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Diabetic peripheral neuropathy (DPN) refers to the development of

peripheral nerve dysfunction in patients with diabetes when other causes

are excluded. Diabetic distal symmetric polyneuropathy (DSPN) is the most

representative form of DPN. As one of the most common complications of

diabetes, its prevalence increases with the duration of diabetes. 10-15% of

newly diagnosed T2DM patients have DSPN, and the prevalence can exceed

50% in patients with diabetes for more than 10 years. Bilateral limb pain,

numbness, and paresthesia are the most common clinical manifestations in

patients with DPN, and in severe cases, foot ulcers can occur, even leading to

amputation. The etiology and pathogenesis of diabetic neuropathy are not

yet completely clarified, but hyperglycemia, disorders of lipid metabolism,

and abnormalities in insulin signaling pathways are currently considered to be

the initiating factors for a range of pathophysiological changes in DPN. In the

presence of abnormal metabolic factors, the normal structure and function

of the entire peripheral nervous system are disrupted, including myelinated

and unmyelinated nerve axons, perikaryon, neurovascular, and glial cells. In

addition, abnormalities in the insulin signaling pathway will inhibit neural axon

repair and promote apoptosis of damaged cells. Here, we will discuss recent

advances in the study of DPN mechanisms, including oxidative stress

pathways, mechanisms of microvascular damage, mechanisms of damage

to insulin receptor signaling pathways, and other potential mechanisms

associated with neuroinflammation, mitochondrial dysfunction, and cellular

oxidative damage. Identifying the contributions from each pathway to

neuropathy and the associations between them may help us to further

explore more targeted screening and treatment interventions.
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1 Introduction

Diabetic neuropathy (DN) is one of the most frequent chronic

complications of diabetes mellitus, along with diabetic eye

complications, diabetic foot, and diabetic cardiovascular

complications. The disease can involve both central and

peripheral nerves, particularly the latter, known as DPN, which

has been shown to affect about one-third of patients with peripheral

neuropathy (1). As the number of diabetic patients increases further

worldwide, DPN has become a global health challenge. The

aggregate annual cost of treating painful DPN and its

complications (such as foot ulcers and limb amputations) in the

United States has been estimated to be between $4 billion and $13

billion; up to 27% of direct medical costs for diabetes are

attributable to DPN (2).

The commonest manifestation of DPN is distal symmetrical

limb numbness with loss of sensation, and about 20% of people with

diabetes may also develop neuropathic pain due to DPN. Common

types of pain include cauterizing, electrical and sharp pains,

followed by pruritus, hyperalgesia, and evoked pain (3). In

addition to this, the combination of hyperglycemia and metabolic

disorders harms the immune system and immune function of the

body, and this unconscious, insidious wound may eventually

become infected and lead to serious limb damage (4). Current

studies regard DPN as the most common cause of non-traumatic

lower limb amputation in most high-income countries (5).

The etiology and pathogenesis of DPN are still inconclusive but

are currently thought to be mainly related to a series of

pathophysiological processes caused by hyperglycemia,

dyslipidemia, and insulin resistance. Abnormal glucose-lipid and

insulin resistance and its sequelae cause alterations in

mitochondrial function, inflammation, oxidative stress, specific

gene transcription, and expression, ultimately leading to

neuronal-glial cell damage. In addition, some widely used clinical

drugs, such as proton pump inhibitors and metformin, which are

commonly used in diabetic patients, may also cause/aggravate DPN

by inducing vitamin B12 deficiency (6, 7). This paper reviews the

existing research in cellular and animal models to understand

the mechanisms of initiation and progression of DPN, which and

the associations between them may be useful for early screening,

graded treatment, and prognostic assessment of DPN.
2 Epidemiology

Considered a major chronic disease and epidemic of our time,

diabetes has become the leading cause of death and disease in the

global population and poses a continuously growing disease burden

for countries around the world. The global prevalence of diabetes is

currently increasing year on year, and the rates of screening,

treatment, and control are less than optimal. Results of a large

diabetes survey based on the mainland Chinese population show

that nearly half of the adults have abnormal blood sugar (8). DPN is

the most common and most difficult complication of diabetes

mellitus (DM) to treat, with the highest morbidity and mortality

rates and a huge financial burden on diabetes treatment. Studies
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have shown that nearly half of all people with diabetes will develop

peripheral neuropathy, and the process often begins early in the

course of diabetes, with the extent and rate of progression

depending on several other factors, including the age of the

patient, the number of years they have had diabetes, and the level

of blood glucose control (9–12). With recent advances in diagnostic

techniques, there is a tendency for this value to increase further

when measured by the more sensitive nerve conduction test (13). A

multicenter study based on diabetic patients in Beijing showed that

the prevalence of DPN in Chinese patients with type 1 diabetes

mellitus (T1DM) and type 2 diabetes mellitus (T2DM) was 21.92%

and 35.34%, respectively (14).

DSPN is the most common type of DPN. Available studies

suggest that DSPN is present in approximately 28% of diabetic

patients (15). Another common type of DPN is diabetic autonomic

neuropathy, and in a clinical study assessing the prevalence of

cardiac autonomic neuropathy (CAN) in a sample of Chinese

diabetics, researchers found an overall prevalence of CAN in

combination with diabetes of up to 63% (16).
3 Mechanism

3.1 Overview of the mechanism of DPN

DPN is one of the most common complications of diabetes,

which will reduce the patient’s exercise ability. In addition, DPN

can also cause painful diseases such as neuropathic pain, diabetic

foot and its complications such as foot ulceration, and even increase

the risk of lower-limb amputation and death (17–19). DN is

characterized by a stocking-glove distribution and distal

symmetric polyneuropathy. This is caused by the loss of myelin

in myelinated, injury of unmyelinated nerves, axonal atrophy, and

other factors, which are manifested as affected nerve conduction

velocity and abnormal sensory function (Figure 1) (20–22). This

disease features result from the specific anatomy of motor-sensory

neurons and glial cells in the peripheral nervous system. Peripheral

nerves are composed of axons, cytoplasmic processes, and Schwann

cells (SCs) (a type of glial cell) (23). Glial cells are important for

nerve conduction velocity because they are characteristic of

insulating and provide the conditions for rapid, saltatory

conduction of action potentials over long distances (24, 25).

