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In recent years, cardiovascular disease has garnered increasing attention as the

second leading cause of death in individuals with acromegaly, following

malignancy. Identifying cardiac dysfunction early in acromegaly patients for

timely intervention has become a focal point of clinical research. Speckle

tracking echocardiography, a well-established ultrasound technique, surpasses

conventional Doppler ultrasound in its sensitivity to assess both local and global

cardiac mechanics. It can accurately detect subclinical and clinical myocardial

dysfunction, includingmyocardial ischemia, ventricular hypertrophy, and valvular

changes. Over the past five years, the use of speckle tracking echocardiography

in acromegaly patients has emerged as a novel approach. Throughout the

cardiac cycle, speckle tracking echocardiography offers a sensitive evaluation

of the global and regional myocardial condition by quantifying the motion of

myocardial fibres in distinct segments. It achieves this independently of variations

in ultrasound angle and distance, effectively simulating the deformation of

individual ventricles across different spatial planes. This approach provides a

more accurate description of changes in cardiac strain parameters. Importantly,

even in the subclinical stage when ejection fraction remains normal, the strain

parameters assessed by speckle tracking echocardiography hold a good

predictive value for the risk of cardiovascular death and hospitalization in

acromegaly patients with concomitant cardiovascular disease. This information

aids in determining the optimal timing for interventional therapy, offering

important insights for cardiac risk stratification and prognosis. In the present

study, we comprehensively reviewed the research progress of speckle tracking

echocardiography in evaluating of cardiac dysfunction in acromegaly patients, to

pave the way for early diagnosis of acromegaly cardiomyopathy.
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1 Introduction

Acromegaly is a chronic neuroendocrine disorder primarily

attributed to pituitary neuroendocrine tumors (PitNETs) secreting

growth hormone (GH), thereby prompting excessive production of

insulin-like growth factor 1 (IGF-1). It is characterized by facial

roughness and enlarged extremities due to excessive soft tissue

growth and also associated with bone and joint lesions and related

metabolic syndrome (1–3). The incidence of acromegaly exhibits

variability, ranging between 83 and 133 cases per million

individuals, according to recent research (4–10). Long-term

exposure to elevated GH and IGF-1 concentrations results in

higher mortality rates primarily attributed to cardiovascular,

cerebrovascular, and pulmonary dysfunction, leading to a 30%

notable reduction in life expectancy (2, 11). Over the past decade,

cardiovascular complications have become one of the leading causes

of mortality in acromegaly patients. Although the prevalence of

cardiovascular disease in acromegaly patients has decreased from

44% to 23% in recent years, it still stands as a significant cause of

death in this population, second only to malignant tumors (12).

These cardiovascular complications include acromegalic

cardiomyopathy, hypertension, arrhythmias, and valvular disease

(13). Acromegalic cardiomyopathy is characterized by left

ventricular hypertrophy (LVH) and diastolic dysfunction, with a

prevalence ranging from 11% to 78% (mean 41.9%) (14). The

prevalence rates for hypertension, arrhythmias, and valvular disease

stand at 11.9%–54.7% (mean 33.6%), 89%, and 75%, respectively,

with arrhythmias and valvular disease often remaining asymptomatic

(13, 15). Patients with acromegaly suffering from cardiovascular

disease exhibit a twofold increase in mortality compared to those

without such complications (16). GH can enhance the sensitivity and

content of myofilament calcium, L-type calcium channels, and

collagen deposition, thereby regulating the growth and metabolism

of cardiomyocytes. In contrast, IGF-1 can reduce cardiomyocyte

apoptosis, preventing the loss of these cells and contributing to the

maintenance of cardiac function. However, when the heart is exposed

to high concentrations of GH and IGF-1, it undergoes morphological

and functional adaptive changes, primarily attributable to two

mechanisms: 1) the direct toxic effects of excessive GH and IGF-1

on the heart; 2) the induction of arterial hypertension and disruption

of glucose and lipid metabolism. Myocardial damage in acromegaly

progresses through distinct stages: 1) asymptomatic left ventricular

hypertrophy and increased systolic function in the early stage, 2)

obvious LVH, diastolic dysfunction and decreased systolic function in

the middle stage, 3) in the end stage, it develops into dilated

cardiomyopathy, which can ultimately result in heart failure.

Importantly, myocardial damage in the early stage is potentially

reversible (17, 18). Therefore, the early evaluation and diagnosis of

cardiovascular disease in acromegaly remain a major clinical concern.

