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Impact of disulfidptosis-
associated clusters on breast
cancer survival rates and guiding
personalized treatment

Xiong Chen, Guohuang Hu* and Qianle Yu*

Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University,
Changsha, China
Background: Breast cancer (BC) poses a serious threat to human health.

Disulfidptosis is a recently discovered form of cell death associated with

cancer prognosis and progression. However, the relationship between BC and

disulfidptosis remains unclear.

Methods:We integrated single-cell sequencing and transcriptome sequencing in BC

to assess the abundance and mutation status of disulfidptosis-associated genes

(DAGs). Subsequently, we clustered the samples based on DAGs and constructed a

prognostic model associated with disulfidptosis. Additionally, we performed pathway

enrichment, immune response, and drug sensitivity analyses on themodel. Finally, we

validated the prognostic genes through Immunohistochemistry (IHC).

Results: The single-cell analysis identified 21 cell clusters and 8 cell types. By

evaluating the abundance of DAGs in different cell types, we found specific

expression of the disulfidoptosis core gene SLC7A11 in mesenchymal stem cells

(MSCs). Through unsupervised clustering of DAGs, we identified two clusters.

Utilizing differentially expressed genes from these clusters, we selected 7 genes

(AFF4, SLC7A11, IGKC, IL6ST, LIMD2, MAT2B, and SCAND1) through Cox and Lasso

regression to construct a prognostic model. External validation demonstrated

good prognostic prediction of our model. BC patients were stratified into two

groups based on riskscore, with the high-risk group corresponding to a worse

prognosis. Immune response analysis revealed higher TMB and lower TIDE scores

in the high-risk group, while the low-risk group exhibited higher CTLA4/PD-1

expression. This suggests that both groups may respond to immunotherapy,

necessitating further research to elucidate potential mechanisms. Drug

sensitivity analysis indicated that dasatinib, docetaxel, lapatinib, methotrexate,

paclitaxel, and sunitinib may have better efficacy in the low-risk group. Finally,

Immunohistochemistry (IHC) validated the expression of prognostic genes,

demonstrating higher levels in tumor tissue compared to normal tissue.

Conclusion: Our study has developed an effective disulfidptosis-related

prognostic prediction tool for BC and provides personalized guidance for the

clinical management and immunotherapy selection of BC patients.
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1 Introduction

BC remains one of the most common cancers in women with a

high mortality rate (1). In the past, treatments such as mastectomy,

radiation therapy, and chemotherapy have shown good efficacy in

systemic management (2). With the advancements in modern

medicine, traditional surgery is no longer the optimal choice for

all patients. Targeted therapy, endocrine therapy, and

immunotherapy are emerging as mainstream adjuvant treatments

(3). However, the prognosis for BC patients remains poor, especially

for triple-negative breast cancer (TNBC) and advanced-stage

metastatic breast cancer (4, 5). In this situation, further

exploration of the biological mechanisms of BC, improvement of

early detection rates, and enhancing prognosis become crucial.

Programmed cell death (PCD) refers to the self-destruction of

human cells to maintain internal stability (6). It is regulated by

biomolecules and differs from accidental cell death (ACD) (7). PCD

can occur through three main forms: apoptosis, pyroptosis, and

necroptosis (8). The importance of cell death in cancer therapy has

been recognized in recent years. Various forms of cell death, such as

cuproptosis, pyroptosis, necroptosis, and ferroptosis, have been

extensively studied (7). Recently, Liu et al. discovered that high

expression of SLC7A11 induces a novel form of cell death distinct

from apoptosis and ferroptosis (9). The significant accumulation of

cystine is highly toxic to cells, compelling cancer cells with high

levels of SLC7A11 to reduce cystine to cysteine, resulting in

substantial consumption of nicotinamide adenine dinucleotide

phosphate (NADPH) (10). During glucose deprivation, the

pentose phosphate pathway, responsible for intracellular NADPH

production, is impeded, leading to intracellular disulfide

accumulation and rapid cell death (11). Liu et al. termed this new

form of cell death disulfidptosis and proposed its significant

potential in cancer therapy. It is noteworthy that Carlisle et al.