Myelinated nerve fibers have glial cells wrapped around the

periphery of axons, while small axons form non-myelinating

Remak bundles (26). The overall organization formed by the

myelin sheath and axon has radial polarity and is composed of

different inner membranes within it. It is rich in receptors and

adhesion molecules that maintain the peri-axonal space and

translocate growth factor signals from axons (23, 27, 28). Under

the influence of hyperglycemia and hyperlipidemia, and through

various signaling pathways, the regulatory functions of SCs, such as

cell autophagy and cell metabolism, are damaged and dysfunction

of mitochondria (Figure 1) (17, 29, 30). Without the protection and

support of glial cells, such as SCs, sensory neurons are more

vulnerable to injury than motor neurons, especially neurons in

the dorsal root ganglion (31, 32). The structure and function of
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sensory neurons are particularly vulnerable. Because sensory

neurons often form unmyelinated nerve fibers, they rarely form

myelinated nerve fibers (33). Oxidative stress, metabolic

abnormalities, microangiopathy, and other factors caused by

diabetes, through special signal transduction pathways, destroy

the normal structure and function of nerve cells and lead to

neuronal demyelination and neuronal damage, which are the

main causes of peripheral neuropathy (34, 35).

Although DPN is a common complication of T1DM and

T2DM, many studies have shown that its pathogenesis differs in

T1DM and T2DM. Differences in metabolic factors between T1DM

and T2DM result in different structural changes in peripheral

nerves (36). C-peptide significantly prevents and improves nerve

conduction abnormalities in T1DM rats, while no significant

alterations were found in type 2 diabetes mellitus (37). In an

analysis of transcriptomic data on mouse models of type 1 and

type 2 diabetes of the DPN genes, researchers found that genes

involved in insulin signaling, endoplasmic reticulum stress, and

more are differentially altered in peripheral nerves in T1DM and

T2DM. In T1DM mice, the pathogenesis of DPN is more involved

in lipid biosynthesis and cholesterol processes, while in T2DM, it is

more involved in MAPKinase NF-kB pathways (38). Another study

analyzed DPN-related genes and pathways in the sciatic nerve of

T1DM and T2DM mice and found that many of the specific

differentially expressed genes (DEGs) in T1DM mice are localized

in the nucleoplasm and are involved in the regulation of

transcriptional processes, whereas the specific DEGs in T2DM

mice are located at cellular junctions and are involved in ion

transport (39). Different therapeutic effects exist for the same

treatment modality for DPN due to the presence of different DPN

mechanisms. For example, glycemic control is more effective for
Frontiers in Endocrinology 03
T1DM, whereas for T2DM, multifactorial interventions are

required (31). In conclusion, although T1DM and T2DM are

always discussed together when studying the molecular

mechanisms of DPN. However, it should be clear that the study

of DPN pathogenesis in different DMs facilitates the discovery and

use of more effective treatments.

The figure reflects the specific factors and mechanisms that

cause axonal and myelin damage. During the process of axon and

myelin sheath damage, there is involvement of glycolysis in

mitochondria, leading to excessive production of ROS, leading to

functional and metabolic abnormalities in nerve cells.
3.2 Oxidative and metabolic pathways

The damage to nerve cells is often caused by metabolic

disorders, oxidative stress, and inflammatory reactions. The

mechanisms that cause these impacts include many pathways,

and their mechanisms and specific pathways will be presented in

the following text. Figure 2 shows the main pathways and their

upstream and downstream influencing factors. In addition, there

are many factors that affect the function of the peripheral nervous

system, such as central nervous system disorders that may have an

impact on the peripheral nervous system.

DPN results from oxidative stress, mitochondrial dysfunction,

and other metabolic pathways. Hyperglycemia, dyslipidemia,

insulin resistance, and microvascular disorder are the four main

factors that lead to DPN. Hyperglycemia and dyslipidemia are the

most common two factors that can trigger the PKC pathway, polyol

pathway, AGE pathway, hexosamine pathway, and PARP pathway.

Insulin pathways, microvascular disorders, and other pathways are
FIGURE 1

Specific manifestations of axonal myelin sheath injury.
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also activated to bring some harmful nervous effects, including

inflammation, metabolic disorders, oxidative stress, and

mitochondrial dysfunction.

3.2.1 Protein kinase C pathway
Glycolysis is highly involved in glucose metabolism and is a

fundamental process in pathways such as the PKC pathway and

AGE pathway. Glucose is transported into cells by Glut-1 and Glut-

3 to participate in glycolysis. During this process, glucose is

gradually phosphorylated and metabolized, resulting in the

production of Glucose-6-phosphate, fructose-6-phosphate,

glyceraldehyde-3-phosphate, and pyruvate (40). Due to diabetes,

the glucose in the blood is abnormally elevated, and the

intermediate glyceraldehyde-3-phosphate can be converted into

diacylglycerol (DAG), which can activate the neuronal PKC

pathway (33). In addition, Glucose-6-phosphate goes through

glycolysis to form pyruvate, which enters the mitochondrial Krebs

cycle to produce NADH and FADH2 and can then be oxidized to

produce ATP. It provides conditions for activating the PKC

pathway (Figure 3) (41, 42).

PKC is a serine or threonine kinase that binds to Ca2+-activated

calmodulin and affects the function of other proteins (43). PKC

activation causes the activation and phosphorylation of ATPase,

causing various metabolic damage and disorders, including altering

vascular endothelial growth factors, leading to vasoconstriction, and

affecting normal metabolism of the body (44, 45). For example,

under abnormal circumstances, b cells’ unique metabolic inventory

to regulate insulin production and secretion as normal is broken,

and the activation of the PKC pathway can affect the normal

metabolism of the body. It’s recently been reported that the PKC
Frontiers in Endocrinology 04
pathway affects the normal regulatory effect of guanosine on glial

cells, reduces the viability of glial cells and glutamate uptake, and

increases the production of reactive oxygen species, leading to

oxidative damage (46, 47).

However, the direction of the PKC pathway is not singular, and

its impact on neural cells is bidirectional. Recent studies have shown

that insulin promotes the growth of axons through PKC-related

pathways. In the insulin pathway, insulin serves as a

neurotransmitter that can nourish and sensitize sensory nerves

(48). Although the mechanism has not been fully explored, it is

generally achieved by insulin-activating Ras-related C3 botulinum

toxin substrate 1 (Rac1). Rac1 is a small GTP enzyme associated

with axonal growth (49). It can be observed that the PKC pathway

involves multiple molecular pathways, and how to selectively utilize

the PKC pathway is the problem we are facing. PKC inhibitors and

activators can be used for PKC-mediated disease treatment. This is

also one of the latest targets for the treatment of axonal injury, and

treatment methods related to pathogenic signaling pathways are

potential therapeutic targets in the future (50).

3.2.2 Polyol pathway
Early neurological dysfunction is reflected in the accumulation

of sorbitol in the axons and the dysfunction of Na/K-ATPase (51).

