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Insulin and aging – a
disappointing relationship
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Experimental studies in animal models of aging such as nematodes, fruit flies or

mice have observed that decreased levels of insulin or insulin signaling promotes

longevity. In humans, hyperinsulinemia and concomitant insulin resistance are

associated with an elevated risk of age-related diseases suggestive of a

shortened healthspan. Age-related disorders include neurodegenerative

diseases, hypertension, cardiovascular disease, and type 2 diabetes. High

ambient insulin concentrations promote increased lipogenesis and fat storage,

heightened protein synthesis and accumulation of non-functional polypeptides

due to limited turnover capacity. Moreover, there is impaired autophagy activity,

and less endothelial NO synthase activity. These changes are associated with

mitochondrial dysfunction and oxidative stress. The cellular stress induced by

anabolic activity of insulin initiates an adaptive response aiming at maintaining

homeostasis, characterized by activation of the transcription factor Nrf2, of AMP

activated kinase, and an unfolded protein response. This protective response is

more potent in the long-lived human species than in short-lived models of aging

research resulting in a stronger pro-aging impact of insulin in nematodes and

fruit flies. In humans, resistance to insulin-induced cell stress decreases with age,

because of an increase of insulin and insulin resistance levels but less Nrf2

activation. These detrimental changes might be contained by adopting a lifestyle

that promotes low insulin/insulin resistance levels and enhances an adaptive

response to cellular stress, as observed with dietary restriction or exercise.

KEYWORDS

insulin, insulin resistance, aging, longevity, senescence, oxidative stress,
proteostasis, Nrf2
Introduction

Humans and most animal species exhibit the phenomenon of aging prior to dying a

natural death. There is an age-dependent increase of physical damage to cellular

constituents and changes in cellular and organ function.

At the cellular level, age associated damage includes the accumulation of defective

macromolecules such as oxidized lipids, proteins and deoxyribonucleic acid (DNA), as well

as the formation of protein aggregates. There is increased production of free radicals and

less adenosine triphosphate (ATP) from dysfunctional mitochondria in the context of

lower availability of nicotinamide adenine dinucleotide (NAD+) and altered nutrient
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sensing. Cell repair and turnover mechanisms are impaired as

evident from impaired proteostasis, decreased autophagy and

lower stem cell activity (1–4). In most cell types, cell division is

accompanied by shortening of telomeres which may prohibit

proper replication of chromosomes. Further, aging is associated

with modifications of DNA and histones, and there is a strong

correlation between methylation patterns of DNA and

chronological or biological age (5). Several of these defects initiate

cellular senescence, a functional state with replicative arrest,

resistance to apoptosis, often associated with secretion of a

variable combination of soluble factors and exosomes which

promote low-grade inflammation, fibrosis and senescence of

additional cells (4, 6). There is impairment of immune functions,

termed immunosenescence. Probably all organs exhibit altered or

deficient functions, including the microbiome (1–11).

Can a natural course of aging be defined? Is there a primary

lesion which kicks off a cascade of defects, and what is the role of

insulin in this process? First of all, there is a genetic basis to the

duration of life, otherwise the strikingly different lifespans between

species such as between mice and humans or frogs and turtles could

not be explained (12, 13). However, follow-up studies of the aging

process have as yet failed to identify a primary cause and a standard

sequence of events leading to functional decline of cells, organs and

the organism. It has been suggested that DNA damage is an early

lesion preceding other defects such as increased levels of oxygen

radicals (14). However, it cannot be excluded that intracellular free

radicals contribute to the accumulation of damaged DNA. It could

also be argued that the primary lesion is a defective DNA repair

response which would also promote the accumulation of DNA

lesions. Alternatively, an impaired ability to scavenge radicals might

precede increased levels of oxygen radicals (15, 16). Because of the

interdependence between DNA damage, mitochondrial

dysfunction, increased levels of free radicals, deficient autophagy,

telomere attrition, loss of proteostasis, enhanced pro-inflammatory

gene expression and cell regenerative activities, these different

processes probably are part of a functional network. Aging could

then be viewed as deterioration of a physiological network active

within and between cells rather than being due to one primary

damage initiating a linear chain of molecular events (8).

