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Background: Senescence have emerged as potential factors of lung cancer risk

based on findings from many studies. However, the underlying pathogenesis of

lung cancer caused by senescence is not clear. In this study, we try to explain the

potential pathogenesis between senescence and lung cancer through

proteomics and metabonomics. And try to find new potential therapeutic

targets in lung cancer patients through network mendelian randomization (MR).

Methods: The genome-wide association data of this study was mainly obtained

from a meta-analysis and the Transdisciplinary Research in Cancer of the Lung

Consortium (TRICL), respectively.And in this study, we mainly used genetic

complementarity methods to explore the susceptibility of aging to lung

cancer. Additionally, a mediation analysis was performed to explore the

potential mediating role of proteomics and metabonomics, using a network

MR design.

Results: GNOVA analysis revealed a shared genetic structure between

HannumAge and lung cancer with a significant genetic correlation estimated

at 0.141 and 0.135, respectively. MR analysis showed a relationship between

HannumAge and lung cancer, regardless of smoking status. Furthermore,

genetically predicted HannumAge was consistently associated with the

proteins C-type lectin domain family 4 member D (CLEC4D) and Retinoic acid

receptor responder protein 1 (RARR-1), indicating their potential role as

mediators in the causal pathway.
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Conclusion: HannumAge acceleration may increase the risk of lung cancer,

some of which may be mediated by CLEC4D and RARR-1, suggestion that

CLEC4D and RARR-1 may serve as potential drug targets for the treatment of

lung cancer.
KEYWORDS

senescence, lung cancer, Network Mendelian randomization, proteomics and
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1 Introduction

In recent research, a new multi-system based aging measurement

method, called epigenic clock, has been widely recognized as a

potential biological marker of senescence (1). Horvath et al.

reported that the epigenetic clock is a measure of organismal aging

that is indicated by DNA methylation (DNAm) patterns, which

exhibit heritability. Each clock has unique DNAm levels at

corresponding CpG sites, which reveal key features of age-related

genetic changes (2). The first generation of epigenetic clocks, such as

HannumAge and endogenous HorvathAge, were developed based on

the DNAm levels of age-related CpG sites (3, 4). HannumAge uses a

model trained on 71 age-related CpG sites found in blood samples,

while endogenous HorvathAge selects from 353 CpG sites discovered

in human tissues and cells, and corrects for differences in blood cell

counts (3). Recently, second-generation clocks such as PhenoAge and

GrimAge have been used to predict the epidemiological information

related to age-related diseases (1, 5). PhenoAge was developed based

on data from 513 CpG sites associated with mortality and 9 clinical

biomarkers, while GrimAge incorporates data from 1030 CpG sites

associated with smoking and 7 blood plasma proteins including

cystatin C and growth differentiation factor (6). Depending on the

sample source and prediction requirements, HannumAge is better

suited for age-related predictions while PhenoAge and GrimAge are

more suitable for health-related predictions (3, 7).

The relationship between epigenetic clocks and diseases is not

yet fully understood. However, observational studies have found

that when epigenetic age accelerates, meaning that a person’s

biological age is greater than their chronological age, it may lead

to increased mortality and cancer incidence (8, 9). For example,

Levine et al. analyzed a dataset from the Women’s Health Initiative

that included 2029 women and found that standardized

measurements of intrinsic epigenetic age acceleration were

significantly associated with increased cancer incidence (HR: 1.50,

P = 3.4×10−3) (10). In contrast, some argue that the evidence

supporting this claim is weak or nonexistent. For instance, Dugué

et al. used Cox regression analysis to examine the relationship

between five measures of age acceleration and 3216 cancer patients,

finding no association between the two (11). The primary reason for

the controversy may be due to the biases of observational studies,

such as reverse causality and residual confounding.
02
In this study, we employed a range of complementary genetic

