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of adipocyte thermogenesis
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Obesity occurs when overall energy intake surpasses energy expenditure. White

adipose tissue is an energy storage site, whereas brown and beige adipose tissues

catabolize stored energy to generate heat, which protects against obesity and

obesity-associated metabolic disorders. Metabolites are substrates in metabolic

reactions that act as signaling molecules, mediating communication between

metabolic sites (i.e., adipose tissue, skeletal muscle, and gut microbiota).

Although the effects of metabolites from peripheral organs on adipose tissue

have been extensively studied, their role in regulating adipocyte thermogenesis

requires further investigation. Skeletal muscles and intestinal microorganisms are

important metabolic sites in the body, and their metabolites play an important

role in obesity. In this review, we consolidated the latest research on skeletal

muscles and gut microbiota-derived metabolites that potentially promote

adipocyte thermogenesis. Skeletal muscles can release lactate, kynurenic acid,

inosine, and b-aminoisobutyric acid, whereas the gut secretes bile acids,

butyrate, succinate, cinnabarinic acid, urolithin A, and asparagine. These

metabolites function as signaling molecules by interacting with membrane

receptors or controlling intracellular enzyme activity. The mechanisms

underlying the reciprocal exchange of metabolites between the adipose tissue

and other metabolic organs will be a focal point in future studies on obesity.

Furthermore, understanding howmetabolites regulate adipocyte thermogenesis

will provide a basis for establishing new therapeutic targets for obesity.
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1 Introduction

According to the World Obesity Atlas 2023 published by the

World Obesity Federation, by 2035, more than half of the global

population, exceeding 4 billion people, will be overweight or obese

(1). Factors that have disrupted the balance between energy intake

and expenditure over the last few decades include widespread

availability and consumption of high-calorie palatable foods, the

shift from active to sedentary lifestyles, and the prevalence of sleep

deprivation (2, 3). These factors and medical technology

innovations may have expedited the obesity epidemic. Obesity

increases the risk of many metabolic dysfunctions and

comorbidities, such as type 2 diabetes mellitus, cardiovascular

disease, and cancer (4–6).

Mammals have three types of adipose tissues: white adipose

tissue (WAT), brown adipose tissue (BAT), and beige adipose

tissue. WAT stores energy (7), whereas BAT acts as a heat

generator that maintains the core body temperature through the

action of the mitochondrial protein, uncoupling protein 1 (UCP1)

(8). Beige adipose tissues are a newly discovered class of fats that

exhibit the qualities of white fats at rest and have browning

potential upon activation by cold exposure or b3-adrenergic
receptor agonists, promoting thermogenesis and energy

expenditure (EE), improving the glucolipid metabolism, and

showing great plasticity (9). In recent years, subcutaneous white

adipocytes are converted into milk-producing glands formed by

lipid-rich elements, referred to as pink adipocytes during pregnancy

(10). Brown and beige adipocytes are thermogenic adipocytes that

contain many dense mitochondria to dissipate energy in the form of

heat (11). Activating BAT and inducing the browning of WAT can

regulate systemic energy homeostasis, glucose and lipid

metabolism, and insulin sensitivity (12). Hence, the modulation

of the quantity and function of brown/beige adipocytes is a strategy

to control human energy metabolism, providing a potential basis

for the development of methods to treat obesity and other metabolic

diseases (13).

Obesity is a complex chronic disease and its management

requires a comprehensive approach. Four primary treatments for

obesity include lifestyle changes (i.e., diet and exercise), cognitive-

behavioral therapy, pharmacotherapy, and bariatric surgery (14).