suggested a close association between BC and SLC7A11 through

selenium (12). Xu et al. found, through immunofluorescence, that

the expression of SLC7A11 in BC tissues was significantly higher

than in adjacent tissues (13). Given the strong correlation between

SLC7A11 and disulfidptosis, disulfidptosis likely represents a new

opportunity in BC treatment. However, research on the relationship

between BC and disulfidoptosis is currently limited, and the

potential biological mechanisms remain unclear. Clarifying their

relationship would be of great assistance in prognosis prediction

and treatment selection for BC patients.

The purpose of this study is to investigate the impact of

disulfidptosis on the treatment and prognosis of BC. We assessed

the abundance of DAGs in BC single-cell sequencing and

transcriptome sequencing, constructed a prognosis model

associated with disulfidptosis, and investigated the sensitivity of

this model to immunotherapy and chemotherapy drugs. Through

validation, our model demonstrated good accuracy, which could

potentially offer insights for personalized treatment in BC.
Frontiers in Endocrinology 02
2 Original research

3 Methods

3.1 Obtain BC sequencing data and DAGs

Transcript expression data for BC patients were obtained from

The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus

(GEO) databases. The TCGA-BRCA dataset with gene expression

and clinical information was selected from the TCGA database.

Screening of three BC patient datasets (GSE20685, GSE58812, and

GSE88770) using expression profiles and survival information from

the GEO database was conducted. Because they were both based on

the GPL570 platform, the Sva package was used to remove batch

effects. The TCGA-BRCA dataset will be used as the training cohort

and the combined-GSE dataset will be used as the external

validation cohort. The single-cell data was obtained from

GSE176068, where Single-cell RNA sequencing (scRNA-seq) was

performed on 26 primary tumor tissues representing three BC

subtypes (ER+, HER2+, and TNBC) (14). This dataset provided a

comprehensive transcriptional atlas of BC cell structures, and its

reliability has been substantiated by numerous studies (15, 16).

Additionally, 24 disulfidptosis-associated genes, including FLNA,

FLNB, MYH9, TLN1, ACTB, MYL6, MYH10, CAPZB, DSTN,

IQGAP1, ACTN4, PDLIM1, CD2AP, INF2, SLC7A11, SLC3A2,

RPN1, NCKAP1, NCKAP1, NUBPL, NDUFA11, LRPPRC, OXSM,

NDUFS1, and GYS1, were obtained from Liu’s research (9).
3.2 Processing and analysis of scRNA-seq

The Seurat software package was utilized for reading and

transforming scRNA-seq data (17). The quality control (QC)

criteria were as follows: 1) use the PercentageFeatureSet package

to calculate the percentages of mitochondria, ribosomes, and

hemoglobin to exclude low-quality cells; 2) exclude genes detected

in <3 cells; 3) using the FindVariableFeatures function to screen the

top 2000 highly variable genes. Dimensionality reduction was

performed using Uniform Manifold Approximation and

Projection (UMAP) after Principal Component Analysis (PCA)

(18). Additionally, distinct cell clusters were annotated using the

singleR package (19). The VlnPlot and featureplot functions were

adopted to characterize the abundance of DAGs in different cells.
3.3 Mutation profiling, differential
correlation, protein-protein
interaction analysis

Mutation data were downloaded from the TCGA database to

perform a somatic mutation waterfall plot of the DAGs. The PPI
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network of DAGs was constructed using web tools (http://

genemania.org/). To explore whether there are differences in the

expression of DAGs between tumor and normal tissues, we

conducted differential analysis and assessed the correlation

among DAGs.
3.4 Consistent unsupervised clustering
of DAGs

We conducted an expression matrix-based consensus clustering

analysis of 24 genes associated with disulfidptosis using the

ConsensusClusterPlus function (20). Survival analysis based on

clusters and a heatmap analysis were carried out by incorporating

clinical features. Furthermore, we performed an immune

infiltration analysis using the CIBERSORT package (21).
3.5 Variance analysis, prognostic modeling,
validation of external data

