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Chronological age enhances
aging phenomena and
protein nitration in oocyte
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Background: The average age of childbearing has increased over the years

contributing to infertility, miscarriages, and chromosomal abnormalities largely

invoked by an age-related decline in oocyte quality. In this study, we investigate

the role of nitric oxide (NO) insufficiency and protein nitration in oocyte

chronological aging.

Methods: Mouse oocytes were retrieved from young breeders (YB, 8-14 weeks

[w]), retired breeders (RB, 48-52w) and old animals (OA, 80-84w) at 13.5 and 17

hours after ovulation trigger. They were assessed for zona pellucida dissolution

time (ZPDT); ooplasmic microtubule dynamics (OMD); cortical granule (CG)

status and spindle morphology (SM), as markers of oocyte quality. Sibling

oocytes from RB were exposed to NO supplementation and assessed for aging

phenomena (AP). All oocyte cumulus complexes were subjected to fluorescence

nitrotyrosine (NT) immunocytochemistry and confocal microscopy to assess

morphology and protein nitration.

Results: At 13.5 h from hCG trigger, oocytes from RB compared to YB had

significantly increased ZPDT (37.8 ± 11.9 vs 22.1 ± 4.1 seconds [s]), OMD (46.9 vs

0%), CG loss (39.4 vs 0%), and decreased normal SM (30.3 vs 81.3%), indicating

premature AP thatworsened amongoocytes fromRBat 17hours post-hCG trigger.

When exposed to SNAP, RB AP significantly decreased (ZPDT: 35.1 ± 5.5 vs 46.3 ±

8.9s, OMD: 13.3 vs 75.0% and CG loss: 50.0 vs 93.3%) and SM improved (80.0 vs

14.3%).The incidenceofNTpositivitywassignificantlyhigher incumuluscells (13.5h,

46.7 ± 4.5 vs 3.4 ± 0.7%; 17 h, 82.2 ± 2.9 vs 23.3 ± 3.6%) and oocytes (13.5 h, 57.1 vs

0%;17h,100.0vs55.5%) fromRBcomparedtoYB.Oocytes retrieveddecreasedwith

advancing age (29.8 ± 4.1 per animal in the YB group compared to 10.2 ± 2.1 in RB

and 4.0 ± 1.6 in OA). Oocytes from OA displayed increased ZPDT, major CG loss,

increased OMD and spindle abnormalities, as well as pronuclear formation,

confirming spontaneous meiosis to interphase transition.
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Conclusion(s): Oocytes undergo zona pellucida hardening, altered spindle and

ooplasmic microtubules, and premature cortical granule release, indicative of

spontaneous meiosis-interphase transition, as a function of chronological aging.

These changes are also associated with NO insufficiency and protein nitration

and may be alleviated through supplementation with an NO-donor.
KEYWORDS

nitric oxide, oocyte aging, oocyte temporal window, oocyte quality, advanced
reproductive age
Introduction

Infertility, defined as an inability to conceive despite unprotected

intercourse for 1 year, is recognized as a common problem affecting at

least 1 in 6 couples (1). Sociodemographic changes over years have

led to women to delay childbearing to a relatively older age compared

to their predecessors (2); therefore, it is not uncommon to see women

in mid- or later thirties or even later, trying to achieve pregnancy

either for the first time or trying to grow their family. Thus, advanced

age of the female partner has become an increasingly common

contributing factor to infertility (3). Specifically, maternal age >36

years is frequently associated with a decline in the numbers of follicles

within the ovaries, as well as deterioration of quality of oocytes within

the follicles, resulting in reduced fecundity and increased

reproductive loss (4–9). This is a significant problem despite the

advent of assisted reproduction technologies (ART).