approaches, covering genetic correlation and Mendelian

randomization, to comprehensively explore the causal

relationship between epigenetic clocks and lung cancer, using

large-scale GWAS summary statistics. Additionally, incorporating

transcriptome and proteomics data into this study using network

MR design may provide valuable insights into disease mechanisms

and potential therapeutic targets. A flow chart detailing our study

design can be found in Figure 1.
2 Methods

This study utilized a genome-wide association study (GWAS)

data of four epigenetic clocks, including HannumAge, PhenoAge,

and GrimAge, as well as epigenetic surrogate markers to assess their

correlation with cancer risk (12). And single nucleotide

polymorphisms (SNPs) were extracted from large-scale GWAS

databases in the TRICL consortium (ieu-a-987, ieu-a-986, ieu-a-

985). In this GWAS, TRICL consortium classified lung cancer

patients as follows smoking, ever smoking, and never smoking.

Finally, 85449 (smokers), 9298 (never smokers), 40453 (ever

smokers) were identified for subsequent analysis. For blood

proteins data (Table S1), we mainly used protein GWAS data

published by Sun BB (1352 proteins), Folkersen L (2352

proteins), and Suhre K (352 proteins) (13–15). For blood

metabolites data (Table S2), we mainly used protein GWAS data

published by Shin SY (1352 metabolites), Roederer M (2352

metabolites), and Kettunen J (352 metabolites) (16–18).
2.1 Genetic correlation analysis

To assess the contribution of SNPs to the heritability of

Epigenetic clocks and lung cancer, we employed GNOVA. This

involved regressing the product of z-statistics obtained from two

independent studies of these traits, which were derived from LD

scores precomputed using 1000 Genomes European data (19, 20).

Through this approach, we estimated both the SNP heritability (h2)

of Epigenetic clocks and lung cancer and the overall genetic

correlation (rg) between them.
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2.2 Mendelian randomization design

Firstly, to ensure a strong correlation between IVs and

Epigenetic clocks, we selected IVs significantly relationship with

Vitamin (P < 5×10−8, r2 < 0.001, genetic distance = 10000KB, minor

allele frequency > 0.01) at the genome-wide level. Secondly, to

satisfy the independence of genetic variation and confounders, we

searched in Catalog and PhenoScanner databases to ensure that

each IVs included was unrelated to known confounders. Finally, we

calculated the F statistic to avoid the bias of weak IVs and ensured

that these results were not affected by weak IVs (21, 22).
2.3 Mendelian randomization analyzes

Multiple Mendelian randomization (MR) methods were

employed in this study, including inverse-variance weighted

(IVW), maximum likelihood, MR using robust adjusted profile

score (MR-RAPS), MR multivariate residual and outlier test (MR-

PRESSO), MR-Egger, and weighted median, to estimate the causal

effects of epigenetic clocks on cancer (21–25).

IVW was firstly employed to evaluate the potential impact of

epigenetic clocks on tumorigenesis (22). The fixed-effect model was

used in the absence of heterogeneity, while the random-effect model

was adopted in case of heterogeneity. Subsequently, maximum

likelihood estimation, MR-RAPS, MR-PRESSO, MR-Egger, and

weighted median were utilized to further elucidate the

relationship between epigenetic clocks and cancer. The objective

of maximum likelihood estimation was to describe the distribution

of probabilities by maximizing the likelihood ratio with low

standard error (23). MR-PRESSO was essentially a variation of

IVW, which could eliminate indicators that differed from causal

associations with other IVs. Accurate results could be provided by

MR-PRESSO when the horizontal pleiotropy existed in less than
Frontiers in Endocrinology 03
half of the IVs. On the other hand, MR-RAPS was relatively robust

for various pleiotropic effects (25).
2.4 Heterogeneity and pleiotropy analysis

To ensure the third MR hypothesis that the IVs were

independent of the outcome except for exposure, we used

different methods for assessing potential effects. Cochran Q

statistics and MR-Egger regression was used to explain the

heterogeneity and pleiotropy in this study (26, 27). Then, the

MR-PRESSO, leave-one-out analysis, and funnel plot were also

used as additional multiplicity controls to global, outlier, and

distortion tests.
2.5 Mediation analysis

This study was to explore potential mediating pathways of

specific blood metabolites and proteins in the causal pathway

from the epigenetic clock to cancer. We used a Mendelian

randomization (MR) design with three independent steps (a-c) (28):

Step a: We first estimated the causal effect of the epigenetic

clock, determined by genetics, on cancer. This step was similar to

our preliminary analysis.

