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Introduction: The development of continuous glucose monitoring (CGM) over

the last decade has provided access to many consecutive glucose concentration

measurements from patients. A standard method for estimating glycated

hemoglobin (HbA1c), already established in the literature, is based on its

relationship with the average blood glucose concentration (aBG). We showed

that the estimates obtained using the standard method were not sufficiently

reliable for an Indian population and suggested two new methods for estimating

HbA1c.

Methods: Two datasets providing a total of 128 CGM and their corresponding

HbA1c levels were received from two centers: Health Centre, Savitribai Phule

Pune University, Pune and Joshi Hospital, Pune, from patients already diagnosed

with diabetes, non-diabetes, and pre-diabetes. We filtered 112 data-sufficient

CGM traces, of which 80 traces were used to construct two models using linear

regression. The first model estimates HbA1c directly from the average interstitial

fluid glucose concentration (aISF) of the CGM trace and the second model

proceeds in two steps: first, aISF is scaled to aBG, and then aBG is converted to

HbA1c via the Nathan model. Our models were tested on the remaining 32 data-

sufficient traces. We also provided 95% confidence and prediction intervals for

HbA1c estimates.

Results: The direct model (first model) for estimating HbA1c was HbA1cmmol/mol =

0.319 × aISFmg/dL + 16.73 and the adapted Nathan model (second model) for

estimating HbA1c is HbA1cmmol/dL = 0.38 × (1.17 × ISFmg/dL) − 5.60.

Discussion: Our results show that the new equations are likely to provide better

estimates of HbA1c levels than the standard model at the population level, which

is especially suited for clinical epidemiology in Indian populations.

KEYWORDS

continuous glucose monitoring (CGM), glycated hemoglobin (HbA1c), type 2 diabetes
(T2D), average blood glucose concentration (aBG), average interstitial fluid glucose
concentration (aISF)
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1 Introduction

Type 2 diabetes mellitus (T2D) is one of the most common

metabolic disorders in India. Understanding the metabolic pathways

and mechanisms involved in the development of T2D in patients play

an important role in its diagnosis and treatment. Traditionally, it

involves measuring the fasting blood glucose concentration (FBG)

and postprandial blood glucose concentration (PPBG). Since the late

1970s, there have been reports of a correlation between HbA1c and

blood glucose concentration (BG), and that HbA1c could be a useful

tool for long-term BG control. Gabbay et al. (1) studied the

correlation between HbA1a, HbA1b, and HbA1c with 24-hour

urinary glucose concentration collected over periods of 1, 2, and 3

months for 220 diabetic patients and suggested that glycosylated

hemoglobin could act as a good index for long-term BG levels in

people with T2D. Santiago et al. (2) further studied the correlation

between HbA1c and PPBG. Clarke et al. (3) showed that HbA1c is

correlated with aBG over 2 months, and therefore, is a good index for

aBG and is a useful tool for understanding the quality of BG control

in a patient. Lecomte et al. (4) also confirmed in a group of 138

patients that HbA1c is a good index for BG control. Distiller (5)

compared the efficacy of PPBG and HbA1c as indices for BG control

and showed that HbA1c is a significantly better index.

There is a plethora of other new metrics being developed to

understand the glycemic state of the patient, such as time in range

(TIR). HbA1c is one of the most reliable metrics for understanding

long-term BG changes in a patient. Therefore, accurate

experimental methods (6) have been developed to measure

HbA1c levels. However, with the development of flash glucose

monitoring (FGM) and eventually CGM technologies, clinicians

now have access to many consecutive interstitial fluid glucose

concentration (ISF) measurements (CGM traces). This

encouraged the development of methods for estimating metrics

such as FGM, PPBG, TIR, and HbA1c from the CGM traces.

Sikaris (7) showed that although for a single measurement

HbA1c and BG had been shown to be correlated, including

multiple measurements like CGM traces improved the correlation

further. They concluded that not only was estimating HbA1c from

the HbA1c–BG relationship viable, but also that it would become

the standard method of estimating HbA1c. Mazze (8) also showed

that BG from self-monitoring blood glucose (SMBG) and CGM

traces were highly correlated, and that the HbA1c estimates

obtained using them were not significantly different, although

different patterns of SMBG and CGM traces could produce the

same HbA1c. This suggests that HbA1c is a metric that can be

reliably estimated. Nathan et al. (9) used linear regression to

estimate aBG from HbA1c levels at the population level. This

relationship has been used to develop a method for estimating

HbA1c levels from aBG. This method was adopted as the standard

for obtaining HbA1c estimates (10). This method was also used to

estimate HbA1c values using the Abbot Libre FreeStyle Pro device

for the CGM report generated by the device.