A wide array of endocrinological and related phenomena are

noted among women during the years preceding menopause. These

changes are mostly due to ovarian senescence related to depletion of

follicles and endocrinological perturbations in the ovarian milieu

(10–12). This is clinically reflected as shortened ovarian cycle

length, altered size of cyclically recruited pool of follicles, and

accelerated timing of dominant follicle selection and ovulation

(13–19). Nonetheless such alterations may not fully explain

structural and functional deterioration of oocytes from women

>36 with regular ovulatory cycles. Such decreased fertility in

women precedes characteristic reproductive aging during

perimenopausal years and is likely related to specific alterations

within the oocyte and its microenvironment within the follicle (3,

20, 21). Although the mechanisms involved in these alterations

remain enigmatic, the specific nature is under investigation with the

free radical theory of aging offering the most likely explanation. At

low levels the production of reactive oxygen species (ROS) through

cellular metabolism plays a physiological role; yet, as suggested by

the mitochondrial free radical theory of aging, excess ROS may

drive the aging process (22). Excess ROS may be mediating damage

to mitochondrial DNA, leading to further ROS production, and

creating a vicious cycle with eventual apoptosis. Other authors have

suggested ROS are a responsive mechanism to the physiological

changes associated with aging rather than a causative role, allowing

for a stress response to age-dependent damage (22). Still, the

involvement of ROS in oocyte quality deterioration is prevalent.
02
We have previously shown that nitric oxide (NO), a ubiquitous

molecule in the oocyte microenvironment, is involved in sustaining

oocyte quality and maintaining the optimal oocyte temporal

window for fertilization (23, 24). On the other hand, reactive

oxygen species (ROS) such as superoxide (O2
·-), hydrogen

peroxide (H2O2), and hypochlorous acid (HOCl) were all shown

to cause specific phenomena in the oocytes characterized by

hardening of the zona pellucida (ZP), accelerating premature

cortical granule loss (CGL), ooplasmic microtubule enhancement

(OME) in response to a microtubular enhancer, Taxol; as well as

altered spindle morphology (SM) and chromosome alignment (11,

25). Importantly, oocytes retrieved from older animals were noted

to have NO insufficiency, likely related to deficiency of substrates or

cofactors involved in production of NO, as well as zinc (Zn)

depletion (26). One other possibility is accelerated destruction or

consumption of NO due to its interaction with ROS or mammalian

peroxidases such as MPO, respectively (27).

In the current study, we address a hypothesis that chronological

aging is associated with an insufficiency in NO and increased ROS

in the oocyte microenvironment, and that an interplay between

these factors results in deterioration in oocyte quality evident in the

forms of characteristic changes in oocyte structure and function. In

this report, a mouse model for chronological aging is used with

young animals, retired breeders and old animals used to represent

younger, middle aged and perimenopausal women.
Methods

Study design

The current study was approved by the institutional review

board/Animal Investigations Committee of Wayne State University.

All reagents were obtained from Sigma Aldritch (St Louis, MO)

unless specified otherwise. Design of the study is presented in

Figure 1. Due to their relatively shorter life-span as well as

previous knowledge regarding the follicular dynamics and timing

of ovarian senescence, we performed this study on oocytes from

B6D2F1 female mice in three chronological age-groups (28–30).

These groups comprised of mice aged 8-14 weeks (young breeders,

YB), 48-52 weeks (retired breeders, RB), and 80-84 weeks (old

animals, OA) since these age-groups are approximately comparable
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to young (<30 year old); middle aged (>36 year old) and older (>44

year old) women based on follicular dynamics and fecundability

(28, 30–33). Mice from the three groups underwent superovulation

with the help of PMSG and hCG, followed by retrieval of oviductal

oocytes at 13.5 hours or 17 hours later, to study sustenance of

oocyte quality post-ovulation (23). The oocytes were subjected to

three sets of experiments (Figure 1). In experiment set 1, the

oviductal oocytes were evaluated for determination of zona

pellucida dissolution time (ZPDT), cortical granule (CG) status,

spindle morphology (SM) and chromosome status as well as

ooplasmic microtubule dynamics in response to Taxol (34–36). In

experiment set 2, oocytes obtained from RB were retrieved at 13.5

hours and were treated with an NO donor, S-Nitroso-N-acetyl-DL-

penicillamine (SNAP), or penicillamine (end product of SNAP after

release of NO) in culture medium under physiological conditions

for 3.5 hours. Oocytes were then subjected to assays for ZPDT,

spindle/chromosome morphology, CG status and OMD (23). In

experiment set 3, oocytes and cumulus cells from each of the three

groups were subjected to fluorescence immunocytochemistry for

nitrotyrosine antibody to detect protein nitration (37).
Superovulation and oocyte retrieval