Step b: We util ized independent single nucleotide

polymorphisms (SNPs) encoding protein-coding genes to

estimate the causal effects of blood metabolites and proteins in

the described GWAS summary data.

Step c: For any potential mediators with a causal relationship

identified in Step b, we employed the inverse variance weighted

(IVW) method to undertake one-to-one assessments.

If we found a clear causal relationship in all three steps, we

could infer that specific blood metabolites and proteins mediated
FIGURE 1

Schematic diagram of this study.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1255889
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Fang et al. 10.3389/fendo.2023.1255889
the pathway linking the epigenetic clock with cancer. Next, we

derived the indirect effect of the epigenetic clock on cancer through

each mediator by multiplying the results of Steps b and c. Finally, we

estimated the weight of each mediator by dividing the mediated

effect by the total effect.
2.6 Ethical approval

The sampling procedures, diagnostic criteria, quality control

measures, and imputation techniques were delineated in their

respective publications, and each GWAS study design does not

require further ethical approval.
3 Results

3.1 Genetic correlation analysis

Through GNOVA analysis, we found there was significant

genetic correlation implying shared genetic architecture between

HannumAge and smokers (rg=0.135, P=1.080×10-5), ever smokers

(rg=0.141, P=4.745×10-5) in lung cancer (Figure 2). However, we

did not find a common genetic architecture between Horvath

Intrinsic Age, PhenoAge, and GrimAge and lung cancer.

Therefore, in the following analysis, we mainly analyzed

the relationship between HannumAge and smokers, ever

smokers (Figure 2).
3.2 Genetic instrumental variables
for HannumAge

In this MR, 11 LD-independent IVs (after the clumping

process) associated with HannumAge were included. The F

statistics of each IV included were more significantly than 19.751,
Frontiers in Endocrinology 04
suggesting that we effectively excluded the effect of weak Ivs, which

made these results more stable (Table 1).
3.3 MR analysis of HannumAge
and lung cancer

Causal effects are defined as odds ratio (OR) and can be

interpreted as the logarithmic increase in the odds of lung cancer

among current or former smokers with increasing HannumAge.

For instance, using the IVWmethod, the OR estimate for current or

former smokers with HannumAge and lung cancer was 1.067 (OR:

1.067, 95%CI: 1.007-1.131), suggesting that the average risk of

developing HannumAge-related lung cancer is increased by 6.7%

(Figure 3). We further found compelling evidence of a causal

relationship between HannumAge and lung cancer (OR: 1.067,

95%CI: 1.002-1.137) (Figure 4). Additionally, estimates of the causal

effect of HannumAge on lung cancer among current or former

smokers using other MR methods were nearly the same as those

obtained from the IVW method. Finally, while results from MR-

Egger did not show a significant causal relationship between

HannumAge and lung cancer, they suggest a positive correlation

between the two.

To further evaluate the presence of heterogeneity and

pluripotency in our MR analysis, we employed a series of

methods. The Cochran’s Q test revealed significant heterogeneity

in smokers (P=0.001), thus we used a random-effects model to

account for heterogeneity and conducted further analysis.