In recent years, after Nathan et al. (9) published their method,

many similar methods have been developed for estimating HbA1c.

Kovatchev et al. (11) provided a dynamic method for accurately

estimating average HbA1c using regular SMBG readings for T2D
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patients. The method was later validated in patients with type 1

diabetes (T1D) and showed similar performance (12). Beck et al.

(13) showed that experimentally measured HbA1c alone cannot be

reliably used as a metric for glycemic control in an individual. They

suggested that the glucose profile from the CGM trace and aBG

calculated from the CGM trace were also considered. They also

provided a method for estimating HbA1c from a given CGM trace

and suggested that estimated HbA1c should also be considered as a

metric for an individual’s glycemic control. Fan et al. (14) had

established a relationship between HbA1c and FBG and PPBG

which are both categorized as SMBG. They also provided a method

for estimating HbA1c but also showed that FBG and HbA1c levels

are strongly correlated.

Bergenstal et al. (15) renamed the estimated HbA1c as the

glucose management indicator (GMI), a metric for glycemic control

and management. They also provided a new method for estimating

GMI from a given CGM trace. The model was then validated by

Leelarathna et al. (16) using guardian 3 and navigator 2 sensor data.

Perlman et al. (17) however showed that there can be a substantial

difference between experimentally measured HbA1c and GMI

values for T1D patients especially, with patients having advanced

chronic kidney disease. Shah et al. (18) also showed that it does not

correlate well with HbA1c for non-diabetic patients. Estimated

HbA1c is increasingly being replaced by GMI, which is used as a

metric for glycemic control. Therefore, attempts to improve GMI to

closely reflect HbA1c levels and be a reliable metric for glycemic

control are an active field of research.

Recently, Oriot and Hermans (19) showed that HbA1c values

were overestimated using Nathan’s equation from CGM traces

obtained using the Free Style Libre device for T1D patients. This

contrasts with Hu et al. (20), who showed that HbA1c estimated

using Nathan’s equation on CGM traces obtained by FreeStyle Libre

underestimated the experimental HbA1c values. Hu et al. (20) also

produced a total of seven models, based on linear and nonlinear

regression analysis for estimating HbA1c values from a given CGM

trace. These reliability issues of GMI or estimated HbA1c indicate

that there is still a need for a new method for estimating HbA1c

from a given CGM trace for an individual that works for all pre-

diabetic, diabetic, and non-diabetic groups. Xu et al. (21) suggested

a kinetic model for estimating HbA1c and showed that it provides a

highly accurate estimate of HbA1c. He also improved the kinetic

model to include the life-cycle of the red blood cells (RBC)

containing the HbA1c molecules (22).

We show that the HbA1c estimates obtained using Nathan’s

equation are not statistically reliable for the Indian population, and

we provide two new methods for estimating HbA1c.
2 Materials and methods

2.1 Subject recruitment and measurement
of blood biochemical parameters

A CGM dataset containing traces of 50 participants was

collected at the Primary Care Health Centre, Savitribai Phule

Pune University, Pune. For each participant, a FreeStyle Libre Pro
frontiersin.org
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CGM sensor (Abbott, UK) was inserted subcutaneously on the back

of the upper arm by Dr. Shashikant Dudhgaonkar at the Health

Centre, Savitribai Phule Pune University, Pune, India, between July

2021 and September 2021. This factory-calibrated glucose sensor

recorded subcutaneous ISF every 15 min for 14 days. All

participants were advised to continue their normal diet and

exercise routine. On the 14th day, the CGM device was removed,

and the data were downloaded and analyzed using FreeStyle Libre

Pro software. The CGM devices were provided to the participants

through the Rastriya Ucchattar Shiksha Abhiyan (RUSA) grant

from Savitribai Phule Pune University. We refer to this dataset as

the Pune-2021 dataset.