Echocardiography presents a readily accessible technique for

evaluating both structural and functional cardiac abnormalities

(19). However, due to individual heterogeneity, traditional two-

dimensional echocardiography indices of myocardial systolic-

diastolic function exhibit low sensitivity, leading to a high rate of

missed diagnosis for subclinical myocardial function impariments
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(20). Consequently, there is a pressing need for a non-invasive

diagnostic tool characterized by speed, repeatability, and high

resolution to enhance clinical diagnosis and treatment.

Speckle tracking echocardiography (STE) emerges as a relatively

recent ultrasound technique that allows quantitative analysis of both

regional and overall myocardial motion and deformation.

Importantly, it overcomes the well-documented limitations of

Doppler ultrasound, including angle dependence, susceptibility to

noise interference, and interobserver variability (21, 22). Currently,

STE finds prominent clinical applications in: 1) evaluating subclinical

myocardial dysfunction, such as cardiomyopathy resulting from

various causes, viral myocarditis, and heart failure with preserved

ejection fraction, etc. 2) distinguishing between types of cardiac wall

hypertrophy, such as hypertrophic cardiomyopathy and myocardial

amyloidosis, (3) diagnosing ischemic heart diseases, such as coronary

heart disease, 4) evaluating cardiac function in cancer patients,

including monitoring cardiotoxicity induced by chemotherapeutic

agents (23). This ultrasound technique has proven invaluable in the

clinical diagnosis and prognostic stratification of hypertrophic

cardiomyopathy, pericardial diseases, and aortic regurgitation (24–

26). For example, STE enables the prediction of the optimal timing to

initiate antihypertensive therapy in patients with class I hypertension

(AH) and determines the most suitable time for intervention in

patients with asymptomatic severe heart valve disease. Notably, data

indicates improvements in global longitudinal strain (GLS) following

24 weeks of hypertension medication, even if AH has not returned to

normal levels. In patients with atrial fibrillation, peak left atrial

longitudinal strain (PALS) emerges as an independent predictor of

recurrence following conversion to sinus rhythm, exhibiting an 85%

sensitivity and 99% specificity. When evaluating diastolic function in

heart failure patients, PALS demonstrates superior feasibility

compared to atrial volumes, resulting in a 75% reduction in the

diagnosis of diastolic function of uncertain clinical significance and

significantly improving clinical diagnostic accuracy (27). In the field of

PitNETs, STE has been successively used in Cushing’s disease (28),

thyrotropin-secreting tumors (29, 30), and acromegaly, with the latter

being the most extensively studied. STE has emerged as a crucial tool

in evaluating cardiac function among acromegaly patients. Its

application in acromegaly represents a novel clinical practice,

offering a new avenue and reference for the diagnosis and treatment

of acromegaly. Therefore, in the present study, we comprehensively

review cardiac dysfunction detected through speckle tracking

technology in patients with acromegaly. Additionally, we summarize

the ultrasound characteristics indicative of subclinical myocardial

functional injuries. These findings may open up new perspectives to

guide future clinical management.
2 Speckle tracking
ultrasound technology

Speckle tracking ultrasound technology and traditional two- or

three-dimensional digital echocardiography images, employ image

processing algorithms to identify small and stable myocardial

footprints or spots generated by the interaction between
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ultrasound waves and myocardial tissue in the selected region of

interest. Tracking the distance between frames and spots or their

spatial-temporal displacement (regional strain velocity vector) in

each cardiac cycle, provides valuable information on focal, phased,

and global myocardial strain (23). The conventional method for

measuring Lagrangian strain was originally developed using tissue

Doppler (31). However, its precision and usefulness are limited due

to its angular dependence and sensitivity to noise. STE effectively

addresses these limitations and can accurately distinguish between

normal myocardial segmental displacements and those occurring

passively due to myocardial hypertrophy or the restriction of

adjacent myocardial tissue (23). Two-dimensional STE (2D-STE)