While medication and bariatric surgery are recommended for

severe obesity, diet, exercise, and cognitive behavioral therapy are

the primary strategies for the long-term management of obesity (15,

16). Kheniser et al. opined that a two-year lifestyle intervention

results in a 5% reduction in weight; however, diet and exercise

interventions also significantly improve obesity-related

comorbidities and promote the remodeling of adipose tissue

despite weight regain (16). Some organs secrete small molecules in

response to modified dietary strategies and exercise, which are the

factors contributing to the browning of WAT. These factors are

considered potential therapeutic approaches for the treatment of

obesity and related metabolic dysfunctions (17). One possible reason

for the effectiveness of dietary strategies may be the alteration of

functional metabolites in the gut microbiome, leading to the

remission of obesity. Additionally, one factor that could influence
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the metabolic benefits of exercise is the secretion of myokines skeletal

muscle (18, 19). Skeletal muscle and the gut microbiota are important

contributors to endocrine function in the body and are involved in

the development of various human diseases, including obesity and

metabolic syndrome (20, 21). They communicate with other organs

by secreting cytokines, exosomes, and metabolites, of which

metabolites of which metabolites have gained significant attention

recently as a popular research topic. Metabolites are often considered

“fuel” or components of metabolic pathways (22). However, they also

act as signaling molecules that mediate communication between

metabolic organs (23). Intracellular metabolites regulate enzymatic

activity and bind to nuclear receptors (24, 25). Extracellular

metabolites also function by binding to membrane receptors (26).

Studies have demonstrated that metabolites from skeletal muscle and

the gut microbiota play important roles in systemic EE, such as

influencing thermogenesis and adipose tissue browning (27, 28),

rendering them suitable therapeutic targets for metabolic diseases.

In this review, we focus on the recent findings on skeletal

muscles and gut microbiota-derived metabolites that potentially

promote adipocyte thermogenesis (Figure 1). Some of these

metabolites that are released in response to muscle contraction

have been reported to mediate the beneficial effects of exercise in

thermogenesis, such as lactate, kynurenic acid (KYNA), inosine,

and b-aminoisobutyric acid (BAIBA). The gut microbiota can

metabolize dietary nutrients into many metabolites, including bile

acids (BAs), butyrate, succinate, cinnabarinic acid (CA), urolithin A

(UroA), and asparagine. The mechanism by which these

metabolites act as signaling molecules to promote adipose tissue

thermogenesis is more clearly identified by interacting with

membrane receptors and controlling intracellular enzyme activity.

Future obesity research will focus on the mechanisms behind the

reciprocal exchange of metabolites between adipose tissue and other

metabolic organs. Furthermore, a better understanding of how

metabolites control adipose tissue activity will enable the

identification of novel treatment targets for obesity.
2 Skeletal muscle metabolites

The skeletal muscle is a thermogenic organ that plays a role in

maintaining body temperature. Cold conditions trigger the rapid

contraction of skeletal muscles, leading to heat production. In

recent years, skeletal muscle has been recognized as the main site

of shivering thermogenesis in mammals and an endocrine organ.

Skeletal muscles produce myokines in response to exercise, allowing

crosstalk between muscles and other organs, including the brain,

adipose tissue, and gut (29). For example, exercise-mediated

lipolytic myokines (interleukin 6, irisin, and leukemia inhibitory

factor) stimulate thermogenesis by promoting adipocyte browning

(19, 30). Recent research has shown that many metabolites,

including lactate, KYNA, inosine, and BAIBA, are produced by

skeletal muscles in response to cold exposure and strenuous exercise

(31–33). In this section, we focused on these metabolites that can act

on specific G protein-coupled receptors (GPCRs) and enzymes to

promote BAT activity and WAT browning (Figure 2).
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2.1 Lactate

Lactate is a metabolic byproduct of aerobic glycolysis, and its

production is higher than normal during strenuous aerobic exercise

owing to the increased oxygen requirement of the muscles (34). Lactate

has been previously considered a metabolic waste product, lacking

biological function (35). However, it was recently identified as a

signaling molecule that regulates lipid metabolism, even under

aerobic conditions (36, 37). Studies have shown that fasting plasma
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lactate levels are higher in obese individuals with metabolic syndrome

than in healthy lean individuals (38, 39). Consistent with human

findings, obese mice exhibited higher plasma lactate levels than lean

mice (40). In contrast, WAT lactate concentration was markedly

lowered in obese mice (40), suggesting that WAT utilizes lactate. Yao

et al. (40) demonstrated that dietary lactate reduces anomalies in lipid

metabolism, improves adipose browning, and increases thermogenesis.