The CGM data collected in the Pune-2021 dataset were then

filtered into two sets: a data-sufficient Pune-2021 dataset and a data-

insufficient Pune-2021 dataset in the following way. Data sufficiency

was checked according to (i) the number of days the sensor was

active, and (ii) the percentage of measurements recorded, as

suggested by Danne et al. (10): From the measurement ID

provided in the CGM trace data file, the number of ISF

measurements, N, recorded by the device was calculated. The

timestamps provided in the CGM trace were used to calculate the

effective number of days, nd for which the CGM device was active.

However, this number was rounded off to the nearest integer using

the round function provided by the NumPy package (23). The

percentage of measurements recorded by the device was calculated

using Dtm, which is the time difference in seconds between the first

and last readings. Dtm was used to calculate the total number of

readings recorded by the device as Ntotal = ⌊ △ tm
60�15 ⌋+1. The

percentage of measurements was calculated as Np = 100 × N/

Ntotal. If nd ≥14 and Np ≥70% for a given CGM trace, we

categorized the CGM trace as data-sufficient; otherwise, it was

categorized as data-insufficient.

After the data-insufficient CGM traces were filtered out, 12 pre-

diabetic, 13 diabetic, and 14 non-diabetic CGM traces remained and

were categorized as data-sufficient.

A second dataset of 78 CGM traces along with their HbA1c

levels (by HPLC) was collected by Dr. K. M. Shelgikar at the

Tertiary Care Center, Joshi Hospital, Shivaji Nagar, Pune from

2018 to 2020. Data were collected as part of routine patient care and

anonymized for analysis. This dataset is referred to as the Joshi-

2018 dataset. Similar to the Pune-2021 dataset, the Joshi-2018

dataset was filtered as data-sufficient and data-insufficient subsets.

After filtering out the data-insufficient CGM traces from the Joshi-

2018 dataset, only 73 CGM traces were considered as data sufficient.

The complete CGM-dataset, including both the Pune-2021

dataset and the Joshi-2018 dataset, contained the CGM traces and

the corresponding HbA1c levels of 128 participants, 15 of whom

were pre-diabetic, 94 were diabetic, and 19 were non-diabetic. The

data-sufficient subset of the CGM-dataset contained 112 CGM

traces, of which 12 were pre-diabetic, 86 were diabetic, and 14

were non-diabetic. A sample of 32 data-sufficient CGM traces and

their corresponding HbA1c measurements was separated as a test

set for validation purposes; the remaining 80 data-sufficient CGM

traces were grouped as the training CGM-dataset. The complete

CGM-dataset including the data-insufficient CGM traces was used
Frontiers in Endocrinology 03
to validate the HbA1c estimates obtained using the Nathan model

(9) but only the data-sufficient CGM traces of the training CGM-

dataset were used to construct our models, which were then

validated using the data-sufficient CGM traces of the test

CGM-dataset.
2.2 Comparing Nathan HbA1c estimates
with experimentally measured HbA1c

Nathan et al. (9) collected a dataset of 2,700 glucose measurements

from 268 T1D patients, 159 T2D patients, and 80 non-diabetic

participants. Their dataset contained CGM traces and finger-stick

measurements that were collected as different measures of glycemia.

The ISF measurements were scaled by a factor of 1.05 to

estimate the corresponding BG. aBG was calculated by taking the

weighted average of all the blood glucose concentration

measurements collected. All measurements in a day were given

equal weights, which were inversely proportional to the number of

measurements taken on that day. The aBG was calculated by taking

the mean of all measurements, giving the measurements on each

day an equal weight. The expression to obtain the aBG is

aBG =
1

(m1 +m2)
o
i=m1

i=1

1
n1,i

� �
BGi + o

i=m2

i=1

1
n2,i

� �
(1:05� ISFi)

( )
,

(1)

where aBG represents the average blood glucose concentration,

BGi is the ith SMBG measurements, ISFi is the ith CGM

measurement, m1 and m2 are the number of SMBG and CGM

measurements respectively, n1 ,i is the number of SMBG

measurements taken on the day BGi was taken, and n2,i is the

number of CGM measurements taken on the day ISFi was taken.

