve and calibration plot (Figures 6D, E). The ROC curve

analysis for the 5-year DRFS demonstrated an outstanding

predictive performance (AUC = 0.91, 95% CI: 0.95–0.86;

C-index = 0.85, 95% CI: 0.81–0.90).
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Independent validation of molecular
subtyping scheme

We conducted unsuperv ised c lus ter ing us ing the

independent validation set (GSE32603) and achieved optimal

partition efficiency with k=2, based on consensus scores and

CDF curves (Supplementary Figures 3B, 4A, C, D). The heatmap

depicted a highly similar gene expression pattern of the 16 RCB-

related gene signatures between GSE25066 and GSE32603

(Supplementary Figure 4E). Clinical characteristics were

comparable between different clusters in the validation set and

the training dataset (Supplementary Figures 5A, B). Patients
BA

FIGURE 4

Hub genes were screened within machine learning. (A) Flow chart describing the screen for RCB-related genes impacting the DRFS of BC patients
after NAC. (B) Performance comparison of prediction models based on different machine learning methods (IBC : Inflammatory breast cancer).
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within cluster C2 exhibited inferior RFS compared to those in

cluster C1 (HR: 2.11; 95% CI: 1.10–4.02; log-rank test p=0.02;

Supplementary Figure 5C). Integration of the RCB index with

the molecular subtyping scheme in the validation set enhanced

the predictive accuracy of RFS estimation before the

commencement of NAC (Supplementary Figure 5D) .

Therefore, our molecular subtyping scheme was regarded as

appropriate and generalizable.
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GPSA analysis reveals key gene associated
with RCB

To identify the key genes associated with RCB, we performed

GPSA analysis on differentially expressed genes between the RCB 0/

I and RCB II/III groups. We identified 327 genes that shared similar

downstream effects with the input data when knocked down/out

(Supplementary Table 6). The intersection of these 327 genes with
B C
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A

FIGURE 5

Unsupervised clustering performed in training dataset (GSE25066). (A) Consensus clustering cumulative distribution function (CDF) for k = 2-10. (B)
Relative change in the area under the CDF curve (k = 2-10). (C) Consensus clustering matrix for k=2. (D) Cluster consensus values for k = 2-10. (E)
Heatmap for the normalized expression of the 16 RCB-related gene signatures. (*: p<0.05, **: p<0.01, ***: p<0.001)
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the 16 RCB-related gene signatures affecting DRFS identified by the

RSF algorithm resulted in the identification of GATA3 as the key

gene associated with RCB. The pattern of gene expression in the

RCB II/III group was opposite to that observed in MCF7 cell lines

with knockdown of GATA3 (Figures 7A–C). There was a strong

negative correlation between the enrichments in the Hallmarks

pathways of the RCB II/III group and the MCF7 cell lines with

knockdown of GATA3 (R= -0.886, p<0.0001; Figure 7D). These

results provide strong evidence supporting the rationale of GATA3

as the key gene associated with RCB.
Relationship between GATA3 and mast
cells revealed by single-cell analyses

GATA3 expression was found to be higher in cluster C1, which

had a better DRFS (Figure 8A). High GATA3 expression was

positively correlated with better DRFS in BC patients after NAC

(HR: 0.24; 95% CI: 0.16–0.39; p<0.0001; Figure 8B). Furthermore,

BC tumors with high GATA3 expression showed greater infiltration

of resting mast cells (Figure 8C). Spearman analysis demonstrated a

significant positive correlation between GATA3 expression and the

extent of tumor-infiltrating resting mast cells in the tumors (R=

0.33, p<0.0001; Figure 8D).