Remarkably, the consistent results were obtained (OR: 1.067, 95%

Cl: 1.007-1.131 vs. OR: 1.026, 95%Cl: 1.008-1.044). Similarly, we

found significant heterogeneity in ever smokers (P=0.001), so we

again used a random-effects model to account for heterogeneity and

found consistent results (OR: 1.067, 95%Cl: 1.002-1.137 vs. OR:

1.056, 95%Cl: 1.024-1.089). We also employed the MR-Egger

regression, which supported that MR analysis was not impacted

by horizontal pleiotropy (P=0.950, 0.426). Moreover, MR-PRESSO
FIGURE 2

Correlation between epigenic clocks and lung cancer.
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analysis revealed that the included instrumental variables (IVs) did

not have significant outliers. Finally, the leave-one-out sensitivity

analysis and funnel plot indicated that each included IV did not

significantly impact our study results.
3.4 The potential mediator role of blood
metabolites and proteins

Table S3 displays the causal relationship between HannumAge

- a gene-based predictor of age - and blood metabolites and

proteins, assessed using the MR method. A significant positive

correlation was observed between the two. Further evaluation of

whether blood metabolites and proteins have a causal relationship

with cancer is presented in Tables S4–S6. We found Retinoic acid

receptor responder protein 1, C-type lectin domain family 4

member D was significantly positively associated with lung

cancer. Finally, we consider blood metabolites and proteins as

risk factors as sleep apnea. And we speculate on the potential

pathogenesis as shown in Figure 5.
Frontiers in Endocrinology 05
4 Discussion

Our study represents the first application of complementary

genetic approaches and mediator MR to investigate the potential

relationship between cancer and the epigenetic clock. The results

demonstrate a strong association between HannumAge and

increased risk of cancer. Furthermore, mediator MR analysis

reveals that retinoic acid receptor responder protein 1 and C-type

lectin domain family 4 member D play a critical mediating role in

the causal pathway from HannumAge to cancer, which suggesting

that retinoic acid receptor response protein 1 and C-type lectin

domain family 4 member D may serve as a potential drug target for

the treatment of lung cancer

In order to establish causal relationships in our study, it was

essential to anticipate and address any methodological deviations,

and to ensure consistency with previous research. Therefore, we

first compared our results with those of existing observational

studies and conducted a reliability assessment. Our study results

on the relationship between HannumAge and cancer were

consistent with Li et al., 2022 prospective cohort study, which
FIGURE 3

Association of epigenic clocks with lung cancer (smokers) in two-sample Mendelian randomization.
TABLE 1 Genetic instrumental variables for HannumAge.

CHR BP BETA SE P F

1 169549040 0.256626 0.0526221 5.38E-17 23.78290813

3 160301772 0.173412 0.0382163 6.83E-10 20.59022153

4 103468518 0.231341 0.0355169 9.21E-13 42.42629546

5 1285974 0.254141 0.0408623 3.58E-09 38.68154864

6 31196862 0.26506 0.0390643 6.07E-09 46.03925573

7 130416394 -0.288833 0.047146 3.71E-13 37.53219107

9 6448912 0.230314 0.0396861 1.96E-09 33.67936009

10 38216363 -0.355469 0.0566447 1.91E-17 39.38083341

10 49675247 -0.290248 0.0364699 7.26E-11 63.33872644

10 98052109 -0.536137 0.0727629 1.91E-17 54.29146493

11 66076360 0.163407 0.0367681 5.79E-10 19.75144789
CHR, chromosome; BP, base pair; SE, standard error.
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revealed a strong dose-response relationship between epigenetic

clock and cancer risk (29). Similarly, a case-control study of lung

cancer (n=332) reported a strong positive correlation (Beta=0.13,

P<2.2×10-16) between methylation and both age and lung cancer

risk (30). In addition, a 2019 study demonstrated a significant

correlation between standardized measurements of rapid epigenetic

aging and cancer incidence (HR: 1.50, P=3.4×10−3) (10).