assesses global circumferential strain (GCS) and global radial strain

(GRS) through a combination of three short-axis views and three

apical views to measure GLS. In contrast, three-dimensional STE

(3D-STE) requires only one apical image acquisition to

automatically measure GCS, GRS, and GLS. While 2D-STE

involves acquiring multiple 2D images over multiple cardiac

cycles, making it more time-consuming, it offers higher temporal

and spatial resolution compared to the single full-volume

acquisition of 3D-STE (32). These strain indicators in STE

represent the ratio of the maximum contraction change in

myocardial length in all directions to its initial size. During

systole, when the myocardium contracts, the length decreases,

resulting in strain parameters typically expressed as negative

values. Lower negative values indicate better ventricular

systolic function.
3 2D-STE

2D-STE is an innovative ultrasound technique that combines

speckle tracking with two-dimensional ultrasound to assess

longitudinal strain (LS), radial strain (RS), and circumferential

strain(CS) associated with myocardial contractility that can occur

at the myocardial level. This is in contrast to the left ventricular

ejection fraction (LVEF), which is commonly used clinically to

evaluate left ventricular systolic function but is less sensitive to

subtle ultrastructural changes (21, 33–35). Myocardial strain refers

to the percentage change in myocardial length relative to its initial

myocardial length in a non-stress state, enabling the direct

visualization of myocardial changes such as elongation,

shortening, thickening, or thinning (36). GLS is considered the

most valuable parameter for clinical diagnosis and prognosis (35,

37, 38). It is frequently used in clinical practice for assessing

myocardial function, stratification of disease prognosis, and

defining drug threshold (39). Moreover, 2D-STE is free from

defects like noise interference, angle dependence, or heterogeneity

among different operators, making it highly valuable in clinical

applications (40).
3.1 Left ventricular (LV) strain imaging

The use of 2D STE in patients with acromegaly is on the rise,

with a primary focus on GLS as a key parameter for assessing
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changes in ventricular anatomical volume changes and kinematic

alterations. Left ventricular function has always been a focal point of

clinical research, thus warranting early exploration. Volschan ICM

et al. were among the first to apply STE to assess cardiac function in

acromegaly patients (40). Nevertheless, they observed no difference

in GLS between acromegaly patients and healthy controls, matched

for sex, age, AH, and diabetes mellitus(DM). This finding

contradicted previous results obtained using Doppler ultrasound

strain imaging (41–44). Subsequently, Popielarz-Grygalewicz et al.

used 2D STE to assess GLS in patients with naive acromegaly who

exhibited normal LVEF (45). Interestingly, this study revealed that

the acromegaly group exhibited significantly worse GLS values

when compared to the control group (-16.6% vs. -20.7%, p <

0.01). Concurrently, the study by Uziȩbło-Życzkowska et al.

arrived at similar results as Popielarz-Grygalewicz et al. (-18.1%

vs. -19.4%, p = 0.023) (46). Conversely, Gadelha P et al. obtained

results similar to those of Volschan ICM et al. in their latest study

(19). We hypothesize that the disparity in results may be attributed

to differing inclusion criteria. Volschan ICM et al. and Gadelha P

et al. included subjects who had already undergone surgery or

recived somatostatin analogs(SSA) treatment, while Popielarz-

Grygalewicz et al. focused on patients who had not received any

treatment. As a result, Popielarz-Grygalewicz A. et al. further

investigated GLS differences before and after acromegaly

treatment. They found that GLS significantly improved in the

group receiving appropriate treatment(using SSA for 3 months)

compared to the untreated group (-20.4% vs. -20.0%, p = 0.045).

However, there was no significant change in GLS after SSA

treatment lasting more than 6 months. Additionally, they

discovered a positive correlation between baseline GLS with BMI

(r=0.446, p=0.011) as well as BSA (r=0.411, p=0.019), explaining the

better GLS values in female patients, possibly related to lower BMI

and BSA values in women (47).
3.2 Left atrial (LA) strain imaging

Only a limited number of studies have employed 2D STE to

assess LA function in acromegaly patients. Uziȩbło-Życzkowska

et al. used 2D STE to evaluate changes in LA and LV function

parameters among acromegaly patients, and their findings indicated

that GLS was significantly worse in these patients (46). This

observation was related to the stage of the disease and the GH

levels of the patients. Similarly, Koca et al. used 2D STE to assess the

functional parameters of LA and LV in individuals with active,

long-term acromegaly. Their research revealed a significant

deterioration in the GLS of both LA and LV (48), aligning with

the results of Uziȩbło-Życzkowska et al. Furthermore, Koca et al.

were the first to identify a strong positive correlation between the

extent of GLS-LA reduction in and IGF-1 levels. However, the

relationship between IGF-1 and GLS-LV remained controversial

(19, 40, 48).