The specific mechanism is that excess glucose is converted into

sorbitol by aldose reductase (AR). The increase in sorbitol can

disrupt the cell osmotic balance. This results in osmotic stress and a

compensatory outflow of inositol and taurine. The loss of inositol

results in damage to the normal functional structure of nerve cells.

Excessive activation of the polyol pathway promotes the occurrence

of neuropathy (Figure 3) (33). Increased production of reactive
FIGURE 2

Important Pathways in the Mechanism of DPN.
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oxygen species leads to oxidative stress (52, 53). Sorbitol is then

converted to fructose by sorbitol dehydrogenase (54). Studies on

diabetes mice and diabetes men show that sorbitol, fructose, and

other polyol pathway intermediates promote oxidative damage in

animals and patients, leading to neuropathy (55).

Due to the characteristics of SCs, glucose preferentially enters

the SCs of the peripheral nerves. It is worth noting that aldose

reductase is mainly located in SCs, and high blood sugar will first

cause metabolic disorders in SCs, leading to axonal loss of support

and protection from SCs and damage (56).

What can be referred to is that recent studies have shown that in

the ventricular cells of T2DM rats, the increase of fructose increases

the glycolysis ability and cytoplasmic lipid content (57). The

mechanism by which excessive fructose causes damage in nerve

cells has not yet been explored. Although the polyol pathway is one

of the most studied molecular mechanisms, many gaps remain to

be explored.

3.2.3 Advanced glycation end pathway
When proteins and lipids are exposed to high blood sugar levels,

they form heterogeneous molecules with a high level of reactivity

known as glycation end products (58). For example,

glycohemoglobin, carboxymethyl arginine, imidazolone, formyl

threosyl pyrrole, arg pyrimidine, pentosidine, and crossline (59).

AGE pathways are various pathways that use AGEs as triggers.

AGEs bind to late glycation end-product receptors to activate

chemotactic factors and pro-inflammatory markers, for example,

NF-kB, TNF-a, and interleukin, triggering downstream pathways

that lead to inflammatory responses (Figure 3) (60, 61). Therefore,

the accumulation of AGEs leads to a series of inflammatory
Frontiers in Endocrinology 05
reactions and causes microvascular damage and glial cell

dysfunction. At the same time, it will also activate NADHPH

oxidase and increase ROS production. The generated ROS will

also promote the process of AGE production (62). The abnormally

high levels of ROS in cells over a long period will gradually

exacerbate irreversible oxidative stress, leading to cell death (63, 64).

During the process of generating AGEs, intermediate products,

namely Amadori compounds, are produced. In the process of

forming AGEs from Amadori compounds, 3-deoxyglucosone is

key to this pathway (59). The production of 3-deoxyglucosone is

closely related to the polyol pathway, and the interaction between

these pathways exacerbates oxidative stress.

The AGE pathway has complex mechanisms, which are caused

by the complex interactions of various intermediate products in the

pathway and the interactions between the AGE pathway and other

pathways. It leads to the occurrence of factors that damage nerve

cells, such as inflammation and oxidative stress. Currently, more

and more evidence suggests that the accumulation of AGEs is

independently related to DN, and the therapeutic effect of

electroacupuncture on DN also shows a decrease in AGEs and an

improvement in neuropathic pain (65, 66). Reducing the generation

and accumulation of AGEs is one of the directions for treating DN.

In the future, how to suppress the AGE pathway and reduce the

generation and accumulation of AGEs is the problem we need

to explore.

In addition to what has already been mentioned, fructosylation

plays a significant role in advancing the AGE pathway. Through

fructose kinase, fructose is transformed into fructose-1-phosphate,

which enters glycolysis without going through the major step of

glycolysis. Lactic acid, glucose, or fatty acids can be created from the
FIGURE 3

Patterns of PKC pathway, AGE pathway, insulin pathway, polyol pathway, and hexosamine pathway.
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trisaccharide phosphate that fructose-1-phosphate produces. This

causes aberrant blood lipid levels and intensifies AGE pathway

activation, which promotes neuropathy (67).

3.2.4 Hexosamine pathway
The hexosamine pathway is a molecular pathway induced by

hyperglycemia that damages Chevron cells and nerve cells through

oxidative stress and inflammation, ultimately causing DPN. In

normal conditions, a small part of fructose-6-phosphate from the

glycolytic route enters the hexosamine route and is converted to

glucosamine-6-phosphate by the action of glutamine fructose-6-

phosphate amidotransferase (68). Then, glucosamine-6-phosphate

was transformed to uridine diphosphate-n-acetylglucosamine

(UDP-GlcNAc). UDP-GlcNAc is an essential primer for O-

linked-beta-D-N-acetylglucosamine (O-GlcNAc) transferase,

attaching O-GlcNAC to serine and threonine residues of several

important transcription factors (e.g., specificity protein 1 (Sp1))

(69). However, in the presence of hyperglycemia, the flux of the

hexosamine pathway is increased, which activates the Sp1 pathway.

Sp1 can regulate the expression of some glucose-induced

“housekeeping” genes, such as fibrinogen activator inhibitor-1

(PAI-1) and transforming growth factor-b (TGF-b) (70, 71). In a

controlled experiment, the lack of immunodetection of tissue

fibrinogen activator was found to increase the number of

peripheral nerve microvascular in the diabetic peroneal outer

membrane and intra-neural vessels by four to six times. This

result indicates that overexpression of PAI-1 leads to

microvascular ischemia as well as thrombosis in diabetic

neuropathy (72). TGF-b can induce apoptosis and axonal damage

by inducing ROS production (Figure 3) (73). Further studies on the

expression of several transcription factors and their downstream

molecules in the hexosamine pathway will contribute to the

discovery of more therapeutic approaches for DPN in the future.

3.2.5 PARP pathway
Poly(ADP-ribose) polymerase (PARP) is a nuclear DNA repair

enzyme with multiple regulatory functions (74–76). It is a

prominent marker of DPN (77). PARP-1 is the major PARP

subtype and is abundant in the nucleus. PARP-1 plays an

important role in DNA repair and maintaining the integrity of

the genome (75, 78). It also regulates the expression of proteins such

as inflammatory mediators, apoptosis, and cell necrosis at the

transcriptional level (79, 80). An investigation in Russian patients

with T1DM showed a close relationship between PARP-1gene and

the pathogenesis of DPN (81). A completely normal intraepidermal

nerve fiber density is observed in a diabetic PARP-deficient mouse

model (82). In the Akita mouse model, reduced diabetes-related

axonal atrophy was observed in mice following the use of GPI-

15427, an inhibitor of PARP (83). In both models above, reduced

motor nerve conduction velocity and sensory nerve conduction

velocity deficits were observed, as well as unaltered hyperglycemia.