G protein-coupled receptor 81 (GPR81), a specific GPCR for

lactate, is primarily expressed in the adipose tissue (41, 42). A study
FIGURE 2

Mechanisms of several skeletal muscles-derived metabolites regulating adipocytes thermogenesis. Lactate acts on GPR81 and activates the p38
MAPK pathway to promote thermogenesis. KYNA promotes the expression of thermogenesis-related genes via GPR35. Inosine promotes the p38
MAPK pathway via A2A/A2B, incresing the expression of thermogenic markers. BAIBA increases the expression of thermogenic genes through
PPARa. Created with BioRender.com.
FIGURE 1

Schematic representation of main metabolites targeting the adipose tissue. Upon stimulation by external factors, skeletal muscles can release lactate,
kynurenic acid (KYNA), inosine, and b-aminoisobutyric acid (BAIBA), whereas the gut secretes bile acids (BAs), butyrate, succinate, cinnabarinic acid (CA),
urolithin A (UroA), and asparagine. These metabolites can stimulate adipocyte heat generation by acting on specific targets. Created with BioRender.com.
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reported that lactate upregulates p38 activation via GPR81 in white

adipocytes (40). The p38 mitogen-activated protein kinase (MAPK)

mediated adipose browning by activating peroxisome proliferator-

activated receptor g coactivator 1a (PGC-1a) and UCP1 (43).

However, GPR81 deficiency significantly attenuated adipose

browning and thermogenesis (40). Therefore, GPR81 may be a

novel molecular therapeutic target for obesity. Although lactate

could not directly activate peroxisome proliferators-activated

receptors (PPARg), it activated PPARg-dependent browning

signaling pathways in white adipocytes (44). In brown adipocytes,

the expression of lactate-induced fibroblast growth factor 21

(FGF21) through the activation of the p38-MAPK pathway

promoted adipocyte browning and thermogenesis (45, 46).
2.2 Kynurenic acid

KYNA is a significant bioactive product in tryptophan

metabolism (47). Given that KYNA has neuroprotective

properties, it has been the subject of intensive research over the

past few decades (48). Growing evidence shows that KYNA exerts

protective effects against metabolic diseases, such as obesity and

non-alcoholic fatty liver disease (49). In a pilot clinical trial, KYNA

serum levels were lower in obese individuals than in healthy

individuals (49). Furthermore, endurance exercise increased

plasma KYNA levels via KYNA synthesis in skeletal muscle (50, 51).

KYNA plays an important role in adipose tissue energy

metabolism. KYNA-treated 3T3-L1 adipocytes exhibited reduced

lipogenesis inflammatory response and insulin resistance (52). In

mice, KYNA prevented high-fat diet (HFD)-induced body weight

gain and reduced serum triglyceride levels (53, 54). Agudelo et al.

also demonstrated that KYNA increases energy utilization by

activating GPR35, which stimulates lipid metabolism and

thermogenic and anti-inflammatory gene expression in adipose

tissues (53). Based on these findings, KYNA is an important

signaling molecule involved in energy homeostasis.
2.3 Inosine

Inosine is a crucial secondary metabolite in purine metabolism

(55). In a longitudinal cohort study, physical activity increased

plasma inosine levels (31). Equilibration nucleoside transporter 1

(ENT1), a member of the SLC29 family, is an inosine transporter

that regulates extracellular inosine concentrations (56). Niemann

et al. established a relationship between high levels of mutant ENT1

and a low body mass index (BMI) (57). In addition, the adipose

tissue-specific knockout of ENT1 in mice fed an HFD resulted in

reduced lipid accumulation and increased thermogenesis (57).