The LA serves multiple roles within the cardiac system,

including acting as a cardiac reservoir, catheter, and booster

pump (49). It also plays a pivotal predictive role in major

cardiovascular and cerebrovascular adverse events (MACE), such
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as heart failure, arrhythmias, and stroke (50–52). Given its

importance in maintaining normal cardiac function, LA strain

parameters can be classified into distinct categories based on their

role during different phases of the cardiac cycle. These categories

include left atrial reservoir strain (LASr), left atrial conduit strain

(LASc), and left atrial contractile strain (LASct), with LASr

receiving particular attention in clinical research. During

ventricular systole, LA deformation depends on atrial blood filling

and the traction exerted by the mitral annulus due to LV

contraction. Consequently, LASr can serve as an indicator of LA

myocardial fibrosis and LV functional characteristics, facilitating

assessments of LV dysfunction classification and the risk of

recurring MACE (e.g., atrial fibrillation, heart failure, etc.) (53,

54). Nevertheless, it is worth noting that LASr’s clinical information

pertaining to the diastolic phase may be limited, and further clinical

studies are warranted to explore the predictive potential of LASc

and LASct to address this limitation. Routine LA monitoring and

evaluation in clinical diagnosis and treatment could help identify

subclinical risk events promptly. Table 1 summarizes the

application of 2D STE with acromegaly patients.
4 3D-STE

Compared to 2D STE, the analysis of cardiac functional

parameters using 3D STE offers several advantages. It is faster,

demands less technical expertise, reduces interobserver variability,

and enhances reproducibility (55). Furthermore, 3D STE enables

the calculation of area strain (AS) by measuring wall strain in the

circumferential direction (56). Despite some inherent drawbacks,

such as lower temporal and spatial resolution and a tendency to

underestimate rotation and distortion, the benefits of 3D STE in

measuring cardiac strain parameters outweigh these limitations.

Simultaneously, there is also a “stitching noise” observed between
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individual subvolumes (57, 58). However, it is essential to note that

the advantages of employing 3D STE for measuring cardiac strain

parameters significantly outweigh these disadvantages. Over the

years, there has been an increasing trend toward the adoption of 3D

STE for the assessment of cardiac dysfunction in patients

with acromegaly.
4.1 Left ventricular (LV) strain imaging

In 2018, Kormányos et al. conducted pioneering research using

3D STE to investigate LV rotation patterns and mechanical changes

in acromegaly patients. Their findings revealed significant

alterations in LV basal, apical, and ventricular rotation

parameters among patients with acromegaly (59). Notably, only

torsion time displayed a significant difference between the active

and inactive acromegaly subgroups. Parameters associated with LV

rotational mechanics offer valuable insights into cardiac injury

beyond what can be gleaned from LVEF. They provide a means

to predict myocardial recovery clinically and offer indicators of

parasympathetic autonomic function (60). Nevertheless, studies on

myocardial rotational mechanics in acromegaly remain limited.

While 3D STE can simultaneously measure cardiac volume,

strain, and rotation parameters, no research has yet employed 3D

STE to comprehensively assess all relevant cardiac parameters in

acromegaly patients, offering a complete assessment of cardiac

injury and prognosis.

Kormányos et al. used 3D STE to evaluate cardiac radial strain

(RS), longitudinal strain (LS), circumferential strain (CS), and

three-dimensional comprehensive strain (3DS) in active

acromegaly patients (61). Their findings indicated that GRS was

significantly improved in patients with active acromegaly compared

to controls, suggesting increased myocardial strain and

contractility. Only CS displayed statistically significant differences
TABLE 1 Application of 2D STE in patients with acromegaly.

Year First author
Patients
included

Disease state
Cardiac
region

Strain Parameters

Improved Worse Normal

2017 Volschan ICM (40). 37
Naive : Persistent non-remission: Remission

(14:16:7)
LV — — GLS

2020
Uziȩbło-Życzkowska B

(46).
30 NA LA, LV — GLS —

2020
Popielarz-Grygalewicz A

(45).
43 Naive LV — GLS —

2022 Gadelha P (19). 25 Remission : Naive (20:5) LV — GRS
GLS, GCS,

LVT

2022 Koca H (48). 50 Recurrence : Persistent non-remission(45:5) LA, LV — GLS —

2023
Popielarz-Grygalewicz A

(47).
35 Naive LV — — GLS
f

LV, left ventricular; LA, left atrial; GLS, global longitudinal strain; GCS, global circumferential strain; GRS, global radial strain; LVT, left ventricular twist; NA, not available.
The symbol "—" means “NA, not available”.
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between the active and inactive acromegaly subgroups, consistent