PARP has a role in the pathogenesis of DPN through two

mechanisms (22). The first mechanism is PARP activation, which

affects the rate of ATP production by consuming NAD+, leading to

peripheral nerve energy deficiency, as well as the accumulation of
Frontiers in Endocrinology 06
toxic glutamate causing slowed nerve conduction and degeneration

of myelinated nerve fibers (84). The second mechanism consists

mainly of poly(ADP-ribosyl)ation affecting transcriptional

regulation and gene expression, which is associated with multiple

hyperglycemia-related pathways as well as oxidative stress and

nitrosative stress (Figure 3) (80, 85).

Hyperglycemia inhibits glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) activity and slows down glycolysis as a

result of poly(ADP-ribosyl)ation of GAPDH by PARP. This

ultimately causes the activation of the PKC pathway, the

increased flux of the hexosaminidase pathway, and the

production of the AGE pathway (86). The mechanisms by which

the three aforementioned pathways play a role in DPN are

mentioned in the earlier part of the article. The oxidative stress

and nitrosative stress-PARP pathways also play a key role in the

development of DPN. It is now suggested that PARP activation is

triggered not only by free radical and oxidant production but also

leads to free radical and oxidant production. This suggests that

oxidative/nitrosative stress and PARP activation interact in diabetes

(87). On the one hand, hyperglycemia-induced oxidative stress-

mediated induction of DNA single-strand breaks is thought to be a

signature of PARP activation. Some experiments observed diabetes-

induced poly(ADP-ribosyl)ation in SCs by DNA single-strand

breaks, resulting in excessive activation of PARP (88–90). On the

other hand, oxidative and nitrosative stress induces DNA damage

by activating PARP (91). In streptozotocin-induced diabetic rats,

the use of the PARP inhibitor 1,5-isoquinolinediol was

accompanied by a decrease in poly(ADP-ribose), as well as a

decrease in nitrotyrosine (NT) content in the sciatic nerve and

neuro-vasculature and in superoxide content in the neuro-

vasculature. This result suggests that PARP activation may lead to

DPN through oxidative stress (92). An experiment found that

combined treatment with two PARP inhibitors, FeTMPyP and 4-

ANI, not only significantly attenuated oxidative nitrosative stress

markers but also reduced excessive activation of PARP (93).

Inhibition of PARP reduced the accumulation of NT, TNF-a, and
4-hydroxynonenal adduct accumulation in endothelial and SCs,

spinal cord, and sensory neurons in the dorsal root ganglion (DRG)

of diabetic peripheral nerves, attenuated diabetes-related oxidative

and nitrosative stress, and alleviated peripheral nerve disorders

(85, 94).
3.2.6 Insulin pathway
Conventional thinking holds that insulin does not play a role in

the direct regulation of central as well as peripheral nervous system

function due to the insensitivity of neurons to insulin. However,

there is growing evidence that insulin not only lowers blood glucose

and thus is indirectly involved in the pathogenesis of DPN but also

plays a direct role in the development of DPN as an important

neurotrophic factor that supports peripheral nerves (95, 96). It has

been shown that DRG expresses insulin receptors on the basal

lamina, plasma membrane, and cytoplasmic processes of the SCs

(97). While the dysfunction of the SCs plays an important role in

the pathogenesis of DPN, insulin affects DPN by influencing

SCs’ physiology.
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A distinctive feature of DPN is demyelination as well as axonal

damage, and insulin promotes axonal growth and improves

demyelination as well as nerve conduction velocity (98). In

spontaneously diabetic Wistar Bonn Kobori (WBN/Kob) rats,

nerve conduction velocity was faster in the WBN plus insulin

group compared to the WBN group, and axonal deformation and

myelin expansion were improved in the sciatic and tibial nerves

(99). A six-week treatment regimen of honey plus insulin improved

sensory nerve conduction velocity in WBN/Kob rats (100). Insulin

administration improves peripheral neuropathy in diabetic WBN/

Kob rats. A study found that insulin reversed reduced lipoprotein

lipase (LPL) expression in hyperglycemic SCs, improved

demyelination caused by reduced LPL, and led to improved nerve

morphology in the sciatic nerve (101). In the sciatic nerve, increased

levels of myelin structural gene (P0) expression were accompanied

by a significant increase in insulin receptor mRNA levels in SCs,

while insulin also improved the levels of P0-related proteins as well

as insulin receptor mRNA in SCs under hyperglycemic conditions

(102). In a separate experiment, insulin receptor and insulin-like

growth factor receptor 1 sphingolipids were found to be thinner in

Chevron cell-specific knockout mice (103). These studies illustrated

that insulin and its receptors, as well as insulin resistance, can affect

myelin formation. The presence of insulin receptors on intrathecal

neurons and the isolation of intrathecal insulin by intrathecal

infusion of anti-insulin antibodies in non-diabetic rats produces

slowed motor nerve conduction and axonal fiber atrophy (104).

This study suggests that insulin itself also directly affects DPN,

which may be related to the loss of insulin signaling. Insulin

receptor signaling can promote axon growth through downstream

signaling pathways such as the phosphatidylinositol 3-kinase

(PI3K)-protein kinase B (Akt) signaling pathway (105–107).

Activation of the Akt signaling pathway in SCs promotes their

differentiation and also increases the formation of myelin sheaths

(Figure 3) (108). In T1DM, DPN can be improved by the use of

insulin (104, 109). In T2DM, insulin resistance arises due to

decreased expression levels of insulin resistance, the altered

phosphorylation status of insulin receptor substrate proteins, and

impaired activation of axonal growth-related pathways, so

providing insulin also fails to alter DPN (110–112). From the

above, it is clear that insulin, insulin receptors, and insulin

resistance, as participants in the PI3K-Akt signaling pathway, act

in the DPN through the mechanism of impaired insulin signaling.

This mechanism of insulin signaling may be related to maintaining

the synthesis of key neuromodulatory proteins and peptides. More

experiments are still needed to expand on the conditions related to

signal production and to further investigate the role of related

molecules in the insulin signaling pathway to discover new

therapeutic pathways and approaches to target insulin signaling

in DPN.

The figure shows the specific mechanisms of the PKC pathway,

AGE pathway, insulin pathway, polyol pathway, and hexosamine

pathway and reflects the relationships between each pathway. The

key to the AGE pathway is the AGEs receptor. It can lead to

chemokines and release pro-inflammatory markers. In high glucose

environments, proteins and lipids are converted into glycogen end

products that can bind to AGEs receptors, thereby mediating
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downstream pathways such as the PARP pathway to participate

in oxidative stress or toxic glutamate accumulation and damage.