To explore the connection betweenmast cell infiltration andGATA3

within tumor tissue, we conducted single-cell sequencing analysis and

employed the TISCH database. A total of 11 cell types were identified in

the GSE114727 (in-Drop) dataset, including B cells, CD8 T cells, CD4

Tconv cells, endothelial cells, fibroblasts, mast cells, dendritic cells,
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macrophages, myofibroblasts, natural killer (NK) cells, and neutrophils

(Figure 9A). Intriguingly, GATA3 exhibited the highest expression level

in mast cells infiltrating BC tumors, consistent with our prior findings

(Figures 9B, C). Additionally, the “Hallmark-Estrogen Response Early”

and “Hallmark-Estrogen Response Late” pathways were particularly

enriched in mast cells (Figures 9D, E), indicating that mast cells

possess a heightened capacity to respond to estrogen compared to

other immune cells infiltrating BC tumors.
Discovery of potential drugs by
computational methods

In our study, we used the “XSum” algorithm to perform CMap

analysis with the top 1000 DEGs (500 up-regulated and 500 down-

regulated genes) between RCB 0/I and RCB II/III groups as input.

Our analysis revealed that Entinostat (MS-275) had the minimum

XSum score (Supplementary Table 7), indicating that it is a

potential small molecular compound to reverse high RCB after

NAC. In other words, Entinostat has the potential to reduce tumor

burden and control residual tumors after NAC. To explore the

possibility of Entinostat acting as a direct GATA3 inhibitor, we

conducted molecular docking analyses using Schrodinger software.

Three-dimensional and two-dimensional docking poses of

Entinostat and GATA3 protein were shown in Figures 10A, B,

respectively. Our findings suggest that Entinostat has a favorable

binding affinity for the GATA3 protein, as evidenced by a docking

glide score of -7.573 kcal/mol. Therefore, Entinostat may represent

a novel and promising strategy for increasing the efficacy of NAC.
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FIGURE 6

(A) Differences in DRFS between different molecular subtypes in training dataset (GSE25066). (B) KM curve analysis of DRFS is shown for patients
classified according to molecular subtype and RCB class. (C) Developed nomogram. The nomogram was developed with the N stage, RCB class and
molecular subtype. (D) ROC curve demonstrating diagnostic performance of nomograms for DRFS. (E) The calibration curve to evaluate the
accuracy of the nomogram at 1, 3 and 5 years, respectively.
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Exploration of EDC exposures with
potential to impact the DRFS of BC

We explored all potential EDC Exposures that may impact the

expression levels of the 16 Key Genes Associated with RCB and DRFS

by leveraging the CTD database. Subsequently, we have acquired a total

of 19 different types of EDC Exposures that could affect the expression

level or methylation state of the 16 Key Genes, showing in

Supplementary Table 9. Thus, these EDC Exposures have the

potential to modulate the RCB and DRFS of BC, an effect that is

mediated by the intermediary factors of these 16 Key Genes. Hence,

avoiding exposure to these EDCs may facilitate an improvement in the

effectiveness of NAC among BC patients. Further studies may be

necessary to elucidate the underlying mechanisms and ultimately

improve outcomes in the management of BC.
Relationship between molecular subtyping
strategies and tumor metabolism and
cellular senescence

The enrichment levels of pathways related to tumor metabolism

and cellular senescence were evaluated across distinct clusters of
Frontiers in Endocrinology 12
patients using the ssGSEA method. The Wilcoxon rank sum test

revealed a significant difference in the enrichment scores of

pathways related to metabolism and cellular senescence between

Cluster 1 and Cluster 2 (Supplementary Table 10). Out of the 15

pathways associated with cellular senescence, 11 displayed

significantly higher enrichment scores in Cluster 2 compared to

Cluster 1. The “reactome oncogene induced senescence” pathway

exhibited the most significant difference in enrichment scores

between clusters. Significant differences were observed between

the metabolic profiles of Cluster 1 and Cluster 2 (Supplementary

Figure 6A). Cluster 1 exhibited elevated levels of fatty acid

metabolism, propanoate metabolism, ascorbate and aldarate

metabolism, and butanoate metabolism, while Cluster 2

demonstrated increased levels of galactose metabolism. We also

evaluated the association between the key gene, GATA3, and both

metabolism and cellular senescence (Supplementary Figure 6B).