with subsequent observations by Gadelha P et al. (19) Furthermore,

Gadelha P’s team identified a reduction in GRS in patients with

inactive acromegaly, although it remained within the normal range

(35%–39%) (62). Interestingly, in previous studies on LV rotation

and torsional mechanics conducted by Kormányos’ team, both LV

rotation parameters exhibited some degree of reduction, suggesting

myocardial injury, regardless of acromegaly activity (59). This

appears to contradict the observed increase in GRS. However, it is

reasonable to speculate whether there may exist a self-regulatory

threshold within the LV, whereby myocardial rotational parameters

decrease while GRS improves compensatorily to ensure normal

cardiac function. When the disease is effectively controlled, GRS

returns to normal range, indicating reversibility and highlighting

the role of disease control in mitigating myocardial damage. GRS is

inherently more variable than GLS, with small changes in specific

regions capable of yielding significant GRS results (62, 63).

Consequently, when assessing myocardial GRS changes, a

comprehensive analysis of both segmental and global changes

should be considered.

To date, no comprehensive study has explored the factors

influencing LV deformation using 3D STE. Nemes A et al.

attempted to use 3D STE to assess the effect of DM on LV

rotation and deformation parameters in acromegaly patients (64).

Their study found that, whether with or without diabetes, LV tip

torsion parameters exhibited a certain degree of reduction in

acromegaly patients. However, an improvement in GRS was

observed only in the acromegaly group without diabetes, with

GRS levels in the acromegaly group with diabetes resembling

those in the control group. As discussed earlier, better GRS may

manifest as a compensatory response to cardiac damage, which may

be offset by the onset of DM. Previous studies have suggested that

DM can accelerate aortic sclerosis in patients with acromegaly (65).

Consequently, it is reasonable to speculate that DM may exacerbate

myocardial deformation in acromegaly patients and expedite the

progression of myocardial injury. Further clinical investigations are

warranted to determine whether hypertension and dyslipidemia

yield similar outcomes in acromegaly patients.
4.2 Left atrial (LA) strain imaging

The LA functions as an auxiliary pump for the ventricle,

undergoing physiological remodeling to support the ventricle’s

ejection function during increased load. However, the magnitude

of atrial enlargement is limited, and once pathological remodeling,

such as fibrosis or atrial fibrillation occurs, reversal becomes

unlikely. Thus, timely recognition and intervention for left atrial

injury are of paramount importance (66). Kormányos et al. applied

3D STE to evaluate the volume and functional parameters of the LA

in acromegaly patients (61). Their investigation revealed that

volume parameters (maximum end-systolic volume, pre-systolic

atrial volume, and end-diastolic minimum volume) and strain

parameters (RS and 3DS) were significantly more favorable in

acromegaly patients compared to healthy controls. However, GCS
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experienced a moderate deterioration. Particularly, the

improvement in GRS was more pronounced in the subgroup with

active acromegaly, mirroring findings observed in the left ventricle.

Kormányos et al. suggested that this LA remodeling might represent

a compensatory mechanism in response to diastolic filling

impairment in acromegaly patients. LV remodeling typically

progresses through stages, with early manifestations of

myocardial hypertrophy and increased myocardial contractility.

This is followed by the development of end-diastolic underfilling,

culminating in decreased LVEF, irreversible ventricular remodeling,

and congestive heart failure at the end stage (67).