The limma package was used to perform differential analysis on the

training cohort (22). Cox and Lasso regression were used to reduce the

dimensionality of differentially expressed genes, and seven genes were

identified. The surface equation of the prediction model was

constructed as follows: riskscore = b1m1+ b2m2+ b3m3 … bNmN.

Here, “b” represents the coefficient, “m” denotes gene expression, and

“n” is the ordinal number of the prognosis-related genes. The average

riskscore was used to classify samples into high-risk and low-risk

groups. Kaplan-Meier survival curves and ROC curves were utilized to

evaluate the predictive ability of the prognostic model for overall

survival (OS). Univariate and multivariate Cox regression analyses

combined with clinical characteristics were performed to identify risk

factors. Additionally, themodel was validated using the external cohort.
3.6 Nomogram construction and test,
correlation of riskscore with clinical factors
and prognostic analysis

We aimed to construct a nomogram to enhance the clinical value

of the disulfidptosis-related prognostic model. Calibration curves and

decision curve analysis (DCA) were used to assess the predictive

performance and clinical application of our model. In addition, we

evaluated whether there were differences in riskscore corresponding to

different clinical features and conducted a survival analysis.
3.7 Analysis of biological mechanism
pathways enrichment

To further explore the biological mechanisms of disulfidptosis,

Genome Oncology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses were performed using the

ClusterProfiler software package (23), GSEA analysis was

conducted based on h.all.v7.1. symbols.gmt.
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3.8 Immune escape and chemotherapy
sensitivity prediction

The Tumor Immune Dysfunction and Exclusion (TIDE)

website was used to calculate the immune evasion status for these

two risk groups. Predicting chemotherapy drug sensitivity using the

pRRophetic software package (24).
3.9 Immunohistochemical validation of
prognosis-related genes

To validate our screening for prognosis-related genes, we

performed a search on the Human Protein Atlas (HPA) website,

yielding IHC results corresponding to the tumor tissue and adjacent

non-tumor tissue (https://www.proteinatlas.org/).
3.10 Statistics

All statistical calculations were performed by R 4.2.2 and SPSS

13.0. The t-test was used for normally distributed variables, and the

Wilcoxon test was employed for non-normally distributed

variables. Correlation was evaluated by Spearman analysis, and

p<0.05 was considered statistically significant.
4 Results

4.1 Single-cell RNA clusters annotation and
DAGs expression between different cells

We used the scRNA-seq dataset GSE176078 from BC patients

to examine the expression of 24 DAGs. Through analysis using R

software, the dataset was divided into 21 cell clusters and 8

significant cell populations (Figures 1A, B), namely B cells,

Endothelial cells, CD8+ T cells, Monocytes, Fibroblasts, Epithelial

cells, Macrophages, and MSCs. Furthermore, gene expression was

performed on the DAGs, revealing varying expression levels of each

gene across different cell types. Among them, ACTB and MYL6

exhibited the highest expression levels. ACTB, MYL6, CAPZB,

DSTN, SLC3A2, and RPN1 were expressed across all 8 cell

populations (Figures 1C, D). Interestingly, SLC7A11 exhibits

specific expression in MSCs, indicating the potential presence of

some unknown connection between MSCs and disulfidptosis

in BC.
4.2 Somatic mutations, PPI network,
expression of DAGs

The waterfall plot of the DAGs in the TCGA cohort revealed

that out of 164 samples, 144 (87.8%) had mutations. The mutation

rates for MYH9, TLN1, FLNA, and FLNB were all above 10%. The

most common type of mutation observed was a missense

mutation (Figure 2A). The PPI network of DAGs was derived
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FIGURE 1