Six to ten-week-old B6D2F1 mice obtained from Jackson

Laboratories (Bar Harbor, ME) were acclimatized to the 14 h light-

10 h dark cycle. The animals were housed under standard conditions

until ready for experiments performed at ages 8-14 (YB), 48-52 (RB) or

80-84 weeks (OA). In all groups, animals were superovulated with 7.5

IU each of pregnant mare’s serum gonadotropin (PMSG) and human

chorionic gonadotropin (hCG) respectively, 50 hours apart. In the YB
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and RB groups, oocytes were retrieved from oviductal ampullae at 13.5

or 17 h after hCG to obtain postovulatory young or relatively old

oocytes, whereas in the OA group, oocytes were retrieved only at 13.5 h

post-hCG, as the yield of already low numbers of oocytes in this age-

group of animals was noted to be extremely poor. Cumuli retrieved

from the oviductal ampullae were treated with 0.1% hyaluronidase (w/

v) in M2 medium (Sigma) for 2-3 minutes at 37°C. Oocytes were

subsequently denuded to remove all cumulus-corona cells with a

narrow bore pulled glass Pasteur pipette, thoroughly rinsed in M2

medium, inspected to rule out abnormal morphology and were kept

ready in M16 medium (Sigma) pre-equilibrated with 5% CO2 in air at

37°C in a common pool before randomly assigning oocytes into test

and control groups according to the experiment sets. In experiment set

3, cumulus cells denuded from the oocytes from YB and RB retrieved

at 13.5 and 17 hours after hCG were studied for NT.
Experiment set 1

Zona pellucida dissolution time (ZPDT), was assessed for oocytes

from the YB (8-14 weeks) and RB (48-52 weeks) groups retrieved at

13.5 and 17 h post-hCG and in OA, due to limited number of oocytes,

at 13.5 h post-hCG group (n=156), followed by fixation in 4%

paraformaldehyde (PFA), and fluorescence immunocytochemistry

with a-tubulin and DAPI for spindle and chromatin morphology and

fluorescent staining of cortical granules (CG) with lens culinaris

agglutinin for status of cortical granules (24-26). Briefly, oocytes were

subjected to acidified Tyrode’s solution to remove ZP and were fixed

in 4% paraformaldehyde PFA at 37°C for 45 minutes, permeabilized

using PBS Triton X-100 with 0.3% BSA for 45 minutes and blocked

using 3% blocking solution overnight at 4°C and subsequently stained
FIGURE 1

A flow-chart is presented, depicting the study design. As shown, three sets of experiments were performed. Accordingly, in experiment set 1,
oocytes from young (YB) and retired breeders (RB), as well as old animals (OA) were assessed for cortical granules (CG), Spindles and ooplasmic
microtubules (OM), as well as zona pellucida dissolution time (ZPDT), a parameter to assess zona pellucida hardening. In experiment set 2, sibling
oocytes retrieved from RB were subjected to an NO-donor, SNAP, or its end product, penicillamine, prior to assessing aging phenomena. In
experiment set 3, oocytes and cumulus cells were subjected to fluorescence immunocytochemistry for nitrotyrosine (NT).
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with primary anti a-tubulin antibody and an FITC conjugated

secondary antibody as well as rhodamine conjugated pisum

sativum agglutinin (PSA), and loaded in chambers containing

Vectashield containing DAPI (Vector Laboratories, Eugene, OR)