The hexosamine and PKC pathways also cause nerve cell damage

similarly. Glycolysis plays a crucial role in the mechanism of the

three of them, as the intermediate product of glycolysis in the

hexosamine pathway, fructose-6-phosphate, is ultimately converted

into uridine diphosphate n-acetylglucosamine (UDP GlcNAc).

UDP GlcNAk connects O-GlcNAc to serine and threonine

residues of several transcription factors. Sp1 is one transcription

factor that regulates PAI-1 and TGF-b Expression. PAI-1 can cause

microvascular changes, and TGF-b can cause cell apoptosis and

axonal damage through oxidative stress. Regarding the PKC

pathway, the intermediate product 3-glyceraldehyde phosphate

and the final product pyruvate are key factors in activating the

PKC pathway. Pyruvate is used to prepare raw materials through

the Krebs cycle as a PKC pathway. Glyceraldehyde-3-phosphate is

converted into DAG and is involved in activating this pathway. The

polyol pathway, on the other hand, results in significant conversion

and increase of sorbitol due to high sugar environments. At the

same time, it can also lead to an increase in fructose and an outflow

of inositol. In neuropathy, excessive fructose and inositol efflux can

cause certain damage to nerve cells. The figure also reflects the

promoting function of insulin on axon formation.
3.3 Microvascular pathway

Currently, there is still controversy about how microvascular

changes play a role in DPN. Inadequate blood and oxygen supply

due to microvascular changes play a role in the mechanism of DPN.

In the sciatic nerve, endothelial cell dysfunction due to reduced

neural blood flow and intra-neural oxygen tension has been

observed (113, 114). In addition, abnormal changes in the

vasculature were observed in the peroneal nerve of DPN patients,

and these abnormal changes included a decrease in vascular tight

junction-associated proteins, thickening of the microvascular

basement membrane within the nerve, proliferation, and swelling

of the vascular endothelium, and degeneration of the pericytes. In

turn, these abnormal changes will lead to vascular narrowing and

affect blood flow, which will result in ischemia and hypoxia in

peripheral nerve tissue (115–117). Hypoxia in the neural

microenvironment will exacerbate oxidative stress and

inflammation, leading to damage to SCs and neurons and

ultimately causing nerve damage (118). However, changes in

overall blood flow in the nervous system are not observed in all

models, and nerve injury is not always due to altered blood flow. In

a recent study, the first association between in vivo parameters of

microvascular nerve perfusion and nerve conduction parameters

and underlying clinical neuropathy scores was found in T2DM

patients by using dynamic contrast-enhanced magnetic resonance

neurography to study peripheral nerve microvascular permeability.

Clinical and electrophysiological parameters of the tibial and

peroneal nerves in T2DM patients were correlated with

microvascular permeability and extravascular extracellular volume

fraction but not with plasma volume fraction. Based on this

association, it can be concluded that it is reduced microvascular
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permeability, not microvascular blood volume, that leads to nerve

ischemia (119). As a result of the above controversy, some

researchers have previously proposed the idea that changes in

microvasculature do not lead to changes in overall blood flow but

rather to disturbances in capillary blood flow patterns that affect

blood and oxygen supply to the nerves. A concept related to this

idea is capillary temporal heterogeneity (CTH), where a mild

elevation of CTH leads to poor oxygen extraction and improves

this state by shifting to a congested state. When CTH is further

elevated, it leads to endothelial dysfunction and low tissue oxygen

tension, resulting in impaired neurological function (115). Since it is

still difficult to link microvascular changes to the initial mechanism

of DPN production, it has been suggested that microvascular

changes are not an initiating factor but rather contribute to the

later development of DPN (120). DPN, when the body is at rest or

during exercise, can lead to microvascular disorders through altered

endothelial barriers and neurogenic mechanisms (121, 122). The

question of whether microvascular changes appear before the

development of DPN or act later in the development of DPN is

still under investigation. In conclusion, although controversy about

the role of microvascular still exists, microvascular changes should

play a role in the development of DPN, which requires more

experiments to determine the role of microvascular.
3.4 Other pathways

These above-mentioned pathways are more studied. Recently,

some new pathways have been discovered, which are likely to be

new targets for the treatment of DPN in the future. These new

pathways include the Wnt pathway, MAPK pathway, mTOR

pathway, and thyrotropin (TSH) pathway.
3.4.1 Wnt/b-catenin pathway
Wnt gene is a gene family consisting of at least 19 genes. Related

to theWnt pathway, b-catenin is involved in the transcription of the
Wnt pathway and promotes cell adhesion. The Wnt/b-catenin
pathway is activated through the binding of Wnt ligands to

receptors. When the Wnt/b-catenin pathway is activated, the Wnt

protein is transferred to the Golgi apparatus and binds to the

transmembrane protein Wls secreted by Wnt. Subsequently, the

Wnt ligand was transferred to the cell membrane. This Wnt ligand

can bind to the receptors of the frizzled protein family to activate

various downstream signaling pathways (123). The Wnt protein

located outside the cell can activate three intracellular transduction

cascades: the canonical Wnt/b-catenin pathway, the non-canonical

planar cell polarity pathway, and the Wnt/Ca2+ pathway (124).

The Wnt/b-catenin signaling pathway plays an important

regulatory role in cell proliferation, differentiation, development,

and metabolism (125). Research has shown that the Wnt/b-catenin
signaling pathway is also related to demyelination. When this

pathway is activated, the amount of intracellular free b-catenin
increases and enters the nucleus. This is related to the downstream

Akt signaling pathway. It induces the immortalization of SCs and
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participates in high glucose-promoting apoptosis of SCs (30, 126,

127). Resham et al. showed that the sciatic nerve of diabetes

neuropathy rats showed Wnt pathway protein, namely b-catenin,
c-myc, and matrix metallopeptidase 2 increased (128). These all

indicate that Wnt/b-catenin pathway plays a significant role in

DPN (Figure 3). Although many pieces of research have shown that

the pathways can destroy nerve cells, a study on human placenta-

derived mesenchymal stem cells (PMSCs) ameliorating diabetic

neuropathy via Wnt signaling pathway shows that Wnt pathway

can promote the improvement of PMSCs on diabetes peripheral

neuropathy and promote nerve cell regeneration (129).

Moreover, it has also been proven to regulate the function of

pancreatic organs and play a role in pancreatic beta cells and

glucose-stimulated insulin secretion (130). The Wnt pathway may

also play a role in more aspects, but the role and mechanism of this

pathway still need to be studied.