A linear regression analysis was performed by Nathan et al. (9)

taking the calculated aBG as the dependent variable and the HbA1c

as the independent variable and obtained this relation:

aBGmg=dL = 28:7� HbA1c% − 46:7, (2)

(2) can also be written as:

HbA1c% =
1

28:7
46:7 + (1:05� aISFmg=dL)

� �
, (3)

= 1:627 + 0:035� (1:05� aISFmg=dL), (4)

HbA1cmmol=mol = 0:38� (1:05� aISFmg=dL) − 5:60, (5)

to relate HbA1c and aISF directly.

We used a paired t-test to verify whether the two groups, that is,

the experimentally measured HbA1c from the CGM-dataset and

the corresponding HbA1c calculated using the Nathan model Eq.

(5), and Eq. (1), are statistically indistinguishable. Calculations were

performed using the ttest_rel function of the stats module

of the SciPy package (24). Similarly, a paired t-test was performed

with only the data sufficient (including both the training and test

datasets) CGM traces from the CGM dataset.
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2.3 Direct model

To directly construct a model between aISF and HbA1c, we

assumed a linear relationship and performed a regression analysis.

Note that the aISF here is an equally weighted average of all the ISF

measurements in a given CGM trace,

aISFmg=dL =
1
N o

i=N

i=1
ISFi,mg=dL, (6)

where aISFmg/dL represents the calculated aISF in mg/dL, ISFi,

mg/dL represents the ith ISF measurement from the given CGM trace

in mg/dL andN represents the total number of measurements in the

given CGM trace. The linear regression equation for the direct

model is

HbA1cmmol=mol = b1 � aISFmg=dL + b0, (7)

where aISFmg/dL represents the aISF in mg/dL, HbA1cmmol/mol

represents the HbA1c in mmol/mol, b1 the slope in mmoldL/

(molmg) and b0 the intercept in mmol/mol.

We obtained the ordinary least square (OLS) estimates b̂ 0 and, b̂ 1

of the parameters b0 and, b1. We also calculated the 95% confidence

interval for b̂ 0 and b̂ 1 along with 95% confidence interval and the 95%

prediction interval of HbA1c for any given aISF. This analysis was

performed using the LinearRegression function from the

linear_model module of the scikit-learn package (25).

However, the confidence and prediction intervals were calculated

using the standard OLS solution formulae.

A paired t-test was then performed on the HbA1c estimated

using the direct model and the experimental values for the data-

sufficient CGM traces from the test CGM-dataset to verify whether

the HbA1c estimates obtained using b̂ 0 and b̂ 1 were statistically

indistinguishable from the experimental HbA1c value at the

population level. The t-test was performed using the ttest_rel
function of the stats module of the SciPy package.

We also used the training dataset of CGM traces and calculated

the 5-fold cross validation root mean squared error (RMSE) to

validate the 95% confidence interval for the direct model.
2.4 Adapted Nathan model

In Section 2.3, we constructed a linear model for estimating

HbA1c from the aISF calculated from a given CGM trace. Although

such a relationship, if reliable, can be valuable, it requires us to base

our HbA1c estimates on the ISF values. Traditionally, however, for

the diagnosis of T2D and analysis of the glycemic state of an

individual, various metrics such as FBG, PPBG, and HbA1c have

always been based on BG. The current CGM devices, however,

report ISF readings, and therefore, to use these CGM traces with our

current diagnostic methods, it is important to develop a reliable

method for converting the ISF readings to their corresponding BG

readings. The ISF measurements in the CGM traces of the dataset

used by Nathan et al. (9) were scaled to their BG values using a

scaling factor of 1.05. We suspected that obtaining a better estimate

of this scaling factor would improve HbA1c estimates.
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Therefore, we constructed a linear model for estimating HbA1c

from the calculated aISF [aISF was constructed using Eq. (6)] via the

aBG. We considered a model in which we estimated aBG by scaling

aISF by a factor of w and used Eq. (2) to obtain the estimate of

HbA1c. This model represented by Eq (8). is

HbA1cmmol=mol =   0:38� (w � aISFmg=dL) − 5:60, (8)

where aISFmg/dL represents the aISF in mg/dL, HbA1cmmol/mol

represents the HbA1c in mmol/mol and, w the scaling factor. Now,

Eq. (8) can also be written as:

HbA1cmmol=mol + 5:60

0:38
= (w � aISFmg=dL), (9)

The OLS solutions for the estimate ŵ , of the coefficient w are

the same for both Eqs. (8) and (9).