In support of the network concept is the experience from anti-

aging trials. The DrugAge database of aging-related drugs lists

several hundred compounds for which significant extension of the

lifespan in at least one model has been reported. Drug targets

include many different cell functions ranging from glutathione

metabolism to synaptic transmission which argues against a

dominant role of defects in only one cellular compartment (17).

Similarly, genes associated with increased longevity code for many

different cellular functions rather than for one critical process.

Aging-associated genes are more likely to participate in the

crosstalk between different pathways or biological processes, and

there seems to be a network of “aging genes” directly interacting

with each other (18).

We conclude that cell, organ and organismal physiology has

several “weak spots” with low resistance towards metabolic,

inflammatory, toxic or other types of stress. For instance,

depending on genetic background, environment, lifestyle or
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developmental stage, there may be accumulation of DNA damage

in excess of DNA repair capacity, protein aggregation during

periods of high peptide synthesis overburdening protein turnover

or disaggregation mechanism, high levels of oxygen radical

formation in the context of intense mitochondrial activity and

failing radical scavenging responses, or accumulation of oxidized

lipids because of deficient autophagy (Figure 1). Such conditions

may arise as consequence of high anabolic cell activity such as in

response to excess concentrations of anabolic hormones like growth

hormone, insulin-like growth factor (IGF) or insulin. The growth

hormone – IGF – insulin signaling axis is a major modulator of the

aging process (19, 20). In the present review we focus on the role of

insulin which differs from that of growth hormone and the IGF

system in that it is strongly linked to nutrient sensing. We suggest

here that the age-associated decrease of resistance towards cellular

stress may explain the unfavorable effects of insulin during aging.

Thus, the actions of insulin may promote aging because of

insufficient ability to cope with the cellular stress incurred by the

hormone’s anabolic function.
Insulin and aging: genetics

There is a strong genetic basis to an aging-promoting effect of

insulin or the insulin/IGF-1 signaling pathway. A single mutation

with impact on the insulin/IGF-1 signal transduction pathway, either

affecting the sole insulin/insulin-like growth factor receptor or the

phosphatidyl-inositol-3-OH kinase (PI3K), more than doubles the

natural lifespan of the nematode Caenorhabditis elegans (21–23).

Lifespan regulation by the insulin/IGF-1 signaling pathway is similar

in the fruit fly Drosophila melanogaster. Genetic interference with

proper signal transduction by various approaches shares as outcome

an extension of lifespan (24).

In mice or humans, the regulation of the insulin/IGF-1 signal

transduction pathway is more complex because of an additional

upstream anabolic hormone, growth hormone. This pituitary

hormone promotes IGF-1 production from the liver and other

tissues, but the two hormones have partly opposite effects. For

instance, growth hormone induces insulin resistance but promotes

insulin production whereas IGF-1 promotes insulin sensitivity and

reduces insulin secretion (25). Therefore, outcomes of genetic

disturbance of the regulatory balance between growth hormone,

IGF-1 and insulin are difficult to interpret. In mice, disruption of

the insulin receptor in adipose tissue was sufficient to increase

median and maximum lifespan by 18% (26). A body-wide knockout

of the insulin receptor leads to early postnatal lethality whereas mice

heterozygous for mutant and wildtype receptors did not show an

altered lifespan despite some functional impairment of insulin

signaling (27). In another study, mice heterozygous for a

knockout of the insulin receptor showed no differences in lifespan

to wildtype littermates in females but an increase in maximum

lifespan in males (28).

Many studies have observed an extended lifespan in mice if

growth hormone expression, or binding to its receptor are impaired.

Longevity is increased in both sexes of Ames or other dwarf mice

with deficient production of growth hormone together with
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prolactin and thyroid stimulating hormone or with isolated growth

hormone deficiency (29, 30). Mice with disruption of the growth

hormone receptor gene express a similar phenotype (31). The

longevity mechanism of mice with deficient growth hormone

activity has not been fully elucidated, but it is of interest that

there is a strong association with enhanced insulin sensitivity (32).