Metabolic pathways, including alanine aspartate and glutamate

metabolism, ascorbate and aldarate metabolism, beta alanine

metabolism, butanoate metabolism, and fatty acid metabolism,

were found to be significantly positively associated with GATA3

gene expression levels (Supplementary Figure 6B). Most cellular

senescence pathways were found to be enriched with a negative
B
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A

FIGURE 7

In GPSA database, the up-regulated and down-regulated gene sets were obtained by differentially expressed gene analysis after GATA3 knocked
down using shRNA. (A) The up-regulated gene set were enriched in RCB 0/I group and (B) the down-regulated gene set were enriched in RCB
II/III group. (C) The pattern of gene expression in RCB II/III group was opposite to that observed in the MCF7 cell lines with knockdown of
GATA3. (D) The results of pearson correlation analysis between the NES of hallmark gene sets enriched in both RCB II/III group and GATA3
shRNA knocked down cell line (R=-0.886, p < 0.001).
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correlation with GATA3 gene expression levels. However, the

sphingolipid metabolism in senescence pathway showed a

significant positive correlation with GATA3 gene expression

levels (Supplementary Figure 6C).
Experimental validation of GATA3 as a
biomarker for BC and RCB after NAC

To begin with, high-definition immunohistochemical images

from the HPA database were retrieved for breast cancer and normal

breast tissues. These images were utilized to assess the differential

GATA3 protein expression levels between the two tissue types,

using an AOD evaluation method (Figure 11A). There is a

significant upregulation of GATA3 protein expression levels in

breast cancer tissues (Figure 11B). We collected post-operative

specimens from eight breast cancer patients subjected to

neoadjuvant taxane-anthracycline chemotherapy. Tumor diameter

measurements were taken before chemotherapy, and the remaining

tumor load was determined from post-operative pathology reports.

Of the eight patients, four had tumors that shrunk more than 80%
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after chemotherapy and were classified into the RCB-Low group.

On the other hand, the remaining four patients with tumors that

shrank less than 50% after chemotherapy were classified into the

RCB-High group. Our findings from PCR assays showed that

GATA3 gene expression levels were significantly upregulated in

the RCB-High group, in agreement with the previous

bioinformatics analysis results (Figure 11C).
Meta-analysis validation of GATA3 as
a predictive biomarker for BC
tumor recurrence

In this Meta-analysis, a total of 21 cohorts were included. It

merits mentioning that even microarray datasets derived from the

same study but measured on distinct platforms (GPL) were

regarded as separate cohorts, given the batch effect of the gene

sequencing. Both the common effect model (HR=0.53, 95%CI

[0.44-0.62], Z=-7.35, p<0.0001) and random effects model

(HR=0.50, 95%CI [0.40-0.63], Z=-5.99, p<0.0001) demonstrated

GATA3 as a favorable protective factor against BC recurrence. The
B

C D

A

FIGURE 8

(A) Boxplot of GATA3 expression levels between different molecular subtypes (Red: Cluster C1; Blue: Cluster C2). (B) KM analysis demonstrating the
difference of DRFS between low and high levels of GATA3. (C) Box plot showed the differences in infiltration levels of resting mast cells between low
and high levels of GATA3 group. (D) Spearman correlation analysis between the expression level of GATA3 and resting mast cells infiltration.
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heterogeneity among the included studies was deemed acceptable

(P=0.06, I2 = 35%). Accordingly, we opted for the results derived

from the random effects model (Figure 12A). Our findings from the

Eggers and Beggs tests indicated that there was no significant

publication bias (Eggers test, p= 0.0534; Beggs test, p=0.07)

(Figure 12B). In conclusion, our meta-analysis results

corroborated the findings from our bioinformatics analysis,

indicating GATA3 as a protective factor against breast

cancer recurrence.
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Results of MR analysis

MR integrated GWAS with eQTL data to test for the association

BC and eQTL of GATA3 (Figure 13; Supplementary Figure 7). The

results from the IVW, WM, MR-Egger methods, simple mode, and

weighted model analyses collectively suggest that changes in

GATA3 gene expression are not a causative factor for BC

occurrence (including ER+ and ER- subtypes). Instead, mutations

in GATA3 eQTL (leading to downregulation of the GATA3 gene)
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FIGURE 9