Similarly, inosine-treated mice fed an HFD gained significantly

less weight and showed elevated expression of thermogenic

markers, including UCP1 and PGC-1a (57). Inosine activates

four adenosine receptors, including A1, A2A, A2B, and A3 (58),

among which A2A and A2B are highly expressed in BAT (59).

Inosine activates A2A/A2B and stimulates thermogenesis via the

cyclic adenosine monophosphate (cAMP)-p38 pathway (57). In
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addition, pharmacological stimulation with A2A contributes to the

browning of white adipocytes (59). These findings indicate that

inosine is a potential regulator of energy homeostasis via A2A

and A2B.
2.4 b-aminoisobutyric acid

BAIBA is a metabolite of valine and is mainly produced by

muscle contraction during exercise (33, 60). Under in vivo and in

vitro conditions, BAIBA promoted WAT browning (44, 61). In

white adipocytes, BAIBA upregulated the expression of

thermogenic genes, including UCP-1, PGC-1a, and cytochrome c

(62). However, BAIBA did not increase the expression of

thermogenic genes in PPARa null mice (62). Therefore, BAIBA

promotes beige fat formation through PPARa. BAIBA also induced

adipocytes to secrete leptin, which promoted white adipocyte

browning by inhibiting the Hh signaling pathway (63, 64).

However, the mechanisms underlying how BAIBA promotes

leptin secretion from adipocytes remain unclear and require

further investigation.

Adipose tissue browning may improve plasma lipid profiles and

blood glucose levels (65). In a large human cohort study, plasma

BAIBA levels were inversely correlated with metabolic risk factors,

such as BMI, triglycerides, and fasting glucose (62). Similarly, HFD-

fed mice treated with BAIBA exhibited reduced weight gain and

improved insulin resistance (66). Furthermore, BAIBA-treated

3T3-L1 cells showed enhanced browning phenotype, lipid

accumulation suppression, and insulin resistance mitigation (67,

68). These findings suggest that BAIBA is a potential therapeutic

option for the treatment of obesity and its associated

metabolic diseases.
3 Gut microbiome metabolites

The diverse microbial community in the gut, known as the gut

microbiota, regulates appetite, energy absorption, and lipid and

glucose metabolism (69). Accumulating evidence suggests a direct

causal relationship between gut microbiota and obesity. In one

study, germ-free mice did not become obese even when fed HFD,

compared with mice with microbiota. When the gut microbiota of

obese mice were transplanted into germ-free mice, the body weight

of the transplanted mice significantly exceeded that of the control

group that was transplanted with healthy mouse microbiota after 2

weeks; this suggests that the obesity phenotype can be transferred

between different individuals through microbiota (70). Recently, a

link between gut microbiota and obesity has been observed in

humans. Recent studies have confirmed a strong association

between the abundance of certain gut bacteria and obesity, as

indicated by abnormal body weight or BMI. For example, the

abundance of Akkermansia muciniphila, a bacterium belonging to

the Verrucomicrobia phylum, exhibited a significant negative

correlation with fasting blood glucose levels, waist-to-hip ratio,

and subcutaneous fat cell diameter (71). A high abundance of

Bacteroides and high organic acid contents were observed in
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obese people in Denmark, while a decrease in the abundance of

butyric-producing bacteria was observed in non-obese people,

suggesting that microbial metabolites may also play a role in

obesity (72). Further evidence shows that the lack of HIF-2a
specifically in the gut resulted in an imbalance between

Bacteroides vulgatus and Ruminococcus torques. This imbalance

significantly increased the levels of taurine-binding cholic acid and

deoxycholic acid and activated TGR5 in WAT, which further

upregulated the expressions of UCP1 and CKMT2, thereby

promoting body thermogenesis. Moreover, after antibiotic

clearance of intestinal microbes, the loss of intestinal HIF-2a no

longer affected heat production in WAT (73). This suggests that gut

microbiota can improve obesity by promoting fat thermogenesis

through the action of metabolites.