Similar analyses of IGF-1 are hampered by the fact that lack of

functional IGF-1 receptors severely impairs development.

Therefore, mice heterozygous for a receptor gene knockout were

analyzed. Prolongation of lifespan was modest and seen in female

mice only (33–36). IGF-1 receptor function can also be affected by

deletion of insulin receptor substrate genes. This approach also

impairs insulin signaling. Mice lacking insulin receptor substrate 1

exhibit increased longevity (37). For the insulin receptor substrate 2

gene, deletion in all tissues of mice was not found to increase

lifespan while deletion in brain tissue only promoted longevity

(38) (Table 1).

The opposing effects of growth hormone and IGF-1 on insulin

sensitivity and production leads to the question whether insulin action

itself is more closely related to longevity than the two other anabolic

hormones. In mice, modulation of circulating insulin levels and insulin

sensitivity often but not always were reported to affect the lifespan

which supports a role of insulin actions in the aging process. In one
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study, mice with reduced insulin sensitivity because of impaired insulin

receptor function exhibited an increased lifespan in males but not in

females. Increased insulin sensitivity because of deficiency of protein

tyrosine phosphatase 1B or overexpressed peroxisome proliferator

activated receptor gamma coactivator-1a was associated with a

shortened lifespan (28). Another strain of mice with impaired insulin

receptor function also exhibited insulin resistance and

hyperinsulinemia, but without an impact on lifespan (27). Modest

lowering of circulating insulin levels by 25 – 34% but not of IGF-1 via

knocking out the Ins1 gene and one of two Ins2 alleles in female mice

appeared to increase maximum lifespan (p < 0.059) (40).

In humans the contribution of single genes coding for

components of the insulin/IGF-1 signaling pathway to longevity

appears to be low with the exception of FOXO3A (41, 42) and

possibly AKT1 (43, 44). However, the genetic association of single

nucleotide polymorphisms with human longevity became

significant when polymorphisms of 68 genes of the insulin/IGF-1

signaling pathway were analyzed together. The significance of the

association was carried by alleles of nine genes, AKT1, AKT3,

FOXO4, IGF2, INS, PIK3CA, SGK, SGK2, and YWHAG (45). This

study did not observe the well documented association of FOXO3A

with longevity, possibly because nonagenarians rather than

centenarians were analyzed.
TABLE 1 Genetic manipulation of anabolic hormone signaling versus lifespan.

Organism Effect References

Caenorhabditis elegans Genetic impairment of the insulin/IGF-1 signaling pathway extends lifespan. (21–23)

Drosophila melanogaster Genetic impairment of the insulin/IGF-1 signaling pathway extends lifespan (24)

Mouse strains

Genetic impairment of growth hormone expression or signaling extends lifespan (25, 32, 33, 39)

Genetic impairment of IGF-1 receptor expression modestly extends lifespan in females (33–36)

Genetic impairment of insulin receptor expression has modest or no effect on lifespan extension (26–28)
FIGURE 1

Functional network of cytoprotective pathways versus aging associated insults. Living cells experience a insults that usually initiate (green arrows) an
adaptive, protective/repair response (red arrows) for maintaining cell functions, or there is replacement by newly differentiated cells. During the
aging process, the adaptive response fails to maintain a normal physiological state of cells, Progenitor/stem cell activity is diminished, and there is
concomitant dysfunction of the microbiota. Mitoch., mitochondrial.
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Taken together, a low activity state of the insulin/IGF-1 signaling

pathway promotes longevity, effects are stronger in nematodes and

fruit flies than in mice or humans, possibly due to the more complex

regulatory network in mammals which has as additional player,

growth hormone, which is not present invertebrates.

Another additional factor determining the outcome of insulin

actions on longevity might be the overall metabolic rate. A high

metabolic rate is associated with increased production of reactive

oxygen species (ROS). For instance, small-breed domestic dogs

exhibit a higher mass-specific metabolic and growth rate than large

dogs, and therefore oxidative damage of lipids is seen. Nevertheless,

small-breed dogs live significantly longer (46, 47). In mice, heavier

body weight is associated with increased epigenetic aging and earlier

death (48, 49). Similar findings have been reported for humans. In

Southern Chinese adults, the basal metabolic rate was inversely

correlated with all-cause mortality in males, but not in females (50).