3.4.2 MAPK pathway
A crucial signaling system that controls several cellular

activities, including proliferation, differentiation, apoptosis, and

stress response, is the mitogen-activated protein kinase (MAPK)

cascade. It can transduce extracellular stimuli into cells. Research

has shown that it is related to mitochondrial failure caused by

metabolic disorders (131, 132).

MAPK is a serine/threonine protein kinase family that

includes three subtypes: p38 MAPK, extracellular signal-

regulated protein kinase (ERK1/2), and c-Jun N-terminal

kinase/stress-activated protein kinase (SAPK/JNK). The

oxidative stress and extracellular stimuli, such as Ca2+ generated

by upstream pathways, can stimulate the phosphorylation of

MAPKs and activate the MAPK pathway. In addition to acting

as a downstream pathway, hyperglycemia may directly cause

phosphorylation of MAPKs (Figure 3) (132, 133). A study on

peripheral neuropathy caused by paclitaxel showed that MAPK

signaling pathways such as JNK, ERK1/2, and nuclear factors- kB
played a major role in it (134).

Among them, p38 MAPK is involved in glucose and lipid

metabolism. The p38 subtype phosphorylates to activate enzymes

involved in glucose and lipid metabolism. Some studies have shown

that p38 activation is found in the dorsal root ganglia of diabetes

rats (132, 135). These all demonstrate the important role of the

MAPK pathway in neuropathy.

However, there are also studies indicating that the MAPK

signaling pathway is also related to neuroprotection and nerve

regeneration (136). The diversity of MAPK pathway functions still

needs to be explored, and how to make good use of this mechanism

is the direction that we should strive for.

3.4.3 mTOR pathway
As an ATP receptor, the mammalian target of rapamycin

(mTOR) regulates cell growth and proliferation depending on

nutrient and energy status. mTOR is one of the downstream

targets of AMPK and is also able to interact with AMPK (137). In

the pathogenesis of DPN, mTOR is mainly involved through three
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pathways: autophagy and apoptosis of SCs, neurotrophic factors,

and myelin formation (Figure 3). A certain degree of autophagy in

SCs can play a neuroprotective role (138), but sustained autophagy

is closely related to cell death, and autophagy in SC is closely related

to the development of DPN with impact (139).

A study found that Lycium barbarum polysaccharide promotes

autophagy in SCs by inhibiting the activation of the mTOR/p70S6K

pathway. The activation of mTOR can upregulate autophagy to

some extent, thus playing a protective role in DPN (140). Another

study on astragaloside IV found that enhancing autophagy by

inhibiting activation of the PI155K/Akt/mTOR signaling pathway

can alleviate apoptosis-induced myelin damage in DPN by SCs

(141). Although inhibition of mTOR can attenuate neurological

damage in DPN by promoting autophagy, not all mTOR inhibitions

are protective. RSC96 cells cultured in a high glucose medium can

be used to mimic SCs in DPNmice. A study with RSC96 cells found

that in the HG situation, the Akt/mTOR signaling pathway was

inhibited, and autophagy and apoptosis were increased in RSC96

cells. However, muscarinic ketones ameliorated this situation,

thereby attenuating DPN (142). mTOR kinase is present in two

different multiprotein complexes, mTORC1 and mTORC2 (143),

and phosphorylated mTOR was reduced in the sciatic nerve of

diabetic mice, with increased apoptosis in SCs. Also, in RSC96 cells,

inhibition of mTORC1 promoted apoptosis by silencing PARTOR

or RICTOP (144). These studies suggest that inhibition of the

mTOR pathway causes sustained autophagy and apoptosis in SCs,

which in turn affects DPN development and progression.

Neurotrophic factors secreted by SCs play an important role in

maintaining the normal structure and function of peripheral nerves

(145, 146). mTOR, as an upstream signaling molecule of DNA

methyltransferase 1 (DNMT1), influences the secretion of

neurotrophic factors in SCs by regulating DNMT1. Zhang et al.

found that in RSC96 cells, hyperglycemia downregulated brain-

derived neurotrophic factor (BDNF) by inhibiting the Akt/mTOR

pathway led to enhanced expression of DNMT1 and thus

downregulated BDNF in RSC96 cells. In contrast, BDNF

deficiency in SCs plays an important role in the development of

DPN (147). In addition, mTOR may also be involved in the

mechanism of DPN development by affecting myelin and axons

through the regulation of lipid metabolism in SCs. mTORC1

activation has different effects in different periods of SCs. Some

researchers found that mTORC1 activity is downregulated in

developing SC during normal neuro myelin formation, but

persistently elevated mTORC1 in differentiated SC elevation

manifests as excessive myelination in late adulthood (143),

leading to abnormal axon production (148). It has been found

that insulin resistance affects myelin enhancement or

hypomyelination in SCs by affecting the mTOR pathway, which

leads to altered axons in the peripheral nervous system (103).

mTOR has attracted the attention of researchers as a relatively

new mechanism in DPN. However, it is still full of unknowns about

how mTOR plays a role in lipid and energy metabolism, insulin

resistance, and cellular autophagy, and many upstream influences

on mTOR are still unexplored areas that need further studies

to come.
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3.4.4 TSH pathway
Clinical and subclinical hypothyroidism (SCH) in patients with

diabetes mellitus is quite common in patients with DPN and is

strongly associated with the severity of DPN (149). In several

studies investigating the relationship between TSH and DPN in

patients with T2DM, TSH levels were found to be positively

correlated with DPN (150–152). Also, in an investigation on

hypothyroid women, TSH levels were elevated in patients newly

diagnosed with diabetic neuropathy (153). In a study as early as

1999, TSH was found to have acute effects on DPN, and nerve

conduction velocity (NCV) was improved in streptozotocin-

diabetic rats treated with TSH (154). In a recent study, Fan et al.

found abnormalities in glycolipid metabolism in a SCH-T2DM

mouse model while also observing that TSH behaved consistently

with apoptosis-associated proteins in SCs. In subsequent in vitro

experiments, oxidative stress, as well as mitochondrial damage, was

found to be increased by TSH in HG and PA-conditioned RSC96

cells. Palmitoylation of thyrotropin receptor (TSH-R) increases

apoptosis in RSC96 cells, and this is reversed after TSHR

knockdown or inhibition of TSHR palmitoylation (155). There

are few studies on the role of TSH in the pathogenesis of DPN,

and the relevant mechanistic studies only refer to aspects

concerning SCs and do not involve studies concerning neurons.

The downstream pathways of TSH are still unknown, and it is not

clear whether they intersect with other mechanistic pathways.