Microbial metabolites, which serve as the bridge between diet

(microbiota) and obesity, are of great value for understanding the

development of obesity. Previous research suggests that microbial

metabolites may be effective targets for controlling obesity (74).

Metabolites are “signaling molecules” that are released into the

extracellular environment and can mediate these effects (75). The

metabolites secreted by the gut are mostly derived from two sources.

First, the brain controls intestinal function through nerve

conduction in response to external environmental stimuli (e.g.,

cold exposure and exercise), which affects the secretion of metabolic

products by the gut microbiota (76, 77). Second, the gut microbiota

transforms food molecules into metabolites (78). Thus, metabolites

serve as informational mediators of the host–microbiome crosstalk.

Six intestinal metabolites, including BAs, butyric acid,

succinate, CA, UroA, and asparagine (Figure 3), are discussed in

the subsequent section. Their roles in regulating adipose tissue
Frontiers in Endocrinology 05
thermogenesis are explored, and their targets in adipocytes

are summarized.
3.1 Bile acids

BAs are cholesterol derivatives and major regulators of lipid

metabolism and EE in host cells (79). There are two pathways for

synthesizing BAs: classical and alternative pathways. The classical

pathway is controlled by CYP8B1 and mainly synthesizes 12-

position hydroxy (12-OH) BAs. The alternative pathway is

mainly controlled by CYP7B1 and synthesizes non-12-OH BAs

(80). In a human cohort study, unhealthy individuals with high BMI

had lower levels of non-12-OH BAs (81). The same study revealed

that mice with slow weight gain exhibited higher levels of non-12-

OH BAs than obesity-prone mice and that these mice had fewer

metabolic disturbances (81). Overall, these findings suggest that

non-12-OH BAs are closely associated with metabolic states

in obesity.

Cold exposure triggers new metabolic mechanisms and increases

EE. In a particular study, cold exposure was found to promote the

conversion of cholesterol to BAs via alternative pathways and increase

the production of non-12-OH BAs (76). cyp7b1-/- mice showed

significant downregulation of UCP-1 expression in brown fat (76),

whereas cyp8b1 knockout mice exhibited resistance to HFD-induced

obesity (82). A recent study demonstrated that supplementation with

non-12-OH BAs promotes thermogenesis and improves weight regain

in mice resuming food intake after a calorie-restricted diet (83). These

findings suggest that non-12-OH BAs can promote EE and

improve obesity.
FIGURE 3

Mechanisms of several gut microbiota-derived metabolites regulating adipocytes thermogenesis. Bile acids induce the transcription of cAMP-PKA-
CREB-induced Dio2 via the TGR5 receptor. Dio2 increased thermogenesis in adipose tissues by promoting the conversion of inert thyroxine T4 to
T3. Butyrate promotes the expression of thermogenesis-related genes through GPR43. Succinate activates sucnr1 receptors to release leptin in an
AMPK/JNK-C/EBPa-dependent manner, and leptin can stimulate PGC-1a and PPARa expression to promote thermogenesis. Cinnabarinic acid
promotes the expression of thermogenesis-related genes through mGluR4. UroA acts on Dio2 and promotes the conversion of T3 to activate the
thyroid hormone pathway. Asparagine activates mTORC1 signaling pathway, which increases the expression of PGC-1a, thus enhancing
thermogenesis. Created with BioRender.com.
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BA signaling is mainly mediated by the nuclear farnesoid X

receptor (FXR) and G-protein-coupled bile acid receptor 5 (TGR5)

(84). TGR5 signaling confers the numerous advantageous effects of

BAs, including the prevention of fatty degeneration, alterations in

blood glucose levels, and promotion of energy homeostasis (85–87).