Within a local population, people of smaller size have a higher life

expectancy, in different regions of the world (51). It may be concluded

that within a species a higher growth rate is associated with shorter

lifespan, but this is not explained by a higher metabolic rate.
Insulin and aging:
epidemiological findings

In humans, epidemiological studies suggest a pro-aging effect of

insulin. Insulin resistance increases with aging, but centenarians

usually preserve normal glucose tolerance, low levels of fasting

insulin and higher insulin sensitivity, when compared with adults >

75 years of age (52–54). The higher longevity in shorter men is also

associated with lower fasting insulin concentrations (55).

In adults with normal glucose tolerance, there is a parallel

increase of fasting insulin levels and insulin resistance with aging,

and this is associated with central obesity (56, 57) .

Hyperinsulinemia and insulin resistance are important risk

factors for type 2 diabetes as well as hypertension and

cardiovascular disease (58–60). Age-related disorders associated

with insulin resistance also include neurodegenerative diseases

such as Alzheimer’s or Parkinson’s disease (61, 62).

Another approach of studying the health impact of

hyperinsulinemia is to determine the insulinemic potential of the

diet as assessed by food frequency questionnaires evaluated by

measuring circulating C-peptide concentrations. Analyses of the

prospective Nurses’ Health Study and the Health Professionals

Follow-up Study (total of about 2,800,000 person-years) showed

that a higher insulinemic potential of diet was associated with

increased risk of all-cause, cardiovascular and cancer mortality (63).

Of note, these associations were independent of BMI.
Insulin and aging: (patho)
physiological aspects

Insulin is a potent anabolic hormone. Just doubling fasting

insulin levels is enough for suppression of lipolysis by

approximately 50% and promotion of lipogenesis in adipocytes
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while hepatic gluconeogenesis is not yet inhibited (reviewed in

(64)). A Mendelian randomization analysis found that genetic

variants which code for a higher insulin response to glucose

challenge are strongly associated with increased BMI which is

considered as proof of a causal relationship between increased

insulin secretion and body weight gain (65). This fits with the

observation that insulin therapy favors weight gain (66).

Conversely, pharmacological lowering of circulating insulin

concentrations in obese people by diazoxide caused greater weight

loss than diet alone (67). Treatment of obese persons with the

somatostatin analogue octreotide led to weight loss in conjunction

with a decrease of insulin levels (68, 69). Lifestyle changes or other

interventions known to improve risk factors of age-associated

disease and cardiovascular mortality cause lower insulin levels, as

reported for calorie-restricted diets, intermittent fasting or bariatric

surgery (70–73). Vegetarian diets are also associated with lower

insulin resistance and lower fasting insulin levels, even in

comparison with matched lean controls, and appear to improve

healthspan and possibly also lifespan (74, 75). Another lifestyle

parameter associated with better healthspan is physical exercise,

which causes lower fasting and post-challenge insulin levels as well

as improved insulin sensitivity (76–78).

Although insulin is an essential hormone for growth and

maintenance of complex organisms (79), the above findings suggest

that elevated insulin levels promote age-associated diseases. One

cellular response to permanently elevated insulin levels is partial

downregulation of insulin signaling via the insulin receptor, causing

the phenomenon of insulin resistance. This may involve decreased

insulin receptor expression, but the major reason is impaired signal

transduction because of diminished tyrosine autophosphorylation of

the receptor, removal of bound phosphate residues by phosphatases

and suboptimal downstream signaling along the insulin receptor

substrate (IRS) – (PI3K) – protein kinase B (PKB/AKT) pathway (80–

83). A higher amount of alternatively spliced type A insulin receptor

lacking exon 11 also may contribute to insulin resistance by directing

insulin signaling towards the mitogen activated kinase pathway

which promotes cell proliferation and tumor development (84).