(24). Other oocytes were subjected to determination of ooplasmic

microtubule dynamics prior to fixation and fluorescent staining

(OMD, n=145) by treating with Taxol (5µM, 10 minutes, in M16

medium at 37°C with 5% CO2 in air), to selectively enhance

ooplasmic microtubules in postmature, but not young, oocytes

(34). Specimens were examined under confocal microscope by an

independent examiner blinded to subgroups.
Experiment set 2

Sibling M2 stage oocytes retrieved from RB at 13.5 h post-hCG

were exposed to SNAP (100mM, @0.23 mM/min NO, Table 1) or

penicillamine (M-16 medium, 37°C, 5% CO2, 3.5 h, Table 1) and

were processed to examine the aging phenomena as above (ZPDT,

spindle morphology, CG status and OMD (23).
Experiment set 3

Oocytes and cumulus cells retrieved from the YB and RB groups

were fixed after cumulus cell denudation and ZP dissolution as

mentioned above, and subsequently underwent fluorescence

immunocytochemistry using a rhodamine conjugated primary

antibody against nitrotyrosine (NT, Cayman Chemicals, Ann

Arbor, MI). Briefly, oocytes and cumulus cells were processed as

follows. Oocytes were rinsed and permeabilized with phosphate

buffer saline containing 0.1% triton X-100 (PBS-TX) for 1 hour at

37°C and subjected to blocking solution containing 3% BSA

overnight (4°C). The oocytes were then treated with primary anti-

nitrotyrosine antibody (mouse polyclonal, 1:200, Cayman

Chemicals, Ann Arbor, MI) for 1 hour, rinsed with PBS-TX,

treated with rhodamine conjugated secondary antibody (rabbit,

anti-mouse, 1:300, Molecular probes, Eugene, OR) and mounted

in glass chambers (Sigma-Aldrich). The cumulus cells were
Frontiers in Endocrinology 04
processed in a similar fashion and mounted in glass chambers.

Appropriate negative controls were used (37). The processed

oocytes and cumulus cells were examined under confocal

microscopy by an independent examiner blinded to the

subgroups. Each oocyte was scored for the presence or absence of

NT staining, whereas 100 cumulus cells in each experimental

replicate were scored for presence or absence of NT.
Statistical analysis

Statistical analysis was performed using the Prism GraphPad

Software, version 6 (San Diego, CA). The frequency data for OMD,

CG status and spindle normality as well as presence or absence of

NT staining in the oocytes and cumulus cells were analyzed using

the Chi Square and Fisher’s Exact tests, while ZPDT between the

subgroups in experiment sets 1 and 2 were compared using the

appropriate parametric (Student’s unpaired t test for comparing

two groups and one way ANOVA for three or more groups) and

non-parametric tests (MannWhitney U test for comparing between

two groups and Kruskal Wallis test for comparing three or more

groups) for comparison between two groups. Post-hoc tests were

performed where appropriate. Data are expressed as mean ± SD.

Significance was defined as P<0.05.
Results

Oocyte numbers and quality
among subgroups

Numbers of oocytes in the YB, RB and OA groups that were

assigned to specific treatment or control subgroups are presented in

Table 1. The mean numbers of oocytes retrieved per animal

underwent a significant decrease with increasing chronological

age (29.8 ± 4.1 per animal in the YB group compared to 10.2 ±

2.1 in RB and 4.0 ± 1.6 in OA; P<0.0001). These results indicate that

a significant decrease in oocyte numbers occurs with

chronological age.
TABLE 1 Oocyte groups are presented in the table indicating the hCG trigger to retrieval interval as well as subgroups used in the study design.

Oocyte
Groups

hCG to
Retrieval Interval

No.
of Oocytes

No. of oocytes exposed
to Taxol

No. of oocytes not exposed
to Taxol

YB 13.5 h 62 30 32

YB 17 h 68 32 36

RB 13.5 h 65 32 33

RB 17 h 71 36 35

OA 13.5 h 35 15 20

RB + SNAP 13.5 h 30 15 15

RB Controls 13.5 h 30 16 14
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Ooplasmic microtubules among oocytes
from young and old animals

In YB, oocytes retrieved at 13.5 h (Figures 2A, B) displayed

normal microtubule configurations whereas at 17 h displayed an

increase in ooplasmic microtubules with visibility enhanced in the

presence of Taxol (Figures 2C, D). Oocytes from RB showed

abnormal OME with variable cortical granules (Figures 2G, H).
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It is important to note that despite the absence of Taxol (Figure 2E),