Popielarz-Grygalewicz A et al. indicated that nearly 80% of

acromegaly patients exhibit increased LAVi, whereas LVH is

observed in less than 50% of patients. This suggests that adaptive

LA remodeling takes precedence over LV remodeling in the cardiac

progression of acromegaly patients. Furthermore, the study

identified a negative correlation between LAVi and GLS,

highlighting that the LA, functioning as a cardiac reservoir,

catheter, and booster pump, shares a Frank-Starling regulatory

mechanism similar to the LV. The LA and LV work in dynamic

cooperation (47). Consequently, periodic STE assessments of the

LV and LA can track the progression of cardiac damage in

acromegaly patients.
4.3 Right atrial (RA) strain imaging

Limited research has investigated the functional parameters of

RA in patients with acromegaly. Historically, the role of the RA has

been characterized as ‘the first to live and the last to die,

underscoring its pivotal role in maintaining normal blood supply

to the heart. Using 3D STE for a quantitative assessment of RA

function can greatly enhance our understanding of its function and

remodeling (68). Kormányos et al. used 3D STE to assess the RA in

acromegaly patients (69). Their findings revealed a significant

increase in volume parameters (maximum end-systolic volume,

pre-systolic atrial volume, end-diastolic minimum volume) and an

improvement in strain parameters (RS and 3DS). Conversely, GCS

and GLS exhibited some degree of deterioration, which is consistent

with the results of left atrial evaluations. Moreover, this study

revealed that myocardial remodeling can be reversed upon the

control of IGF-1, as observed in LA. However, further

experimentation is warranted to explore whether the evolution of

the RA parallels that of the LA.
4.4 Mitral annulus (MA) imaging

The prevalence of heart valve disease in acromegaly patients

approaches 75% (13), with most cases involving asymptomatic

valvular changes. The mitral valve is predominantly affected,

followed by the aortic valve, typically manifesting as mitral

regurgitation (15). Cardiac valve injury and myocardial

hypertrophy follow distinct disease progression mechanisms, and

to some extent, myocardial hypertrophy can be improved with
frontiersin.org

https://doi.org/10.3389/fendo.2023.1260842
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Huang et al. 10.3389/fendo.2023.1260842
intervention. Conversely, valvular injury represents an irreversible

process, with the risk of valvular disease increasing by 19% annually

as the disease advances (70). Therefore, early identification of

acromegaly is very critical. Conventional two-dimensional

Doppler ultrasound often underestimates the diameter of the MA,

whereas experimentally evidence underscores the superior accuracy

of three-dimensional ultrasound compared to the two-dimensional

ultrasound, accurately reflecting the real shape of the valvular

annulus (71–73). Nemes A et al. endeavored to evaluate the MA

of acromegaly patients using 3D STE and observed a significant

increase in its diameter, area, and perimeter compared to the

control group (74). Nonetheless, the functional parameters of the

MA exhibited no significant changes, which explains why

acromegaly patients often show asymptomatic valve injuries. The

activity of both LA and LV can influence MA contraction (75). We

postulate that MA dilatation in acromegaly patients may mirror the

compensatory mechanism observed in GRS (19, 61, 76). Mitral

annulus dilatation could potentially serve as a regulatory

mechanism against cardiac injury caused by persistently elevated

concentrations of GH and IGF-1. Nonetheless, there is a dearth of

research elucidating the mechanism behind mitral annular injury,

warranting further exploration. Table 2 summarizes the application

of 3D STE in acromegaly patients.

5 Perspectives on the use of
STE in assessing the effects of
acromegaly treatment

The primary treatments for acromegaly include surgery,

drugs, and radiotherapy. Timely surgery serves as the

cornerstone of early treatment, while drugs and radiotherapy are

commonly employed as second-and third-line options when

clinical remission is not achieved following surgical treatment.
Frontiers in Endocrinology 06
However, even after reaching the clinical remission target for GH,

additional treatment for complications remains necessary (3). In

general, prompt treatment can partially reverse early myocardial

damage. Presently, the primary objective in managing acromegaly

is to maintain GH and IGF-1 secretion at normal levels, thereby

decelerating disease progression and reducing mortality (14).

Previous studies have demonstrated the significant advantages of

SSA in acromegaly patients, particularly in terms of cardiac

electrophysiology. They lead to reductions in heart rate,

ventricular extrasystoles, and QT interval dispersion, thus

reducing the incidence of arrhythmias (77). Additionally, SSA

treatment can mitigate LVH, and restore normal systolic and

diastolic functions (18). CMRI(cardiac magnetic resonance

imaging) has been employed to assess changes in LV function

and structure before and after drug treatment in acromegaly.

Results have shown significant improvements in LVEF, LVH,

left ventricular end-systolic volume, and end-diastolic volume

(78–80), warranting further exploration in future research. It is

worth discussing whether other atria and ventricles in acromegaly

undergo similar structural and functional changes and whether

more sensitive indicators can predict heart injury. Speckle

tracking ultrasound, especially 3D-STE, can provide insights

into myocardial torsional, GRS, GCS, and GLS. This allows for

the early detection of myocardial functional impairment before a

decrease in LVEF evident. Furthermore, it can distinguish between

pathological myocardial abnormalities and physiologically

adaptive changes based on characteristic strain patterns. It can

also detect the reduction in pathological diastolic function caused

by myocardial hypertrophy before the decrease in LVEF,

facilitating timely intervention to reverse myocardial injury.