Signaling via the PI3K-AKT pathway is not only affected by

modulation of insulin receptor function but also enzyme activities

downstream. The diversity of proteins involved in the PI3K-AKT

signaling pathway allows for varying outcomes of signaling, and this

complexity is only partially resolved. It therefore is not surprising

that “insulin resistance” does not mean full suppression of

hormonal activity but only downregulation of some insulin

functions such as induction of glucose transporter translocation

to the cell membrane (85, 86). In addition to impaired glucose

transport, insulin resistance suppresses the stimulatory effect of

insulin on nitric oxide production from endothelial nitric oxide

(NO) synthase because of deficient posttranslational modification

of the enzyme via PI3K/AKT activity (87, 88). The resulting

decreased arterial smooth muscle relaxation is aggravated by the

non-suppressed insulin-dependent influx of calcium ions which

enhances vascular contractility, resulting in upregulated vascular

tone which increases the risk of vascular events (89, 90).

Other hormonal actions that are less or not affected by insulin

resistance and may even be upregulated with the concomitant
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hyperinsulinemia include upregulation of PI3K-AKT dependent

lipogenesis in hepatocytes and of the mechanistic target of

rapamycin complex 1 (mTORC1) activity, the latter resulting in

increased protein synthesis and impaired autophagy (91–95).

Increased systemic insulin levels and concomitant insulin

resistance during the progression to type 2 diabetes is associated

with chronic overactivation of the mTORC1 signaling pathway and

cell stress in the context of a high protein synthesis rate (96). During

insulin resistance states (and concomitant hyperinsulinemia) there

is, varying between tissues, phosphorylation of several Forkhead

Box O (FOXO) transcription factors and their retention in the

cytoplasm. resulting in suppression of muscle autophagy and

protein degradation, among other effects (86, 97–99). The impact

of elevated insulin levels on protein synthesis and autophagy is

accompanied by the accumulation of proteins with multiple

posttranslational modifications because of insufficient degradation

which leads to endoplasmic reticulum stress (95, 100). Insulin

signaling via phosphorylation of the Src homology 2 domain-

containing transforming proteins (SHC) and subsequent

activation of the mitogen-activated kinase protein kinase kinase

(MEK) - extracellular signal-regulated kinase (ERK) is not affected

by insulin resistance and contributes to these effects of

hyperinsulinemia (Figure 2) (101, 102).

These findings suggest that increased insulin signaling because

of elevated ambient levels causes cell stress, and there is a

potentiating effect of insulin resistance. It therefore is not

surprising that chronic exposure of human hepatocytes to high

insulin levels (20 nmol/l) in vitro elicits a senescent cell phenotype,

characterized by cell cycle arrest and adoption of a senescence-

associated secretory phenotype which includes the secretion of

proinflammatory mediators, microRNAs and vesicles (103). The
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promotion of hepatocyte senescence by hyperinsulinemia is absent

in mice with a liver-specific knockout of the insulin receptor

whereas enhanced senescence was still occurring in white adipose

tissue. In obese persons undergoing bariatric surgery, insulin levels

were closely associated with markers of senescence in liver tissue

(104). Increased levels of insulin were also observed to promote

senescence of human adipocytes in vitro as well as in vivo (105).

High ambient insulin concentrations also drive mouse neurons into

a senescence-like state, in vitro and in vivo (106).

Another age-associated marker is DNA damage. Prolonged

incubation of animal or human cells with 0.5 nmol/l insulin

caused DNA damage in the context of increased radical oxygen

species production from nicotinamide adenine dinucleotide

phosphate (NADPH) oxidase and mitochondria (107). Whether

insulin resistance or the concomitant hyperinsulinemia promotes

enhances telomere attrition in peripheral blood leukocytes in

addition to cell stress has not been studied in detail. Cross-

sectional studies suggest that that insulin resistance is associated

with increased telomere shortening in some groups but not in

others (108–112). A positive association was also noted in the

follow-up of cohorts (113–115) with one exception (116). These

observational studies also found an association between telomere

attrition and other parameters such as adiposity, hypertension or

circulating sirtuin-1 concentrations. Therefore, the association

between telomere length and insulin levels may also be indirect.
Insulin and aging: failure of
adaptive response