a significant OME and an abnormal spindle are observed

(Figures 2F, G); whereas visibility is further enhanced with Taxol

exposure, indicating increased ooplasmic microtubule turnover

secondary to aging events in the cytoplasm (Figure 2H). Similar

enhancement was noted in RB oocytes at 17 h (Figure 3 IA). For

OA, oocytes were only retrieved at 13.5 h as quality measures were

already reflective of post-ovulatory aging phenomena including
FIGURE 2

Photomicrographs are presented, depicting optical sections of oocytes labeled with fluorescent stains for a-tubulin (FITC conjugated, green, A-H),
cortical granules (CG, rhodamine conjugated, red, C, G-K) and chromatin (Chrom, DAPI, blue, A, C-E, G-K). Photomicrographs in (A) and (B) depict
spindle and ooplasmic microtubule configurations in oocytes from young breeders (YB) retrieved at 13.5 h. Arrow in (A) depicts normal microtubular
spindle and chromosome metaphase plate. (B) Depicts taxol treated oocyte with enhancement of spindle microtubules (arrow) but not ooplasmic
microtubules. Oocyte in (C) is from the YB group, retrieved at 17h post-hCG, depicting abnormal spindle morphology (arrow) and minimal cortical
granule loss (arrowheads). In (D), oocyte from the YB group retrieved at 17 h post-hCG has spindle irregularity as well as ooplasmic microtubule
enhancement (OME), indicating effect of post-ovulatory aging. Oocytes in (E, F) were retrieved from RB at 13.5 h post-hCG trigger. In (E), the
abnormal spindle and OME are noted without taxol treatment, while in (F), spindle and ooplasmic microtubule enhancement is visible (arrowheads).
Oocyte in (G) depicts mostly intact cortical granules with minimal loss (arrows) and abnormal chromosome metaphase is seen (arrowhead). Oocyte
in (H) was retrieved at 17 h post-hCG and shows marked enhancement of ooplasmic microtubules following taxol treatment (arrowheads). Oocytes
retrieved at 13.5 h post hCG in the OA group are depicted in (I-K), where major cortical granule loss is noted (arrowheads). Oocyte in (J) depicts
pronuclear formation (PN, blue arrow) and undissolved zona pellucida (ZP, white arrow), indicating spontaneous oocyte activation and zona
pellucida hardening. In (K), apart from major moderate cortical granule loss (arrowheads), an abnormal chromosome metaphase plate is noted
(arrow). Original magnification is 600×, bar in (A) and represents 50 µm, applicable to (A-H), bar in (K) and represents 50 µm, applicable to (I-K).
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cortical granule loss, abnormal formation of pronuclei or

micronuclei, zona pellucida hardening, and abnormal spindle and

microtubule status (Figures 2I–K).

A significant increase in ooplasmic microtubules was noted

among oocytes retrieved from oocytes from YB and RB retrieved at

17 h compared to those retrieved at 13.5 h (YB: P<0.0001, RB:

P=0.0002). Moreover, the number of oocytes displaying minimal,

moderate and increased ooplasmic microtubules were significantly

different for OA, RB and YB, overall indicating a significantly

increased ooplasmic microtubules among oocytes from OA, RB

and YB from highest to lowest (P<0.0001, Figure 3 panel IA).

In summary, the OME increased as a function of post-ovulatory

age in the YB group, whereas in the RB and OA groups, it also

additionally increased as a function of chronological age.
Spindle morphology and cortical
granule status

Oocytes retrieved at 13.5 compared to 17 h had significantly

higher incidence of intact microtubular spindles and CG in both YB
Frontiers in Endocrinology 06
and RB groups (P<0.0001). Moreover, oocytes from the YB group

also had a significantly higher occurrence of intact spindles and CG

compared to oocytes from the RB group at 13.5 and 17 h post-hCG

and oocytes from OA group respectively (P<0.0001). A significantly

higher number of oocytes from the YB and RB groups retrieved at

13.5 h displayed intact CG and normal spindles, compared to those

retrieved at 17 h post-hCG (Figure 3, panel I B). Thus, oocytes from

RB were noted to have both, pre-ovulatory as well as accelerated post-

ovulatory aging; whereas the oocytes from OA displayed accelerated

pre-ovulatory aging. Thus, the occurrence of normal spindle

morphology and intact CG is noted to decrease with both, post-

ovulatory age of the oocyte and chronological age of the animal.
Zona pellucida hardening and spindle
morphology among oocytes from young
and old animals