Moreover, non-12OH BAs have been demonstrated to improve the

energy metabolism of white and brown fat through TGR5-mediated

activation of BAT and upregulation of UCP1 expression (88). In

WAT and BAT, BAs induced the transcription of cAMP-protein

kinase A-cAMP response element-binding protein (cAMP-PKA-

CREB)-induced deiodinase 2 (Dio2) via the TGR5 receptor (89).

Dio2 increased thermogenesis in adipose tissues by promoting the

conversion of inert thyroxine T4 to T3 (the active form of thyroid

hormone) (89). Administration of TGR5 with the agonist INT-777

increased the number of mitochondria in BAT. However, this was

not observed in TGR5-knockout animals (86). These findings

suggest that TGR5 is necessary for thermogenesis.
3.2 Butyrate

Short-chain fatty acids (SCFAs) are the most abundant

metabolites during microbial fermentation of dietary fiber.

Acetate, propionate, and butyrate account for over 95% of SCFAs

and are produced by specific bacteria. Acetate is primarily produced

by Bacteroides, Bifidobacterium, Streptococcus, Streptococcus

peptica, Clostridium, and Rumex coccus. Butyrate is produced by

Bacteroides, Eubacterium, and Clostridium (90). Propionate is

produced by Clostridium and Bacteroides (91). Furthermore,

accumulating evidence suggests that butyrate is a major regulator

of tissue function in SCFAs, which affects systemic energy

metabolism (92).

A stable isotope study showed that butyrate production was

negatively correlated with BMI (93). Similarly, the microbiota of

obese mice produced lower levels of butyrate than that of lean mice

(94). Studies on the effects of butyrate on mice have shown that

long-term supplementation with 5% sodium butyrate prevents

HFD-induced weight gain and reduces fat mass (95). Moreover,

bu ty ra t e r educed HFD- induced hyperg l ycemia and

hyperinsulinemia (96, 97). These results suggest that butyrate

reduces obesity and obesity-related metabolic disorders.

Cold exposure is an important environmental factor that

promotes thermogenesis and increases whole-body EE. A study

showed that cold exposure directly increases butyrate

concentrations in the cecum, suggesting that butyrate plays an

important role in maintaining body temperature (77). An

important mechanism by which butyrate increases EE is by

promoting thermogenesis in adipocytes. The addition of butyrate

increased BAT and WAT thermogenesis (98). Although microbiota

depletion decreased thermogenesis, this effect was reversed by

butyrate supplementation (99), indicating that butyrate is an

important mediator of lipid thermogenesis.
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Butyrate acts as a signaling molecule by activating GPR43,

GPR41, and GPR109a receptors (100). Many studies have shown

that GPR43 is expressed in human and mouse WAT and the mouse

adipocyte cell 3T3L1 (101). GPR41 is also expressed in human

adipose tissue, but to a lesser extent than GPR43 (102). Brown et al.

reported that GPR43 expression is higher in the WAT of HFD-fed

obese mice than in mice fed a normal diet (101). Moreover, mice

with low GPR43 expression gained weight even when fed a standard

diet (90). PGC-1a mRNA expression in BAT under butyrate

treatment was positively correlated with GPR43 levels (90). These

results suggest that butyrate regulates BAT thermogenesis through

GPR43. Leptin suppresses appetite and promotes thermogenesis

and fat burning in the body (103). Butyrate directly stimulated

adipocyte leptin production by activating the GPR41 and GPR43

signaling pathways (104). A recent study found that butyric acid

also acts as an epigenetic regulator, regulating thermogenic gene

expression in BAT and subcutaneous WAT (scWAT) by activating

lysine-specific histone demethylase 1 (LSD1) (105).
3.3 Succinate

Succinate is an important metabolite in host–bacterial

interaction, an intermediary of the host tricarboxylic acid cycle,

and a fermentation product of intestinal flora (106, 107). In a large

human cross-sectional study, negative correlations were observed

between plasma succinate levels and total and visceral obesity (108).