Results of scRNA-seq analysis basedon TISCH database. (A) UMAP plot of all the single cells in GSE114727-inDrop cohort, with each color coded for
11 major cell types. (B) Relative expression of GATA3 genes in distinct cell types (the bluer the color, the higher the expression). (C) Violin plots
showing the expression of GATA3 genes in distinct cell types. (D) The degree of enrichment of “Hallmark-Estrogen Response Early” and “Hallmark-
Estrogen Response Late”pathways in different cell types (the redder the color, the higher the degree).
frontiersin.org

https://doi.org/10.3389/fendo.2023.1265520
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Huang et al. 10.3389/fendo.2023.1265520
could serve as protective factors against the occurrence of BC (IVW:

p<0.001, WM: p<0.001, simple mode: p=0.001, and weighted model:

p=0.001). There is a causal relationship between downregulation of

the GATA3 gene and breast cancer mortality (IVW: p<0.001, WM:

p<0.001, simple mode: p=0.03, and weighted model: p=0.02).
Discuss

RCB is a highly intuitive indicator for assessing the effectiveness

of NAC regimens and has also found utility in predicting clinical

outcomes in BC patients (22). Nevertheless, several studies have

indicated that even patients achieving pCR after preoperative or

postoperative chemotherapy might not experience complete

recovery or local control, with some of these tumors still at risk

of recurrence (23–25). As a result, relying solely on RCB to predict

DRFS following NAC is inadequate. There is an urgent demand for

a novel and robust classifier to accurately predict individual risks of

distant recurrence in clinical settings.

In this study, we investigated disparities in gene expression

patterns and the activation of signaling pathways between high and
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low levels of RCB after NAC treatment. Utilizing a combination of

machine learning models and WGCNA, we identified significant

gene signatures closely linked to RCB. Additionally, the GPSA

database facilitated the analysis of multiple knockdown studies,

ultimately pinpointing GATA3 as a pivotal gene signature

associated with RCB after NAC treatment. Among the most

frequently mutated genes in BC, GATA3 (11%) took precedence,

followed by TP53 and PIK3CA (26). GATA3, along with its

downstream target FOXA1, assumes a critical role in upholding

the luminal differentiation status of human mammary epithelial

cells (27, 28). Furthermore, GATA3 acts as a constraint on the

metastatic dispersion of tumor cells by impeding the epithelial-to-

mesenchymal transition (EMT) process (29). This, in part,

elucidates the connection between GATA3 and improved DRFS

observed in our investigation (Figure 8B). Moreover, our research

employed an array of validation techniques, including IHC, Rt-

PCR, meta-analysis, and MR, to corroborate our bioinformatic

analysis findings. Initial validation through IHC and RT-PCR

established the association of GATA3 expression levels with both

BC development and RCB progression subsequent to neoadjuvant

therapy. Although our preliminary results suggest that GATA3 is a
B CA

FIGURE 11

Validation of GATA3 expression levels. (A) GATA3 protein expression in immunohistochemical images of BC (left) and normal (right) samples. (B) The
AOD of GATA3 protein in BC (Red) and normal (Green) samples. (C) Results of PCR analysis.
BA

FIGURE 10

In silico molecular docking of GATA3 protein with Entinostat using Schrodinger software. Schematic 3D (A) and 2D (B) representation of molecular
docking models, active sites, and binding distances.
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FIGURE 12

Forest (A) and funnel (B) plots of meta-analysis on GATA3 and RFS of BC.
FIGURE 13

Forest plot showing results from the Mendelian randomization analysis.
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biomarker for DRFS in breast cancer patients following NAC

treatment, there are limited applicable datasets with DRFS

information of BC patients in the GEO database. Therefore, we

expanded our search and conducted a meta-analysis to investigate

the potential of GATA3 as a biomarker for RFS (including DRFS) in

BC patients. Then, meta-analysis of 21 independent cohorts

confirmed the close relationship between GATA3 and RFS of BC.

The use of MR enabled us to explore the causality between GATA3

and breast cancer incidence and prognosis. Our comprehensive

validation, involving large-scale cohorts, was consistent with the

results of our bioinformatic analysis.