We obtain the OLS estimate ŵ using Eq. (9), where we took the

calculated aISFmg/dL as the independent variable and the

transformed experimental HbA1c values,
HbA1cmmol=mol+5:60

0:38 , as

the dependent variable. The analysis was performed using

the LinearRegression function from the linear_model
module of the scikit-learn package. Data-sufficient CGM

traces and their corresponding HbA1c values from the training

CGM dataset were used for this analysis. We calculated the 95%

confidence interval for ŵ , the 95% confidence interval and 95%

prediction interval for estimated HbA1c corresponding to an aISF

calculated from any CGM trace. These intervals were calculated using

standard OLS solution formulae for constrained linear regression.

A paired t-test was performed with the HbA1c estimates made

using the adapted Nathan model and the experimentally measured

HbA1c values for the data-sufficient traces of the test CGM-dataset,

using the ttest_rel function from the stats module of the

SciPy package to confirm that the HbA1c estimates from the

adapted Nathan model were not significantly different from the

experimental HbA1c values at the population level.

Finally, using the training CGM-datset a 5-fold cross validation

RMSE was calculated for the adapted Nathan model to validate the

reliability of the 95% confidence intervals of the adapted

Nathan model.
3 Results

We show that the mean of the estimates provided by the

standard Nathan et al. (9) method for HbA1c at the population

level is not statistically reliable with respect to the experimental

HbA1c values for an Indian population. Next, we provide the results

for the direct model and the adapted Nathan model based on OLS

linear regression for estimating HbA1c from a given CGM trace.

We provide the 95% confidence interval for the two models and the

95% prediction intervals for the HbA1c estimates of these two

models, which are visualized in Figures 1, 2, showing the three

models for estimating HbA1c along with the 95% confidence

interval (Figure 1) and the 95% prediction interval (Figure 2). We

also provide a user-friendly web app for academic use, CGM

Analyzer [version 0.1] (https://digimed.acads.iiserpune.ac.in/fgm-
frontiersin.org
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tools), created using MATLAB R2022a. The HbA1c estimates along

with their 95% prediction intervals can be calculated for a given

CGM trace.
3.1 Coefficient estimates for
the direct model

The paired t-test was performed using the CGM traces of the

complete CGM-dataset between the experimental HbA1c values and

the corresponding Nathan HbA1c estimates calculated using Eqs (1).

and (5) generated a p-value<0.001. Similarly, a paired t-test with data-

sufficient CGM traces from the CGM-dataset also generated a p-value

of<0.001. Considering a = 0.05, the Nathan model-estimated HbA1c

values, both for data-sufficient and data-insufficient CGM traces, were

significantly different from the corresponding experimentally measured

HbA1c values for the Indian population.

This led us to construct a direct model for estimating HbA1c

levels from aISF. We performed a linear regression analysis to

establish a relationship between aISF and HbA1c using the data-

sufficient CGM traces of the training CGM dataset. We obtained an

estimate of the coefficient b0 of the model, Eq. (7), b̂ 0 = 16:73  m

mol=mol, with a 95% confidence interval of [9.39 mmol/mol, 24.07
Frontiers in Endocrinology 05
mmol/mol] and an estimate for b1, b̂ 1 = 0:319  mmol   dL=(molmg)

with a 95% confidence interval of [0.274 mmol dL/(molmg), 0.363

mmol dL/(molmg)]. The analysis yielded Eq. (10), with an

R2 = 0.726 and a p-value <0.01. Therefore, the direct model, Eq.

(7) with the estimates b̂ 0 and b̂ 1is given by

HbA1cmmol=mol =   0:319  �   aISFmg=dL   +   16:73, (10)

where aISFmg/dL represents the aISF in mg/dL, and HbA1cmmol/mol

represents HbA1c in mmol/mol. Figure 1, shows Eq. (10) as the black

dashed line along with the 95% confidence interval for HbA1cmmol/mol,

corresponding to any aISFmg/dL calculated from a given CGM trace.

The formulae for obtaining the 95% confidence and prediction interval

for any HbA1c estimate are provided in the Supplementary Material.