Further studies on the downstream signaling pathways of TSH

should be conducted in the future to discover better targets for the

treatment of DPN.

This figure reflects other avenues that need to be studied in this

article, including the Wnt/b-catenin pathway, MAPK pathway,

TSH pathway, and mTOR pathway. Wnt protein is modified in

the endoplasmic reticulum and further transported out of cells

through vesicles. This is the key to the Wnt pathway. b-Catenin
plays a role in triggering downstream pathways. The TSH pathway

may also be related to MAPK, and abnormalities in the TSH

pathway can lead to oxidative stress and excessive production of

reactive oxygen species, leading to damage to the MAPK pathway.

TSH is also related to calcium ion concentration. The mTOR

pathway plays a more complex role. Akt is activated by

extracellular signals through PI155K, while Akt is inhibited by

hyperglycemic Akt, leading to mTOR activation. Silence of

PARTOR and RICTOR leads to inhibition of mTORC1/

mTORC2. AMPK inhibits mTORC1 by silencing PARTOR. The

activation of mTOR affects the myelin sheath and axons, inhibits

cell autophagy, and also affects BDNF by inhibiting the expression

of DNMT1. These three paths of mTOR ultimately affect DPN.
4 Diagnosis and treatment

4.1 Screening and diagnosis

The screening of DPN includes detailed medical history

collection and five basic sensory tests, including ankle reflex,

vibration sensation, pressure sensation, acupuncture pain
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sensation, and temperature sensation (10-g Semmes-Weinstein

monofilament for light touch, Tiptherm rod for temperature,

calibrated Rydel Seiffer tuning fork for vibration, pin-prick for

pain) (156).

In general, the diagnosis of DSPN is based on clinical signs and

symptoms, which can be standardized according to various

quantitative criteria (like Michigan Neuropathy Screening

Instrument) (157), the Neuropathy Symptom Score (158) or Total

Symptom Score (159) for neuropathic symptoms and the

Neuropathy Disability Score for neuropathic signs (158). Only

when the symptoms are not typical further nerve conduction

study (NCS), quantitative sensory testing, and intraepidermal

nerve fiber density will be performed. In addition, quantitative

measurement of tibial nerve T2 values using magnetic resonance

imaging has also been shown to be a non-invasive and reliable

method of diagnosing and monitoring the progression of

DPN (160).
4.2 Strict blood sugar control

As a direct cause of DPN, controlling blood sugar levels is of

great significance in the subsequent treatment process of DPN. It

has been demonstrated that the incidence of peripheral neuropathy

increases with worsening blood glucose status and is approximately

five times more common in patients with confirmed diabetes than

in those with normal blood glucose (12). Although aggressive

glycemic control can significantly reduce the risk and rate of

progression of DPN in T1DM, this approach has limited benefit

in T2DM, mainly in terms of improvements in NCS outcomes and

vibration perception thresholds (161, 162). Therefore, in addition to

blood glucose, in recent years, researchers have expanded their

studies and started to explore the association between metabolic

syndrome (MetS) and DPN. It has been shown that MetS and

several of its components increase the risk of neuropathy in patients

with established T1DM and T2DM (161). For example, obesity is

considered an important metabolic driver of DPN, and statistical

studies based on populations from different regions of the world

have confirmed that obesity is a potential cause of peripheral

neuropathy in non-diabetic obese patients (12, 163–165). This

requires the clinician to provide appropriate exercise and diet

control while maintaining stable control of the patient’s blood

glucose to effectively intervene with the adverse effects of

metabolic factors on DPN.
4.3 Medication

A variety of drugs are currently used in clinical practice for the

treatment of DPN and can be classified according to their action as

symptom-ameliorating drugs and therapeutic drugs that target

pathogenesis. There are no drugs available to reverse the

progression of DPN. For chronic pain, which is often associated

with DPN, current clinical options include anticonvulsants

(pregabalin, gabapentin), tricyclic antidepressants (amitriptyline),

and serotonin-noradrenaline reuptake inhibitors (duloxetine). The
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first-line drugs most often recommended for the treatment of

painful DSPN are a2d ligands (gabapentin and pregabalin).

Tricyclic antidepressants have been restricted because of their

potential cholinergic adverse effects, especially in older patients.

For opioids, although studies have also demonstrated their efficacy

in neuropathic pain associated with DPN (17, 166), they should not

be used routinely due to limited efficacy, long-term safety concerns,

and potential for abuse. Topical analgesic therapy can be a new

option for pain that cannot be effectively managed with the above-

mentioned medications. An alternative treatment is the capsaicin

8% patch, which contains 179 mg or 8% capsaicin weight for weight.

It has been shown to be well tolerated and provides effective pain

relief for a variety of types of peripheral neuropathic pain (Figure 4)

(167). Other than this, the 5% lidocaine patch used to treat

postherpetic neuralgia also appears to be available for the

treatment of painful DSPN. Although this usage has not been

authorized, Results from a large open-label controlled study

suggest that the lidocaine plaster could be at least as effective as

systemic pregabalin in the treatment of painful diabetic

polyneuropathy (168) Figure 5.

Other drugs used to improve symptoms include drugs to

improve microcirculation (prostaglandins and prostaglandin

analogues, hexoketocin, pancreatic kininogenase, Bactrim),

neurotrophic drugs (methylcobalamin), drugs to improve cellular

energy metabolism, drugs to combat oxidative stress (alpha-lipoic

acid), inhibitors of aldose reductase activity (epalrestat),

angiotensin-converting enzyme inhibitors. Many studies have

reported that these drugs, alone or in combination with other

drugs, can promote peripheral nerve regeneration and improve

clinical symptoms in patients with DPN (169), but the magnitude of

their benefits remains controversial. Although a wide range of drugs

are available, there is still a lack of specific drugs and treatment

options for DPN due to its complex pathogenesis, diverse clinical

manifestations, and immature staging. This has led to many current

drug regimens being relatively conservative, limiting doses to avoid

serious side effects and ultimately compromising treatment

outcomes. As a result, several studies are currently exploring

combination drug regimens for DPN intending to control the

symptoms and progression of DPN while minimizing serious

adverse effects and improving patient compliance.

Another study compared the comparative safety and tolerability

of duloxetine vs. pregabalin vs. duloxetine plus gabapentin in

patients with diabetic peripheral neuropathic pain, suggesting that

the duloxetine plus gabapentin regimen is generally safe and well-

tolerated (170).