Furthermore, prior studies have demonstrated that concurrent

expression of GATA3 and Hes-1 skews the cell fate of myeloid

progenitors toward downstream progenitors capable of generating

mast cells at the single-cell level (30). In our investigation, there was

a significant positive correlation between resting mast cells and

GATA3 expression levels in BC. According to Xie et al., tumor-

infiltrating mast cells can mitigate the efficacy of chemotherapy and

radiotherapy by influencing the p38/p53/p21 signaling pathway and

ATM phosphorylation (31). This could partly elucidate why tumors

with higher levels of resting mast cell infiltration, such as those in

cluster C1 and the RCBII/III group, exhibit more residual tumors

post NAC. Furthermore, Majorini et al. explored whether co-

culturing with mast cells impacts the expression of ER in various

panels of human and mouse BC cell lines (32). In all tested cell lines,

the presence of mast cells led to a significant increase in ER

transcription and protein levels. Our single-cell sequencing

analysis findings also supported this observation. ER-positive BC,

generally, carries a more favorable prognosis compared to ER-

negative tumors, exhibiting reduced aggressiveness, with its

development and progression regulated by ER (33). A study

involving a sizable sample revealed that ER-positive BC carries an

extended risk of recurrence, with around 50% of recurrences

transpiring after 5 years (late distant recurrence, LDR), in

contrast to ER-negative BC, which primarily recurs within the

initial 5 years (34). Additionally, patients with ER-positive BC can

gain benefits from prolonged endocrine treatment, a strategy

proven to further curtail the risk of both local and distant

recurrence (35). In essence, manipulation of the GATA3-mast

cell-ER axis may hold promise as a prospective therapeutic target

to mitigate the risk of distant recurrence and enhance outcomes for

BC patients. Moreover, the GATA3-mast cell-ER axis forms the

underlying biological foundation for our devised molecular

subtyping scheme, aiming to predict DRFS after NAC.

In our study, we developed an mRNA expression-based

molecular subtyping scheme and a nomogram to predict distant

DRFS in BC patients following NAC. Our nomogram demonstrated

excellent prediction ability, with an AUC of 0.91 for 5-year DRFS,

outperforming many previous prediction tools (Supplementary

Table 8) (36–45). Importantly, our study used microarray data

collected prior to NAC treatment, suggesting that our results have

the potential to guide clinical decision-making, particularly before

NAC treatment initiation. If a BC patient is identified as high risk

for distant tumor recurrence by our nomogram, further adjuvant

therapies and close monitoring are required to prevent and

detect relapse.
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Through bioinformatic technologies, we identified Entinostat as a

potential therapeutic drug to further reduce RCB when combined

with NAC. Entinostat is an oral synthetic benzamide-derivative that

inhibits HDAC1 and HDAC3 enzymes, and has shown promising

antitumor activity in vitro and in vivo (46–58). Combination therapy

with chemotherapeutic agents and Entinostat has been shown to

enhance anti-proliferative activity and overcome treatment resistance

in preclinical researches. Safety evaluations of Entinostat for BC

patients in a Phase III Clinical Trial indicated relatively low levels

of adverse events, similar to previous research (57, 58) However, the

effects of Entinostat on the efficacy of NAC in BC patients have not

been reported, warranting further investigation.

We present an extensive review with the aim of investigating the

impact of exposure to endocrine-disrupting chemicals (EDCs) on

the expression levels of RCB-related genes - a phenomenon that

may potentially influence the disease-free survival (DRFS) of breast

cancer (BC) following neoadjuvant chemotherapy (NAC). Our

objective is to illuminate the pivotal interplay between external

factors and NAC, along with its clinical implications within the

context of BC pathogenesis. Through our research, we offer fresh

insights and resources that can facilitate a more comprehensive

exploration of the intricate relationship between BC progression

and exposure to EDCs. Consequently, these findings hold the

potential to offer new perspectives for guiding clinical treatment

strategies for BC patients, ultimately enhancing the standard of care

for this condition.