Succinate is associated with energy metabolism in adipose tissue.

Succinate is an intracellular signaling molecule that regulates the

physiological function of BAT by acting as a thermogenic agent

(107). Based on stable isotope tracers, blood succinic acid levels in

mice increased when cold stimulated, and it was found that these

succinic acids preferentially accumulated in brown fat. This means

that succinic acid is involved in fatty tissue (107). More importantly,

succinate has been reported to stimulate thermogenesis in the

brown adipocytes and BAT of mice via the succinate

dehydrogenase-mediated production of reactive oxygen species

(107). Succinate is sensed extracellularly by succinate receptor 1

(SUCNR1) (109), which is highly abundant in WAT and mediates

the antilipolytic activity of succinate (110, 111). Furthermore,

succinate increased the browning of adipose tissue in Crohn’s

disease (60). A positive correlation existed between VAT-derived

stem cell SUCNR1 mRNA and circulating succinate levels (112).

Leptin can stimulate PGC-1a and PPARa expression to promote

thermogenesis (113, 114). A recent study showed that succinate

signaling modulates energy homeostasis by regulating adipocyte

leptin production (115). SUCNR1 activation controlled leptin

expression in an AMPK/CCAAT/enhancer-binding protein alpha/

c-Jun N-terminal kinase (AMPK/JNK-C/EBPa)-dependent
manner (115). Adipocyte-specific Sucnr1 knockout (Ad-Sucnr1

KO) mice displayed reduced levels of subcutaneous and visceral

WAT (115). SUCNR1 activation promotes an anti-inflammatory
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phenotype in macrophages, whereas myeloid-specific SUCNR1

deficiency hinders adipose tissue browning (109). Overall, the

mechanisms involved are unclear, and therefore, further studies

are required.
3.4 Cinnabarinic acid

CA is a tryptophan metabolite (116). Exogenous and

endogenous amino acids obtained from food in vitro and the

breakdown of tissue proteins, respectively, serve as the primary

sources of tryptophan in animals (117). Tea contains a small

amount of tryptophan, which aids digestion and metabolism,

thereby increasing CA levels in plasma (117, 118). Earlier

investigations indicated that CA possesses anti-inflammatory

and antioxidant activity and protects hepatocytes (119, 120).

However, recent research has revealed that CA is a crucial

metabolite in the weight reduction activity of Pu-erh tea (117).

CA-treated mice were found to have significantly higher levels of

thermogenic proteins in BAT and lower levels of WAT deposition

in the epididymis than untreated mice (117). Metabolic glutamate

receptor 4 (mGluR4) is the target of CA (121). CA treatment

increases mGluR4 expression in WAT and BAT, which promotes

lipolysis and thermogenesis (117).
3.5 Urolithin A

UroA is an intestinal metabolite produced by foods containing

ellagic acid, such as pomegranate, berries, and walnuts (122). A

relationship exists between the type of urolithin production and

specific intestinal bacteria, with Gordonibacter producing mainly

UroA (123). The differences in ellagic acid metabolism between

healthy overweight-obese individuals and normal-weight

individuals were analyzed, and UroA levels were found to be

higher in the normal-weight group than in the overweight-obese

group (124). Additionally, correlation analysis revealed that UroA

was positively correlated with apolipoprotein A-I and intermediate-

high-density lipoprotein-cholesterol (125). These results suggested

that UroA has potential anti-obesity effects. Emerging evidence

suggests that UroA regulates energy metabolism in various cells.

UroA inhibited the expression of genes related to adipogenesis and

lipid accumulation in 3T3-L1 adipocytes (126). Supplementation

with UroA significantly enhanced healthy metabolism in HFD

mice, for example, by reducing obesity and hyperglycemia (127).