Lipoic acid (LA) is a member of the vitamin B family, which

plays a critical role in eliminating free radicals that can accelerate

aging and cause diseases. A meta-analysis has shown that a-lipoic
acid (ALA) supplementation significantly reduced insulin and

homeostatic model assessment of insulin resistance (171). In

addition to single-agent use, ALA has shown significant benefits

and safety in combination with other drugs. A meta-analysis from

China evaluates the efficacy of ALA plus epalrestat combination

therapy in the treatment of DPN. The results showed that the

combination of ALA plus epalrestat clearly improved clinical

efficacy and accelerated nerve conduction compared to ALA or
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epalrestat monotherapy (172). Another Meta-analysis shows

treatment with ALA plus methylcobalamin (MC) once a day for

2–4 weeks resulted in better improvement in neuropathic

symptoms and NCVs compared with the administration of MC

alone. Moreover, compared with MC alone, LA–MC combination

therapy was not associated with more severe adverse events in

patients with DPN (173).

In addition to ALA, clinical trials have shown that the

combination of gabapentin (GBP) and vitamin B1-B12 creates a

synergistic effect due to their anti-allodynic and anti-hyperalgesic
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effect. Pain intensity reduction is achieved with 50% of the

minimum required GBP dose alone (800 to 1600 mg/d) in the

GBP/B1/B12 group. Furthermore, less vertigo and dizziness

occurrence were also observed in the GBP/B1/B12 group (174).

Prostaglandin E1 is primarily used clinically to relax blood

vessels, reduce blood viscosity, and inhibit platelet aggregation. As a

drug that improves microcirculation, its clinical use in the

treatment of DPN has been confirmed in several studies. The

effectiveness and safety of its use in combination with other drugs

have been analyzed in several studies. A meta-analysis of 31
FIGURE 5

Treatment options for chronic pain in DPN. SNRIs, serotonin and norepinephrine reuptake inhibitors; TCAs, tricyclic antidepressants.
FIGURE 4

Pattern diagram of other pathways.
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randomized controlled trials (RCTs) with 2,676 participants

evaluated the efficacy and safety of prostaglandin E1 (PGE1) in

combination with LA for the treatment of DPN compared with

PGE1 or LA monotherapy. The results show that the clinical

efficacy of PGE1 plus LA combination therapy was significantly

better than monotherapy (p < 0.00001, RR = 1.32, 95% CI=1.26 to

1.38) (175). Another Meta-analysis of 16 RCTs with 1136

participants showed that the clinical efficacy of methylcobalamin

plus PGE1 combination therapy was significantly better than PGE1

monotherapy (fifteen trials; RR 1.25, 95% CI 1.18-1.32, P<0.012 =

27%) (176).

The results of such studies on combination therapy ultimately

suggest that, as DPN is a complex diabetic complication caused by

chronic hyperglycemia and associated with multiple factors such

as metabolic disorders, microvascular disease, neurotrophic

factor deficiencies, and oxidative stress, its treatment must be

based on a combination of pathogenic mechanisms in order to

achieve a satisfactory outcome. For the present, despite the wide

range of drugs available, the evidence on their long-term

effectiveness and the effectiveness of combination therapy

remains incomplete, and feedback on these drugs is inconsistent

among patients. Well-designed multicenter RCTs are required to

confirm these findings.
4.4 Non-pharmacological treatments

As the efficacy of existing pharmacological treatments for DSPN

is equivocal, non-pharmacological treatments are also widely used

clinically as an adjunct to pharmacological treatments, albeit with a

lower level of evidence (177). These treatments include

psychological support, acupuncture, physiotherapy, and

transcutaneous electrical nerve or muscle stimulation. Another

promising non-pharmacological treatment for DPN is spinal cord

stimulation (SCS), which has been used for over 40 years to treat

localized chronic refractory neuropathic pain in the limbs and

trunk, and with continuing advances in technology, its efficacy

and safety have been further demonstrated. A study has shown that

patients with painful diabetic neuropathy refractory to the best

available treatments can be safely and effectively treated with high-

frequency (10kHz) SCS, and follow-up of this study population over

24 months has demonstrated the potential durability of this

treatment beyond 6 months (178).
5 Discussion

This review describes and summarizes the problems related to

peripheral neuropathy caused by diabetes. What we are most

concerned about is the mechanism of the disease, as this is the

core issue of treating and researching the disease. How

hyperglycemia, dyslipidemia, and insulin resistance lead to

inflammation, oxidative stress, and other changes leading to nerve

cell damage has not been fully explored. The specific molecular

mechanism of the interaction between them is a goal that we should
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further study. The relationship between different pathways, such as

antagonism or synergy, and the actual molecular mechanisms that

cause damage to nerve cells still need to be discussed. For example,

the interaction between the polyol pathway and PKC pathway

through intermediate products in the glycolysis process. The PKC

pathway, polyol pathway, advanced glycation end products

pathway, hemoglobin pathway, PARP pathway, etc., have been

extensively studied, but there are still unknown or potential ways

of action that have not been noticed. For example, the PKC pathway

and polyol pathway often participate in other pathways to synergize

and exacerbate oxidative stress. Or there are more molecular

mechanisms of neuronal damage and death caused by diabetes-

related factors such as hyperglycemia, dyslipidemia, insulin

resistance, and so on, waiting to be explored. The interaction

between pathways should become the direction of future research.

In addition to the aforementioned pathways, we also discussed

some relatively new pathogenic pathways, Wnt/b-catenin pathway,

MAPK pathway, mTOR pathway, and TSH pathway, either as

downstream pathways, lead to oxidative stress and metabolic

disorders to indirectly lead to nerve cell damage and death, or

directly affect neural cells to cause damage.

Due to the lack of relevant research and investigation, the

mechanism of diabetes symptoms, such as neuropathy, blood

glucose, and dyslipidemia, has not been determined. We have not

yet gained a deep understanding of this field. These pathways have

great potential in terms of treatment and medication. According to

the current research, it can be determined that the mechanism of

peripheral neuropathy caused by T1DM and T2DM is not the same,

but the specific mechanism difference is not yet clear. Many

experiments show that the therapeutic effect of certain substances

varies with the type of diabetes. From the perspective of disease

treatment, this blind spot may be able to clarify the effect of drugs to

better treat DPN.

It should also be mentioned that many studies have shown that

the above mechanism of DPN is not unique. The same pathway can

mediate both damage to nerve cells and the protective and

regenerative effects of nerve cells. That is to say, many molecular

mechanisms have hermaphroditism. It is a challenge to make good

use of these molecular mechanisms to selectively protect and

regenerate them and avoid causing damage to nerve cells. From

the perspective of treatment and medication, this is also an

important target for drug efficacy and can become an important

part of the research.
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