While the cardiac strain parameters of acromegaly patients tend

to improve to some extent after treatment, a more extended

follow-up study is needed to ascertain the predictive value of

STE in cardiac function recovery.
TABLE 2 Application of 3D STE in patients with acromegaly.

Year
First

author
Patients
included

Disease state
Cardiac
region

Strain Parameters

Improved Worse Normal

2017
Kormányos Á
(59).

20
Persistentnon-remission:Remission
(12:8)

LV —
LVBR, LVT,
LVAR

—

2018
Kormányos Á
(61).

19
Persistentnon-remission:Remission
(11:8)

LA GRS, 3DS GLS GCS, GAS

2020
Kormányos Á
(69).

22
Persistentnon-remission:Remission
(10:12)

RA 3DS — GLS, GRS, GCS, GAS

2020
Kormányos Á
(76).

25
Persistentnon-remission:Remission
(14:11)

LV GRS — GLS, GAS, GCS, 3DS

2021 Nemes A (74). 24
Persistentnon-remission:Remission
(12:12)

MA — — —

2021 Nemes A (64). 24
Persistentnon-remission:Remission
(15:9)

LV GRS LVAR, LVT
GCS, GLS, GAS, 3DS,
LVBR
LV, left ventricular; LA, left atrial; RA, right atrial; MA, Mitral annulus; GLS, global longitudinal strain; GCS, global circumferential strain; GRS, global radial strain; GAS, global area strain; LVT,
left ventricular twist; LVBR, left ventricular basal rotation; LVAR, left ventricular apical rotation; 3DS, three-dimensional comprehensive strain.
The symbol "—" means “NA, not available”.
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6 Conclusion

The STE can identify the changes of early atrioventricular motion

pattern changes and evaluate myocardial strain parameters, offering

valuable evidence of subclinical myocardial injury. This information

is crucial for the clinical management and prognosis of cardiac

dysfunction in acromegaly patients. However, since STE is a

relatively recent technique, current research on its application to

explore myocardial strain parameters in acromegaly patients is

insufficient and long-term studies evaluating the predictive value of

strain parameters are lacking. Further research is required to

determine the accuracy of strain parameters in predicting the

prognosis and survival outcomes of acromegaly patients.

Nonetheless, we can affirm that the speckle tracking technique

holds significant potential application prospects in acromegaly and

cardiac dysfunction, representing a breakthrough in diagnosis. In

clinical practice, the selection of imaging techniques depends on the

indications and information requirements for a given case. Often, a

combination of one or more imaging modalities is employed to

achieve an accurate disease diagnosis. Commonly used cardiac

imaging techniques for evaluating myocardial performance include

echocardiography, CMRI, ventriculography, myocardial radionuclide

imaging, and CT(Computed Tomography) (Table 3). While these

techniques generally exhibit good correlation, each possesses distinct

advantages and limitations (20, 59, 81–87), which can contribute to
TABLE 3 Different imaging techniques for assessing myocardial function.

Advantages Limitations

Conventional
echocardiography
(20, 81)

• Most used, clinical first
choice
• Convenient and quick
• Safe and cheap

• Apical fluoroscopy
shortening
• Highly dependent on
geometric assumptions
• The sensitivity of
myocardial systolic-
diastolic function
indicators is low,
resulting in a high rate of
missed diagnosis of
subclinical myocardial
dysfunction

STE (59, 82, 83) • Non-invasive and
radiation-free
• High speed, high accuracy
and good repeatability
• Incremental value
independent of EF
• Not restricted by geometry
• Without apical fluoroscopy
shortening
• Global and regional
ventricular function can be
evaluated.

• Poor temporal and
spatial resolution
• High requirements for
image quality
• Tends to underestimate
the degree of rotation
and distortion of LV, and
there may be “splicing
noise”
• Limited by poor
endocardial depiction,
resulting in
underestimation of strain
parameters.