As reviewed above, high insulin concentrations cause cell stress

because of excess anabolic activity which include (i), increased

lipogenesis and fat storage also in non-adipocytes, (ii), increased

protein synthesis and accumulation of non-functional polypeptides

because of limited turnover capacity, (iii), impaired autophagy

activity, (iv) increased progression of stressed cells towards a

senescent stage. These changes are associated with mitochondrial

dysfunction and increased levels of radical oxygen species (117,

118). Hyperinsulinemia usually is accompanied by insulin

resistance, but there is only partial suppression of insulin

signaling, favoring lipogenesis as well as mTORC1 activation for

protein synthesis and autophagy inhibition. The relevance of

enhanced mTORC1 activation for the aging process has been

demonstrated by treating mice with the mTORC1 inhibitor

rapamycin which resulted in less proliferative and protein

synthesis activity concomitant with improved autophagy and

increased longevity. These changes resemble effects of dietary

restriction. However, pharmacological inhibition of mTOR may

reach a degree where detrimental consequences to the physiological

balance are noted such as impaired immune cell activation, insulin

resistance and beta islet cell damage (95, 119, 120). Insulin

resistance in the presence of hyperinsulinemia helps maintain

glucose homeostasis and decreasing metabolic and oxidative stress

by depressing excess glucose influx (121, 122). However, the

concomitant suppression of NO production from endothelial NO
FIGURE 2

Elevated insulin levels and insulin resistance favor age-associated
diseases in humans. Modest increases of insulin concentrations
suffice to suppress lipolysis and support lipogenesis, promoting
obesity. Hyperinsulinemia combined with insulin resistance cause
activation of mTORC1 which in the context of less FOXO activation
favors cell stress because of increased protein synthesis, eventually
causing cell senescence. Insulin resistance impairs endothelial NO
synthase (eNOS) activity, limiting vascular relaxation.
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synthase favors a pro-oxidant and inflammatory vascular milieu as

well as vasoconstriction potentially favoring vascular damage

(Figure 2) (87–89).

Taken together, hyperinsulinemia in the context of insulin

resistance appears to exhibit a pro-aging role. Whether these effects

become clinically relevant probably depends on the body’s ability to

mount an appropriate defense response for containing the detrimental

consequences of hyperinsulinemia and insulin resistance. One well

documented health risk associated with increased insulin levels is type 2

diabetes. We have previously argued that the progression to overt type

2 diabetes is prevented if there is a persistent protective/adaptive

response which includes an anti-inflammatory defense response to

nutrient-induced inflammation, increased neutralization of free

radicals and improved mitochondrial function for the reduction of

oxidative stress, and an upregulated ability to lessen endoplasmic

reticulum stress by an unfolded protein response and autophagy

(123). We suggest here that this adaptive (hormetic) response also

controls the pro-aging effect of insulin. The stress signals involved in

inducing a hormetic response include oxygen radicals, misfolded

proteins and decreased levels of ATP (Figure 3).

Oxygen radicals initiate a cell protective response by activation

of nuclear factor erythroid 2 – related factor 2 (Nrf2), a key

transcriptional factor for the expression of more than 250 genes

involved in cytoprotective processes such as redox regulation,

xenobiotic metabolism, DNA repair, and protein homeostasis

including the unfolded protein response (124–126). There is

impairment of pro-inflammatory gene expression, including the

suppression of nuclear factor kappa B (NFkB) and pro-

inflammatory cytokines (127, 128). Another effect of Nrf2

activation is the support of endothelial NO synthase expression

and NO production (129). Thus, activation of Nrf2 is an

appropriate adaptive cellular response to the oxidative,
Frontiers in Endocrinology 06
inflammatory and vascular stress caused by hyperinsulinemia and

concomitant insulin resistance, with an impact on aging (130).