The 95% prediction interval width calculated for the HbA1c estimates

was on the order of 48.50 mmol/mol.
3.2 Coefficient estimates of the adapted
Nathan model

We constructed a direct model, given by Eq. (10) to estimate

HbA1c from the aISF for any given CGM trace. However, we suspect

that the model described in Eq. (8), where HbA1c was estimated from a
FIGURE 1

The figure represents the experimentally measured HbA1c and aISF values (calculated as described in Section 2.3) of the CGM dataset. The pre-
diabetic participants are represented by crosses, diabetic participants are represented by solid triangles and non-diabetic participants are represented
by solid circles. The scatter points representing participants with a data-sufficient CGM trace [according to Danne et al. (10)] are colored black,
whereas the participants with a data-insufficient CGM trace are colored gray. The solid black line and the corresponding hatched region represent
Eq. (11), which the 95% confidence interval, and the dashed line along with its corresponding hatched region, represents Eq. (10) and its
corresponding 95% confidence interval. The dotted dash line represents Eq. (5).
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scaled aISF value using Eq. (2) would provide better estimates of

HbA1c levels. The OLS solution for linear regression analysis using Eq.

(9), while keeping the intercept zero, would provide us with an estimate

of the scaling factor for obtaining aBG from aISF.

The estimation of the scaling factor in Eq. (9), ŵ , obtained using

the LinearRegression function of the scykit-learn
package with the intercept set to zero, on the data-sufficient

training CGM-dataset, is ŵ   =   1:17, with a 95% confidence

interval (1.12, 1.22). The analysis yielded an R2 = 0.595 and, a p-

value<0.01. The estimate, ŵ , obtained using the analytical solution

for obtaining the OLS estimate of w from Eq. (8) yields an identical

result. The equation for obtaining HbA1c estimates using the

adapted Nathan model is represented by Eq. (11) below

HbA1cmmol=dL =   0:38  �  (1:17  �   aISFmg=dL) − 5:60, (11)

where aISFmg/dL represents the aISF in mg/dL, and HbA1cmmol/

mol represents HbA1c in mmol/mol. Figure 1 shows Eq. (11) as a

solid black line, along with the 95% confidence interval for

HbA1cmmol/mol corresponding to any aISFmg/dL. The formulae for

obtaining the confidence and prediction intervals for any HbA1c

value estimated using Eq. (11) are provided in the Supplementary

Material. The 95% prediction interval width calculated for the

HbA1c estimates are in the order of 57.87 mmol/mol.
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3.3 Validation of the direct and
adapted models

In Sections 3.1 and 3.2, we constructed two models for estimating

HbA1c from the aISF calculated from any given CGM trace. We then

constructed 95% prediction intervals for HbA1c estimates calculated

using the models. The formulae for constructing the prediction interval

corresponding to any estimated HbA1c level for both models are

provided in the Supplementary Material.

A paired t-test performed between the experimentally measured

HbA1c from the test CGM-dataset and the HbA1c estimates obtained

from their corresponding CGM trace using the direct model generates

a p-value of 0.643 and using the adapted Nathan model it generates a

p-value of 0.715. This indicates that at the population level, the HbA1c

estimates for an independent sample of CGM traces were statistically

(a = 0.05) indistinguishable from the experimental HbA1c. The 5-fold

cross validation root mean squared error (RMSE) for the HbA1c

estimates obtained using the direct model on the training CGM-

datasets is 11.9 mmol/mol and for the estimates obtained using the

adapted Nathan model it is 14.3 mmol/mol. The 95% confidence

interval for the direct model was on the order of 9.48 mmol/mol and

for the adapted Nathan model the 95% confidence interval was on the

order of 7.70 mmol/mol.
FIGURE 2

The figure represents the experimentally measured HbA1c and aISF values (calculated as described in Section 2.3) of the CGM dataset. The pre-
diabetic participants are represented by crosses, diabetic participants are represented by solid triangles and, non-diabetic participants are
represented by solid circles. The scatter points representing participants with a data-sufficient CGM trace [according to Danne et al. (10)] are colored
black, whereas the participants with a data-insufficient CGM trace are colored gray. The solid black line and the corresponding hatched region
represent Eq. (11), which the 95% prediction interval, and the dashed line, along with its corresponding hatched region, represents Eq. (10) and its
corresponding 95% prediction interval. The dotted dash line represents Eq. (5).
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A t-test performed using the Nathan model HbA1c estimates

for the test CGM-dataset generated a p-value<0.01, indicating that

at the population level, the Nathan model HbA1c estimates were

statistically different from the experimental value (taking a = 0.05).
4 Discussion