(Continued)
F
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TABLE 3 Continued

Advantages Limitations

• With inter-observer
heterogeneity

CMRI (84, 85) • Radiation-free
• High temporal and spatial
resolution, high accuracy and
repeatability
• High signal-to-background
ratio, easy to determine the
intimal boundary;
• Three-dimensional
tomography can be obtained
in any plane direction, which
is not affected by the
patient’s body shape.
• Comprehensive evaluation
of cardiac anatomy and
function
• The gold standard to
determine myocardial
function

• Expensive and requires
highly skilled operators
• Time-consuming
• Not suitable for
pacemaker/defibrillator
patients/claustrophobic
patients
• Movement during
image acquisition can
cause artifacts

RVG (85) • High repeatability and Low
operator dependence
• Independent of geometric
assumptions
• Accurate determination of
EF, facilitating cardiac
evaluation in patients with
ischemic cardiomyopathy,
multiple wall motion
abnormalities, and altered
left ventricular geometry

• With radiation
exposure
• Unable to assess
localized systolic
thickening
• Unable to get
anatomical information
incidentally
• Low sensitivity to
ventricular hypertrophy

X-ray
ventriculography
(86)

• High speed and high
accuracy
• High signal-background
noise ratio, good boundary
resolution
• Real-time performance

• Expensive
• Invasive and x-ray
exposure;
• Single-plane imaging,
depending on geometric
assumptions
• Risk of premature
ventricular contractions;

CT (87) • Non-invasive
• high signal-to-background
ratio, easy to determine the
intimal boundary
• Simultaneous analysis and
study of the relationship
between coronary artery
disease and cardiac function

• X-ray exposure
• Poor temporal
resolution
• Require injection of
contrast agent, causing
kidney damage
• Limited by arrhythmias

CCTA (86) • Non-invasive
• High temporal and spatial
resolution
• Left ventricular ejection
fraction and wall motion can
be accurately evaluated, and
the accuracy is better than
that of ventriculography and
ultrasound.

• Iodide contrast agent
and radiation exposure
• Artifacts and poor
image quality will occur
in the case of fast heart
rate.
CMRI, cardiac magnetic resonance imaging; STE, speckle tracking echocardiography; RVG,
radionuclide ventriculography; CCTA, cardiac Computed Tomographic Angiography;CT,
Computed Tomography.
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larger standard deviations in myocardial function indices.

Consequently, clinical diagnosis and treatment necessitate

reasonable selection and the exploitation of complementary

advantages. In the future, it is anticipated that STE will be used

alongside other cardiac imaging techniques for the clinical diagnosis

and prognosis of acromegaly patients.
7 Limitation

This paper is a summary based on our own understanding of

the literature and although we have tried to be as objective as

possible in our analysis, we still cannot exclude a strong subjectivity.

Also, this paper is only a summary of the application of STE in the

acromegaly population, and the scope of discussion is narrow, so

the results should not be interpolated to the general population,

pending further expansion of the study population for comparative

analysis. As STE has only begun to show its clinical application in

the last decade, the number of relevant papers included in this

article is limited, and more relevant studies are expected in the

future to further explore the diagnostic value of STE in cardiac

dysfunction in the acromegaly population.
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41. Jurcut R, Găloiu S, Florian A, Vlădaia A, Ionită̧ OR, Amzulescu MS, et al.
Quantifying subtle changes in cardiovascular mechanics in acromegaly: a Doppler
myocardial imaging study. J Endocrinological Invest (2014) 37(11):1081–90. doi:
10.1007/s40618-014-0147-9

42. Mercuro G, Zoncu S, Colonna P, Cherchi P, Mariotti S, Pigliaru F, et al. Cardiac
dysfunction in acromegaly: evidence by pulsed wave tissue Doppler imaging. Eur J
Endocrinol (2000) 143(3):363–9. doi: 10.1530/eje.0.1430363

43. Galderisi M, Vitale G, Bianco A, Pivonello R, Lombardi G, Divitiis Od, et al.
Pulsed tissue Doppler identifies subclinical myocardial biventricular dysfunction in
active acromegaly. Clin Endocrinol (2006) 64(4):390–7. doi: 10.1111/j.1365-
2265.2006.02475.x

44. Bogazzi F, Di Bello V, Palagi C, Donne MGD, Di Cori A, Gavioli S, et al.
Improvement of intrinsic myocardial contractility and cardiac fibrosis degree in
acromegalic patients treated with somatostatin analogues: a prospective study. Clin
Endocrinol (2005) 62(5):590–6. doi: 10.1111/j.1365-2265.2005.02265.x

45. Popielarz-Grygalewicz A, Stelmachowska-Banaś M, Gas̨ior JS, Grygalewicz P,
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