Single-cell RNA sequence analysis: (A) The dataset is divided into 21 clusters. (B) Cells were annotated into 8 significant cell populations.
(C) Expression of DAGs in different cell populations. (D) Expression of important genes.
A

B D

C

FIGURE 2

Interaction and mutation of DAGs: (A) Mutation waterfall plot of 24 DAGs. (B) PPI network of DAGs. (C) Differential expression of DAGs between
tumor tissues and normal tissues. (D) Correlation analysis between DAGs. **P < 0.01; ****P < 0.0001; ns, no significance.
Frontiers in Endocrinology frontiersin.org04

https://doi.org/10.3389/fendo.2023.1256132
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2023.1256132
from the GeneMANIA website, and ACTB, FLNA, CAPZB,

MYH9, and TLN1 were identified as hub genes in this network

(Figure 2B). The differential analysis DAGs between tumor and

normal tissues revealed overexpression of FLNB, ACTB, CAPZB,

CD2AP, SLC7A11, SLC3A2, RPN1, NDUFA11, LRPPRC, and

OXSM in tumor tissues; FLNA, MYH9, TLN1, MYH10,

IQGAP1, PDLIM1, NCKAP1, NUBPL, and NDUFS1 were

overexpressed in normal tissues (Figure 2C). This further

confirmed the overexpression of the core disulfidptosis gene

SLC7A11 in BC. Additionally, hub genes exhibited differential

expression between cancer and non-cancer tissues, suggesting the

significant potential of disulfidptosis as a novel therapeutic

approach for BC. Correlation analysis of DAGs revealed that

FLNA had the highest positive correlation coefficients with

TLN1 and MYH9, while NDUFA11 had the highest negative

correlation coefficients with NCKAP1 and IQGAP1. Importantly,

the correlation of SLC7A11 with other DAGs was not

strong. (Figure 2D)
4.3 Consensus clustering and immune
cell infiltration

To explore the impact of DAGs expression on BC, we

performed clustering on 874 samples from the TCGA cohort

based on these 24 DAGs using the ConsensusClusterPlus

package. The Delta area curve and the cumulative distribution

function (CDF) curve indicated that two clusters related to

disulfidptosis were the most suitable (Figure 3A). The heatmap

from clustering displayed that Cluster 1 had a larger proportion of

DAGs, and Cluster 1 corresponded to a poorer prognosis

(Figures 3B, C). The Sankey plot illustrated the overall

distribution of two clusters in immune cell subtypes (Figure 3D).

The box plot revealed that Macrophages M2, T cells CD4 memory

resting, and Mast cells resting were more abundant on cluster 1,

whereas T cells regulatory (Tregs), T cells CD8, Plasma cells, T cells

follicular helper, and B cells naive were more abundant on cluster

2 (Figure 3E).
4.4 Predictive model building
and validation

Conducting differential analysis between two clusters, under the

criteria of p-value < 0.05 and |logFC| > 1, we identified 93

differentially expressed genes associated with disulfidptosis

(Figure 4A). First, univariate Cox regression identified 33 genes

(Supplementary Table S5), and after dimension reduction using

Lasso regression, 7 genes were obtained (Figure 4B). Then, a

prognostic model was built using these genes (Figure 4C), and the

riskscore was estimated as follows: AFF4 * 0.198 + SLC7A11 * 0.124

+ IGKC * -0.022 + IL6ST * -0.242 + LIMD2 * -0.193 + MAT2B *

-0.107 + SCAND1 * -0.034. According to the average riskscore,

patients were divided into high-risk group and low-risk group. The

risk plot and survival analysis demonstrated that the high-risk

group had more death cases and corresponded to a worse
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prognosis (Figures 4D, E). The AUC value of the ROC curve