The exact mechanism by which epigenetic clocks mediate lung

cancer remains unclear. However, we speculate that they may influence

cancer risk through twomechanisms. Firstly, evidence suggests that the

association between cancer and age may be due to the accumulation of

difficult-to-repair damage caused by exposure to carcinogens, such as

those found in cigarette smoke (31). Levine et al. found a significant

correlation between epigenetic clocks and cancer incidence in current

smokers (P=7.4×10−3) and former smokers (P=0.039) (10). In our

study, we observed a positive correlation between epigenetic clocks and

lung cancer risk in patients who smoked or had previously smoked,

which suggests that smoking may be an even larger risk factor for

individuals with accelerated aging phenotypes. Although the

mechanism underlying the co-occurrence of lung cancer and

epigenetic clocks with cigarette smoke remains elusive, numerous

genome-wide association researches have indicated associations

between the 5p15 and 15q25 regions and cancer risk among smokers

(32–34). Given the strong heritability of epigenetic age acceleration,

these findings suggest the possible existence of inherent differences in

susceptibility to endogenous stressors (35). Thus, further exploration of

the association between gene loci implicated in lung cancer risk and

lifespan in smokers and epigenetic clocks may have important clinical

implications. If confirmed, epigenetic clocks could serve as useful
Frontiers in Endocrinology 06
markers for targeting cessation interventions.Secondly, some studies

have suggested that abnormal immune system function and accelerated

cellular aging may also be linked to lung cancer risk (36). With

increasing age, the immune system may be more susceptible to

dysfunction, leading to decreased immune surveillance and increased

cancer risk (36). However, the exact pathophysiological mechanisms

driving these associations remain to be elucidated.

In study, the results of mediator MR imaging showed that

Epigenic Clockscould increase the concentration of proteins such as

C-type lectin domain family 4 member D (CLEC4D), Retinoic acid

receptor responder protein 1, leading to lung cancer.

CLEC4D, also known as DCIR (Dendritic Cell Immunoreceptor),

is a protein belonging to the C-type lectin receptor family. It is

primarily expressed on the surface of dendritic cells and

macrophages, which are important components of the immune

system. This receptor is involved in regulating immune responses,

particularly in the context of antigen presentation and activation of

immune cells (37). In the field of cancer research, CLEC4D has

garnered attention due to its potential role in tumor immunity and

cancer progression. A number of studies have investigated the

relationship between CLEC4D and cancer. For example, in

hepatocellular carcinoma (HCC), increased expression of CLEC4D

has been observed and correlated with poor prognosis and tumor

invasiveness (38). One possible mechanism is that CLEC4D enhances

the migration, invasion, and metastasis of tumor cells by promoting

epithelial-to-mesenchymal transition and activating signaling

pathways involved in tumor progression (38). The exact

mechanisms by which CLEC4D contributes to cancer development

are still not fully understood, but they may involve its interactions
FIGURE 5

The potential pathogenesis in this study.
FIGURE 4

Association of epigenic clocks with lung cancer (ever smokers) in two-sample Mendelian randomization.
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with various ligands and complex signaling networks (39).

Additionally, the expression and function of CLEC4D may be

influenced by genetic and epigenetic changes, as well as the tumor

microenvironment, further suggesting its involvement in cancer

through Epigenetic Clocks mediating CLEC4D expression (40).

However, extensive research is still needed to fully understand the

mechanisms of action of CLEC4D in cancer and its potential as a

therapeutic target. By elucidating its exact function and signaling

pathways, strategies can be developed to modulate CLEC4D activity

for therapeutic purposes.

Notably, compared with previous studies, this study has many

strengths. First, with the help of complementary genetic and

mediator MR methods, this study assessed the causal relationship

of Epigenetic Clocks with lung cancer. Furthermore, we

synchronized the use of multiple models based on different

hypotheses to prevent erroneous reporting resulting from faulty

assumptions in a single model.

Several limitations should be acknowledged in our study.

Firstly, the study was restricted to a European population, which

may restrict generalization to other populations. Secondly,

unobserved pleiotropies were not accounted for, as is common in

other MR studies. Lastly, the IVW effect estimates may be prone to

bias caused by the presence of horizontal pleiotropy within

some IVs.
5 Conclusions

In conclusion, a possible causality of Senescence with lung

cancer risk was observed in the present study. However, the exact

mechanism of senescence with lung cancer is still unclear and more

studies will be conducive to explore it.
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