Loss of proteostasis because of excessive protein synthesis is a

major consequence of an acute rise of insulin levels, but this is

apparently contained by the unfolded protein response of the

endoplasmic reticulum (100). Misfolded proteins signal the loss of

proteostasis by binding to chaperone sensors which initiates a

transcriptional program leading to a general increase of mechanisms

involved in protein synthesis and turnover, the unfolded protein

response (131). This protective cell response is impaired in the

presence of experimentally induced or diabetes-associated insulin

resistance (132). Low chaperone activity causes cell senescence (133).

A third important signal of cell stress is a decrease of ATP levels

versus adenosine diphosphate (ADP) and adenosine monophosphate

(AMP) concentrations, which results from increased consumption

and deficient production of ATP. Low ATP levels lead to the

activation of AMP-activated protein kinases. This group of kinases

modulates the activity of many metabolic enzymes, histones and

transcription factors by phosphorylation and by promoting their

acetylation. One important consequence is the restoration of

mitochondrial homeostasis (134–136).

As mentioned, several lifestyle factors have been observed to lower

levels of fasting and postprandial insulin as well as of insulin resistance.

These factors include dietary restriction and exercise (72, 137).

Interestingly, dietary restriction or exercise cause an initial increase of

oxidative or electrophile stress. The resulting activation of the Nrf2

system appears to mediate much of the health effects observed (138–

141). Many dietary phytochemicals such as polyphenols also cause the

activation of Nrf2, in part with an involvement of the hydrocarbon

receptor (102, 142, 143). Another pathway of improving insulin

resistance and concomitant hyperinsulinemia by lifestyle changes

involves the gut, possibly by modulation of gut microbiota

composition and activity may decrease gut leakage. The resulting

lower levels of bacterial compounds in circulation is associated with

decreased production of pro-inflammatory immune mediators and

increased insulin sensitivity (144).
Discussion

The anabolic hormone insulin induces cell stress because of

increased biosynthetic activity and reduced clearance/repair of

damaged cellular components. Insulin resistance is a potentiating

factor because of increased signaling via the mitogen-activated

kinase pathway and less production of NO by endothelial NO

synthase. These potentially aging-promoting effects are contained

by an adaptive cellular activity characterized by anti-oxidative, anti-

inflammatory, protein chaperone, DNA repair and overall turnover

process which is more potent in the long-lived human species than

in short-lived models of aging research (145–147). Therefore, the

pro-aging impact of insulin is less controlled in short-lived animal

models such as nematodes and fruit flies. The balance between

insulin/insulin resistance induced cell stress and the cytoprotective

response determines detrimental effects of hyperinsulinemia and

insulin resistance. Controlling factors are, on the one side, levels of

insulin and insulin resistance, and, on the other side, the quality of
FIGURE 3

Adaptive response to anabolic cell stress. Molecular signals of cell
stress include radical oxygen species and other electrophiles,
misfolded proteins and decreased ATP/AMP and ATP/ADP ratios
because of enhanced ATP consumption. These signals initiate an
adaptive response to increase cellular resistance and restore proper
physiological functions, including activation and nuclear transfer of
Nrf2, an unfolded protein response and stimulation of AMP-
activated protein kinases. ROS, radical oxygen species; UPR,
unfolded protein response; AMPK, AMP-activated protein kinases,
inflamm., inflammatory.
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cellular resistance to anabolic stress. This fits with the observation

that centenarians exhibit low circulating insulin concentrations as

well as high insulin sensitivity.

Of note, lifestyle factors that are considered to improve healthspan

and possibly lifespan in humans modify both sides of the balance.

Dietary restriction and exercise have been found to lower levels of insulin

and insulin resistance. Concomitantly, dietary restriction, dietary

phytochemicals and exercise activate the Nrf2-dependent cellular stress

response andmodifymicrobiota composition and function in a favorable

way. During aging, the cell stress response via Nrf2 becomes less potent

but possibly not in centenarians (148–151), and there is an age-

dependent increase of circulating insulin and insulin resistance (52,

152). Both processes are supporting the pro-aging effects of insulin, and

both may be targeted by dietary restriction and exercise.
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