showed a good prediction of survival (1, 3, 5-year: 0.710, 0.723,

0.717) (Figure 4I). The sva package was utilized to merge the

GSE20685, GSE58812, and GSE88770 datasets into a cbind-GSE

for external validation (Figure 4F). The distribution of deceased

cases and survival analysis results from cbind-GSE analysis were

consistent with the observations in the training cohort (Figures 4G,

H), demonstrating good AUC values (1, 3, 5 years: 0.743, 0.700,

0.709) (Figure 4J). This indicates that our model has good accuracy

and reliability in predicting prognosis. Finally, through univariate

and multivariate Cox analysis combining clinical features and

riskscore, the riskscore was identified as an independent

prognostic factor for BC patients (Figure 4K).
4.5 Nomogram creation, clinical
characteristics in relation to riskscore

We incorporated clinical characteristics to produce a

nomogram, thus enhancing the clinical applicability of our model

(Figure 5A). The high accuracy of survival prediction was revealed

by calibration curves and DCA, indicating that the model has valid

clinical decision-making capabilities (Figures 5B–E). Correlation

analysis was performed among age, stage, T level, N level,

subdivision, and tumor type with riskscore. The results revealed a

significant difference only in the riskscore associated with tumor

types, with ductal carcinoma having a higher riskscore than lobular

carcinoma (Figure 5F). Furthermore, in survival analysis, older age,

advanced stage, higher N level, and ductal carcinoma were all

associated with poorer prognosis (Figure 5G).
4.6 Pathway enrichment analysis and
somatic mutations

To further elucidate the biological mechanisms, we conducted a

pathway enrichment analysis. GSEA analysis revealed upregulation

of the early estrogen response and late estrogen response pathways

in the high-risk group, while the E2F targets, G2M checkpoint,

mTORC1 signaling, and mitotic spindle pathways were

downregulated in the high-risk group (Figure 6C). The cell cycle

pathway and riskscore were inversely correlated in KEGG analysis

(Figure 6B). As for GO analysis, the distribution of the top 5

pathways in biological process, molecular function, and cellular

component is shown in the chord diagram (Figure 6A). Among

them, the high-risk group exhibited the highest upregulation in

leukocyte mediated immunity (GO:0002443), positive regulation of

cell activation (GO:0050867), external side of the plasma membrane

(GO:0009897), positive regulation of leukocyte activation

(GO:0002696), and positive regulation of lymphocyte activation

(GO:0051251). Furthermore, the waterfall plot of prognostic-

related genes’ somatic mutations showed a relatively high

mutation rate (82.61%) in the dataset of BC patients (Figure 6D).

The genes with the most mutations were AFF4 and IL6ST, and the

most frequent mutation type was Missense Mutation. It was worth
frontiersin.org
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noting that the high-risk group corresponds to a higher tumor

mutation burden (TMB) (Figure 6G), while Microsatellite

instability (MSI) scores did not differ significantly between these

two groups (Figure 6H). This seems to suggest that BC patients in

the high-risk group may exhibit a certain sensitivity

to immunotherapy.
4.7 Immunity and drug sensitivity

Using the ssGSEA algorithm, we quantified 28 immune cell

checkpoint markers in the dataset, revealing significant differences

in multiple immune cells between these two groups (Figure 6E).

The expression levels of CTLA4, LAG3, PDCD1 (PD-1), and

TIGIT were higher in the low-risk group, indicating sensitivity to

immunotherapy targeting these immune checkpoints (Figure 6F).