The development of CGM technology provides a large number of

glucose concentration measurements. This provides a great

opportunity to study the glucose dynamics and glycemic state of an

individual. The current CGM devices, however, only provide ISF

measurements, while traditionally it has been the norm to study

glucose dynamics with BG measurements. Therefore, a large bulk of

our understanding of glucose dynamics, glycemic states, and metabolic

diseases, such as diabetes, is based on BG values. To use the CGM

traces provided by these devices, it is important to reliably estimate the

corresponding BG, especially HbA1c, from any given CGM trace.

Typically, regression estimates are used to relate the average glucose

level from the CGM to HbA1c. Bailey et al. (26) showed that a 7-day

CGM trace provides a satisfactory estimate of GMI or estimated

HbA1c comparable to estimates obtained from 14-day CGM.

The analyses conducted by Nathan et al. (9), Hu et al. (20),

Bergenstal et al. (15), and Xu et al. (21) used large CGM trace

datasets and their corresponding HbA1c values. While these are

important estimates, it is equally important to ask if these models

continue to be applicable to different populations. Indeed, it has been

shown that regression equations vary with ethnicity; for instance, Hu

et al. (20) and Oriot and Hermans (19) cite over- or underestimation

relative to the Nathan model. To the best of our knowledge, no major

study has validated these estimates in an Indian population.

We used a dataset of 128 CGM traces collected from an Indian

population, sorted to use only data-sufficient CGM traces to construct

models suitable for this population. We showed that the standard

method of estimating HbA1c using Nathan’s equation does not

provide a statistically reliable estimate. Therefore, we suggest two

new methods for estimating HbA1c that are better suited to the

Indian population. The direct method for estimatingHbA1c from ISF

values, as described in Section 2.3, provides an estimate along with a

95% confidence and prediction interval for the estimate given an aISF

value. The mean HbA1c estimates provided by the direct model were

statistically indistinguishable from the mean experimental HbA1c

measurement for the data-sufficient test CGM-dataset. Furthermore,

we suspected that the inclusion of an improved method of estimating

BG from ISF could improve the estimates provided by Eq. (5).

Therefore, in Section 3.2, we constructed a new linear model for

estimating BG from ISF using linear regression. The mean HbA1c

estimates provided by this method were indistinguishable from the

mean experimentally measured HbA1c values of the data-sufficient

test CGM-dataset. However, the 95% prediction interval was large.

We showed that the mean HbA1c estimates obtained using these two

models, the direct model, and the adapted Nathan model, were not

significantly different from the mean experimental HbA1c. However,

the mean experimental HbA1c level was significantly different from

the mean estimates provided by the Nathan model at the

population level.
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From the analysis of the model performance on the test CGM-

dataset, we can conclude that although ourmodels for estimating HbA1c

provide a wide 95% prediction interval, which includes the HbA1c

estimates obtained using the Nathan model, the mean HbA1c estimates

provided by our models at the population level are statistically

indistinguishable from the mean experimental HbA1c values, unlike

the HbA1c estimates obtained using the Nathan model. This shows that

the direct and adapted Nathan models can provide a more reliable

HbA1c estimate than the Nathanmodel can. Such estimates are valuable

at the population level, as in clinical epidemiological studies.

The strength of thsi study is that it is the first investigation of its

kind in an Indian population. Furthermore, we outline that there are

subtleties in the estimation procedure; depending on the question of

interest, these lead to alternate formulations of the problem. We

applied both approaches to the same dataset, which made it easier to

compare the two methods. The weakness of our study is that the

dataset was limited, and the results should be seen as prospective. We

hope that future studies will test these hypotheses with greater

statistical power.

Because the computed prediction intervals are rather wide, we

claim that none of the models described above are suitable for

estimating HbA1c in individuals with (clinical) reliability. This

raises a deeper question: Can individual HbA1c estimates be

obtained using only aISF values calculated from a CGM trace? Or

does it require knowledge of some additional information regarding

the individual not contained in their CGM? That is, it remains an

open question although ISF and BG are highly correlated with

HbA1c, why are the models unable to provide tighter estimates of

HbA1c from aISF or aBG values alone?
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