Although our study provides novel insights into optimizing

therapeutic and surveillance regimens for distant recurrence after

NAC, there are still some limitations that need to be acknowledged,

such as the reliance on association studies and bioinformatics

analysis. Further experimental studies based on the observations

of the current study are required. Our findings may improve

targeted prevention and personalized treatment strategies in BC,

leading to a paradigm shift from reactive medical services to

predictive, preventive, and personalized medicine. Overall, the

current study aims to identify a potential biomarker to predict

DRFS after NAC, which could increase the efficiency of NAC and

reduce treatment costs.
Conclusions

Based on combination of bioinformatics and machine learning

analysis, we fully explore the difference of gene expression pattern

and activation of signaling pathways between high and low level of

RCB after NAC treatment. Furthermore, multiple knockdown

studies were analyzed by GPSA database and then GATA3 was

further screened out as a key gene signature of RCB following NAC.

Subsequently, we constructed and verified a mRNA expression-

based molecular subtyping scheme and a nomogram, which were

able to accurately predict DRFS in BC patient following NAC. This

molecular subtyping scheme was found to be closely associated with

tumor metabolism and cellular senescence. The GATA3-mast cell-

ER axis is also the potential biological basis for the our molecular

subtyping scheme established to predict DRFS after NAC. We also

provided a comprehensive review of the EDCs exposures that
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potentially impact the effectiveness of NAC among BC patients.

Our study contributes to the optimization of personalised clinical

management and treatment regimens of BC.
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SUPPLEMENTARY FIGURE 1

(A) Boxplot of the expression levels of the 16 RCB-related gene signatures
between different RCB classes (Red: RCB II/III; Blue: RCB 0/I). (B) The

proportion of BC patients with different RCB classes in Cluster C1 and
Cluster C1 (Blue: RCB III; Red: RCB II; Green: RCB 0/I). (B) The proportion

of BC patients with different pathologic response in Cluster C1 and Cluster C1
(Blue: RD; Red: pCR). (C) Multivariate analysis for risk factor for distant

recurrence of BC patients after NAC.

SUPPLEMENTARY FIGURE 2

KM curves showing the difference of DRFS in Cluster C1 and Cluster C2
stratified by RCB class and pathologic response.

SUPPLEMENTARY FIGURE 3

(A) Boxplot showing the infiltration levels of 22 immune cell types in different

molecular subtypes (Red: Cluster C1; Blue: Cluster C2). (B) Box plot showing
the differences in infiltration levels of restingmast cells between different RCB

class (Red: RCB 0/I; Green: RCB II/III). (C) KM analysis demonstrating the
difference of DRFS between low and high infiltration levels of resting mast

cells. (D) The proportion of BC patients with different ER status in Cluster C1
and Cluster C1 (Blue: positive; Red: negative). (E) The proportion of BC

patients with different ER status in RD group and pCR group (Blue: positive;

Red: negative).

SUPPLEMENTARY FIGURE 4

Unsupervised clustering performed in verification dataset (GSE32603). (A)
Consensus clustering cumulative distribution function (CDF) for k = 2-10. (B)
Relative change in the area under the CDF curve (k = 2-10). (C) Consensus
clustering matrix for k=2. (F) Cluster consensus values for k = 2-10. (D)
Heatmap for the normalized expression of the 16 RCB-related
gene signatures.

SUPPLEMENTARY FIGURE 5

Verification of the predictive ability of our molecular subtyping scheme in
verification dataset (GSE32603). (A) The proportion of BC patients with

different RCB class in Cluster C1 and Cluster C1 (Blue: RCB 0/I; Red: RCB II/

III). (E) The proportion of BC patients achieved pCR after NAC in Cluster C1
and Cluster C1 (Blue: pCR-No; Red: pCR-Yes). (A)Differences in RFS between

different molecular subtypes in GSE32603. (B) KM curve analysis of RFS is
shown for patients classified according to molecular subtype and RCB class

in GSE32603.
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SUPPLEMENTARY FIGURE 6

(A) The heatmap displays the enrichment scores of the metabolism and

senescence-related pathways between Cluster 1 and Cluster 2. The results of
the Spearman correlation analysis between the expression level of GATA3
Frontiers in Endocrinology 19
gene and the enrichment scores of the metabolism (B) and senescence (C)
-related pathways.

SUPPLEMENTARY FIGURE 7

The scatter plot of five MR methods.
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