Surprisingly, TIDE analysis showed lower TIDE values in the

high-risk group, with a higher proportion of immunotherapy

responders (Figures 7A, B). This suggests that, for some

unknown reasons, immunotherapy is effective in the high-risk

group as well. Additionally, drug sensitivity analysis revealed

lower scores for dasatinib, docetaxel, lapatinib, methotrexate,

paclitaxel, and sunitinib in the low-risk group, suggesting

greater sensitivity of these drugs in patients from the low-risk

group (Figure 7C).
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4.8 Immunohistochemical validation of
prognostic genes

We searched for 7 prognosis-related genes on the HPA website

and ultimately retrieved the immunohistochemistry results for

AFF4, IGKC, IL6ST, LIMD2, and MZT2B (Figure 7D). These

genes exhibited different expression patterns between tumor

tissues and normal tissues, categorized as “low,” “medium,” or

“not detected,” indicating variations in gene expression among

different individuals. However, it is noticeable that the expression

levels of prognosis-related genes in tumor tissues are often higher

than those in normal tissues.
5 Discussion

BC is a common disease worldwide and exhibits varying levels of

prevalence in different regions (3). For instance, BC is the leading

cancer among Chinese women, accounting for 9.6% of global

mortality cases (25). In 2019, approximately 40,000 individuals in

the United States lost their lives to BC (1). It’s not only women who

are affected; male BC patients also face poor prognoses (26). The

threat of BC to human health is undeniable. Despite multiple

treatments, the survival rate of BC patients remains unsatisfactory,
A

B D

E

C

FIGURE 3

Consensus unsupervised clustering based on DAGs: (A) BC patients were divided into two clusters. (B) Heatmap of clusters and clinical features.
(C) Survival analysis of two custers, cluster 1 corresponds to worse prognosis. (D) Immune cell infiltration between clusters. (E) Differential expression
of individual immune cells among clusters. *P < 0.05; ***P < 0.001; ****P < 0.0001; ns, no significance.
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particularly for women with recurrent or advanced-stage metastatic

breast cancer (27). In recent years, there has been an increasing

awareness of the significant relevance of tumor-immune cell

interactions in BC treatment, and a growing body of research has

been dedicated to exploring this aspect (28, 29).

PCD is an essential process for normal cell turnover and

maintaining homeostasis, and its regulation holds significant

potential in cancer therapy (30, 31). Liu et al. proposed that

tumor cells with high expression of SLC7A11, under glucose

deprivation conditions, may undergo cell death (disulfidptosis)

due to the accumulation of disulfides, providing a hopeful

breakthrough for cancer treatment (9). However, several studies
Frontiers in Endocrinology 07
have suggested that the overexpression of SLC7A11 can promote

tumor progression by inhibiting ferroptosis, contrary to Liu’s

hypothesis (32, 33). Our analysis of single-cell data for BC

revealed that ACTB and MYL6 had the highest expression levels

in eight BC cell types, while SLC7A11 exhibited specific expression

in MSCs. Aberrant expression of ACTB and MYL6 is associated

with invasion and metastasis in many cancers (34, 35). Interestingly,

Lin et al. found that MSCs and MSC-derived exosomes (MSC-Exo)

could inhibit ferroptosis by maintaining the function of SLC7A11

(36). Hong et al. discovered that exosomes derived from umbilical

cord mesenchymal stem cells (UC-MSC) could enhance SLC7A11

expression through sponge-like miR-494, thereby inhibiting
A B

C D E

G

I

H

J K
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FIGURE 4

Construction of prognostic models: (A) Differential analysis of disulfidptosis-related clusters in the TCGA cohort. (B) Lasso regression was used to
reduce the dimensionality of differential genes. (C) Multifactorial Cox regression of prognosis-related genes. (D) Risk plot of the training cohort.
(E) Survival analysis of the training cohort. (F) Removal of batch effect in GSE cohorts, from Dim1 (36.4%) to Dim1 (4.6%). (G) Risk plot of the test
cohort. (H) Survival analysis of the test cohort. (I) ROC curve of the training cohort. (J) ROC curve of the test cohort. (K) Univariate and multivariate
Cox regression of clinical characteristics and riskscore.
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ferroptosis (37). Our analysis indicates specific expression of

SLC7A11 in MSCs, suggesting that MSCs or MSC-Exo may

promote tumor cell disulfidptosis by enhancing SLC7A11

expression or function, potentially offering a novel direction for

effective BC treatment. Further research is needed to explore the

underlying mechanisms in this potential avenue of BC therapy.