UroA improves obesity by increasing EE. Mechanistically, UroA

increased the conversion of inactive T4 to active T3 by triggering

Dio2 (127). Activation of the thyroid hormone pathway enhanced

BAT thermogenesis and induced WAT browning (127). In several

clinical trials, UroA improved mitochondrial activity and muscle

strength while being safe and well-tolerated (128–130). Therefore,

UroAmay be considered as a potential therapy for alleviating obesity.
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3.6 Asparagine

Asparagine is a nonessential amino acid, most of which is

synthesized by the body itself, but the gut flora is also thought to

be a source of asparagine synthesis (131). Many foods, such as dairy

and meat, contain high levels of asparagine (132). These foods are

absorbed by intestinal microbes, thereby increasing asparagine

levels in the body (132). Clinical metabolomic investigations have

revealed a negative correlation between plasma asparagine levels

and metabolic syndrome (133, 134). Asparagine significantly

improved the ability of mice to maintain body temperature

during cold exposure and prevented weight gain (135). However,

metabolic disturbances were observed when asparaginase was

administered to remove circulating asparagine (136, 137).

Mechanistically, asparagine activated the mechanistic target of the

rapamycin complex 1 (mTORC1) signaling pathway, which

increased the expression of PGC-1a , thus enhancing

thermogenesis in BAT while also promoting beige coloring in

WAT (135). Overall, asparagine functions as a signaling molecule

that promotes thermogenesis via mTORC1.
4 Conclusions and perspective

In this review, we outline the roles of metabolic products

secreted by the skeletal muscle and gut as signaling molecules

that promote heat production in adipocytes: (i) Skeletal muscles

can release lactate, kynurenic acid, inosine, and b-aminoisobutyric

acid during exercise. (ii) The gut secretes bile acids, butyrate,

succinate, cinnabarinic acid, urolithin A, and asparagine

stimulated by diet and cold exposure. (iii) These metabolites can

act as signaling molecules that mediate thermogenesis by binding to

receptors and enzymes. We emphasize the essential roles of

circulating metabolites in the total body energy balance and their

functions as significant mediators of interorgan communication

and metabolic adaptability of the entire organism.

Medications that promote the generation of fat heat, such as

capsaicin and 3-AR agonists, have been developed (138–140);

However, their uses are limited by negative effects. In the future,

it is necessary to develop drugs with lower toxicity and improved

efficacy. In this review, we find that many metabolites can activate

GPCRs, which are relatively ‘easy’ drug targets (141, 142), and

metabolite-GPCRs constitute a promising and as yet underutilized

pharmacotherapeutic. These metabolites could become important

treatment options in the management of cellular metabolism, and

more importantly, in the management of metabolic disorders.

However, there are uncertainties and limitations due to

interspecific differences (humans and mice) as well as individual

variations in clinical studies. Consequently, long-term conversion

research and clinical trials are required to evaluate the dosage,

thermogenic effects, and other aspects of metabolic supplements.
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Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A
receptors. Nature (2014) 516(7531):395–9. doi: 10.1038/nature13816

60. Kamei Y, Hatazawa Y, Uchitomi R, Yoshimura R, Miura S. Regulation of skeletal
muscle function by amino acids. Nutrients (2020) 12(1):261. doi: 10.3390/nu12010261

61. Wang W, Ishibashi J, Trefely S, Shao M, Cowan AJ, Sakers A, et al. A PRDM16-
driven metabolic signal from adipocytes regulates precursor cell fate. Cell Metab (2019)
30(1):174–189.e5. doi: 10.1016/j.cmet.2019.05.005

62. Roberts LD, Boström P, O’Sullivan JF, Schinzel RT, Lewis GD, Dejam A, et al. b-
Aminoisobutyric acid induces browning of white fat and hepatic b-oxidation and is
inversely correlated with cardiometabolic risk factors. Cell Metab (2014) 19(1):96–108.
doi: 10.1016/j.cmet.2013.12.003

63. Begriche K, Massart J, Abbey-Toby A, Igoudjil A, Lettéron P, Fromenty B. Beta-
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