Based on the DAGs expression profiles in the BC cohort, we

employed an unsupervised clustering method to classify samples into

two clusters. Cluster 1 exhibited higher DAGs abundance and

corresponded to a poorer prognosis. Additionally, immune cell

infiltration analysis revealed a higher abundance of mast cells and

macrophages in Cluster 1, while Cluster 2 showed higher levels of CD8

T cells. These findings align with results observed in other cancer

studies. Macrophages can inhibit T cell recruitment and function,

promoting tumor initiation and malignant progression (38, 39). Mast

cells are associated with tumor invasion, while elevated levels of CD8 T

cells correspond to better prognosis in melanoma patients (40, 41).

This suggests that the expression of DAGs may be correlated with the

progression and lower survival rates of BC.

To further investigate the association between disulfidptosis and

BC, we conducted a differential analysis between Cluster 1 and

Cluster 2. Significant differentially expressed genes were filtered

through Cox and Lasso regression, resulting in the identification of

seven genes: AFF4, SLC7A11, IGKC, IL6ST, LIMD2, MAT2B, and

SCAND1. Based on these genes, we constructed a prognosis model
Frontiers in Endocrinology 08
associated with disulfidptosis. Survival analysis revealed a shorter

OS in the high-risk group. ROC curves demonstrated the reliability

of our model, and it has passed external data validation.

Furthermore, we developed a nomogram to enhance the clinical

applicability of the model. Calibration curves and DCA indicated

strong predictive performance and effective clinical utility of the

model. It is noteworthy that there is a significant difference in the

riskscore between ductal carcinoma and lobular carcinoma, with

ductal carcinoma being associated with a shorter OS. Some

researchers have proposed that invasive lobular carcinoma (ILC)

has a favorable biological phenotype and better prognosis compared

to invasive ductal carcinoma (IDC) (42, 43). However, studies have

revealed that both the two correspond to almost the same prognosis

(42). The clinical outcomes of IDC and ILC are influenced by

histological subtypes, molecular subtypes, and Oestrogen receptors

(43, 44). This suggests that there may be a correlation between

disulfidaptosis and BC subtypes, and exploring the biological

mechanisms behind it can provide guidance for the treatment of

different subtypes of BC.

In recent decades, there have been continuous advancements in

immunotherapy, which have facilitated in-depth research on the

immune microenvironment of BC (45). Currently, more than 200

clinical trials of immunotherapies such as immune checkpoint

inhibitors (ICIs) are underway (46). CTLA4/PD-1 therapeutic

antibodies have already been sanctioned for melanoma, non-small
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FIGURE 5

Nomogram and clinical Correlation Analysis: (A) Combine clinical features and riskscore to build nomogram. (B–D) Calibration curves for 1,3,5-year
survival rates. (E) Clinical decision curve. (F) Expression of riskscore between different subgroups of clinical characteristics. (G) Survival analysis
curves between subgroups with different clinical characteristics. ****P < 0.0001; ns, no significance.
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cell lung cancer, and kidney cancer (47). The combined inhibition of

CTLA4/PD-1 has proven effective in many diseases (48). Meanwhile,

novel immune inhibitors such as LAG3/TIGIT are being extensively

studied (49). When we applied immune cell infiltration to our model,

the results showed higher expression of CTLA4, LAG3, PDCD1 (PD-

1), and TIGIT in the low-risk group. CTLA4/PD-1 and LAG3/TIGIT

immune inhibitors may be more effective in treating BC patients in the

low-risk group. Surprisingly, the high-risk group corresponds to a

higher TMB score and a lower TIDE score, with a higher response rate

to immunotherapy. TMB has been demonstrated as a biological

marker for the effectiveness of immunotherapy in many cancers,

while a high TIDE score represents a low response to

immunotherapy (50, 51). This suggests that immunotherapy is

effective in the high-risk group as well. The impact of genes on a

tumor’s response to immunotherapy remains a vague question (52).
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Despite the success of immunotherapies like CTLA4/PD-1, there are

still many unknown immune checkpoints to be discovered. New

candidate ICIs such as Serpinb 9 and Adam 2 are currently being

explored by researchers (52–54). We speculate that, in addition to

known immune checkpoints like CTLA4/PD-1 and LAG3/TIGIT, the

high expression of unknown novel ICIs in the high-risk group might

contribute to this phenomenon. Elucidating the potential biological

mechanisms underlying this could significantly aid in the selection of

immunotherapy for BC patients. Additionally, drug sensitivity analysis

indicated that Dasatinib, Docetaxel, Lapatinib,Methotrexate, Paclitaxel,

and Sunitinib may be more effective in low-risk group patients.

Lastly, a search was conducted on the HPA website for IHC

results of prognostic-related genes. It was found that the expression

levels in normal tissues and tumor tissues differed, possibly due to

individual variations. Overall, the abundance of prognosis-related
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FIGURE 6

Pathway enrichment and immuno-infiltration analysis: (A) Enrichment pathways for the top five GO analyses. (B) Pathways in KEGG that are inversely
associated with high-risk group. (C) Up and down regulated pathways in GSEA analysis. (D) Somatic mutation distribution of prognosis-related
genes. (E) infiltration in 28 immune cells in both risk groups. (F) Expression of high and low-risk group at immune checkpoints. (G, H) TMB and MSI
scores between the two risk groups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, no significance.
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genes in tumor tissues is higher than in normal tissues, further

validating the reliability of our model.

In this study, we compared the abundance of DAGs in different

cells of BC and identified the specific expression of SLC7A11 in

MSCs. Based on the expression profiles of DAGs, we classified BC

patients into two clusters and performed differential analysis

between the clusters. Genes showing significant differences were

further selected through Cox and Lasso regression, resulting in

seven genes used to construct a prognosis model related to

disulfidptosis. This model accurately predicts the OS of BC

patients and has been validated externally. Subsequently, we

explored pathway enrichment, immune therapy efficacy, and

chemotherapy drug sensitivity. The results indicated higher

sensitivity to chemotherapy drugs in the low-risk group, while

both groups showed potential applicability for immune therapy,

requiring further mechanistic research for deeper exploration.

However, our study has several limitations. Firstly, the
Frontiers in Endocrinology 10
proposition that MSCs may serve as a window for promoting

cancer treatment through disulfidptosis is based solely on

sequencing data analysis, necessitating extensive mechanistic

studies to validate this result. Secondly, we only validated at the

gene expression level through IHC, and the protein-level validation

remains unknown. Lastly, the majority of study populations consist

of Western or Caucasian individuals, and further research including

more diverse ethnic groups is needed to validate our findings.

In summary, this study conducted a comprehensive exploration of

the relationship between disulfidptosis and BC, and established an

effective prognostic prediction model. We found that patients in both

high-risk and low-risk groups may respond to immunotherapy,

requiring further mechanistic research for clarification. Additionally,

we revealed the significant potential of MSCs in promoting

disulfidptosis, providing inspiration for subsequent studies. Overall,

our research could offer more personalized guidance for the prognosis

prediction and treatment selection of BC patients.
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FIGURE 7

Drug sensitivity analysis and IHC: (A) High-risk group correspond to lower TIDE scores. (B) Higher percentage of immunotherapy response in high-
risk group. (C) low-risk group may be more sensitive to Dasatinib, Docetaxel, Lapatinib, Methotrexate, Paclitaxel, and Sunitinib. (D) According to the
IHC results obtained from the HPA website, the genes expression in tumor tissues is higher compared to normal tissues. ****P < 0.0001; ns,
no significance.
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