A significant increase in ZPDT was noted with increasing post-

ovulatory age in oocytes from the YB as well as the RB groups. Thus,

oocytes retrieved at 17 h had significantly higher ZPDT compared
A A B

B C D

FIGURE 3

Panel I (A, B) are bar charts representing categorical data presented in form of percentages. In (A), percentages of oocytes with minimal, moderate,
and increased ooplasmic microtubules are presented within the oocytes in the YB and RB groups, retrieved at 13.5 and 17 h post-hCG. Significant
differences in mild, moderate and increased ooplasmic microtubules were noted within the YB and RB groups with respect to post-ovulatory age
(minimal and increased, YB: 13.5 vs 17 h, P<0.0001 for both respectively; increased, RB: 13.5 h vs 17 h, P=0.0002; minimal and increased, YB vs RB,
13.5 h, P<0.0001; YB 13.5 h, RB 13.5 h and RB 17 h vs OA, P<0.0001 for each respectively; Moderate: YB 13.5 h vs RB 13.5 h, P=0.0333; RB 13.5 vs 17
h, P=0.013; YB 13.5 h and 17 h vs OA, P<0.0001 for both respectively; RB 13.5 vs OA, P=0.0119). In (B), Percentages of oocytes with intact spindles
and intact cortical granules decreased with post-ovulatory age in both YB and RB groups (P<0.0001 for both), and among oocytes retrieved at 13.5 h
from YB, RB and OA groups respectively (P<0.0001). Panel II (A, B) are box-whiskers plots depicting zona pellucida dissolution time (ZPDT) in
seconds on the Y axis, On the X axis in (A), oocyte groups are included. YB: young breeders, RB: retired breeders, OA: Old animals. A significant
increase is noted in ZPDT among oocytes retrieved at 17 h compared to 13.5 h within the YB and RB (P<0.0001). Similarly, a significantly higher
ZPDT is noted among RB oocytes retrieved at 13.5 h and 17 h, when compared with their corresponding subgroups (13.5 and 17 h respectively) in
the YB group (P<0.0001). (C, D) depict nitrotyrosine staining in cumulus cells and oocytes from YB and RB. A significant increase in NT staining is
noted among oocytes retrieved at 17 h compared to 13.5 h post hCG trigger in both YB and RB groups among oocytes from RB compared to YB
oocytes at 13.5 and 17 h post hCG trigger (P<0.0001 in all).
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to 13.5 h within the YB as well as the RB groups (P<0.0001).

Moreover, ZPDT in oocytes retrieved at 13.5 h and 17 h post-hCG

were significantly higher in the RB group compared to the oocytes

retrieved at 13.5 and 17 h in the YB group (Figure 3, panel IIA).

All oocytes from OA displayed abnormal characteristics with

respect to increased ZPDT, near total CG loss and disrupted or

abnormal morphology of microtubular spindles compared to YB

(Figures 2I–L, 3-panel IB). Oocytes from the OA group also

demonstrated spontaneous oocyte parthenogenesis, as evidenced

by the incidence of either abnormal formation of pronuclei or

micronuclei. This is likely a result of an unstable metaphase II

spindle with scattered metaphase chromosomes, accompanied with

spontaneous oocyte activation. Oocytes from OA also displayed a

marked increase in cytoplasmic microtubules without taxol

treatment (Figures 2J, K). Nonetheless, with treatment with taxol,

oocytes from the OA group did not show further increase in already

increased ooplasmic microtubules.

Zona pellucida hardening is noted to increase with both,

postovulatory age of the oocyte and progressively with

chronological age of the animal.
Exposure to nitric oxide donor

Oocytes retrieved at 13.5 h post-hCG from the RB group

exposed to SNAP had significantly lower ZPDT compared to

controls exposed to penicillamine (Figure 3, panel II B).

Furthermore, exposure to SNAP resulted in significantly higher

number of oocytes with minimal (P=0.0177) and significantly

decreased oocytes with increased ooplasmic microtubules despite

exposure to Taxol (P=0.001, Figure 4A). Similarly, increased

number of oocytes with normal spindle morphology (P=0.0007)

and intact CG (P=0.022) were noted following exposure to SNAP
Frontiers in Endocrinology 07
versus controls (Figure 4B). Thus, exposure to an NO donor

decreased OME, CG loss and improved spindle morphology

among oocytes from RB.
Nitrotyrosine staining

Among the YB group oocytes, nitrotyrosine (NT) staining was

observed in very scant (1%) cumulus cells and in none of the

oocytes retrieved at 13.5 h, but occurred in 55.5% of the oocytes

retrieved at 17 h post-hCG (Figure 3 panel II C, D, P<0.0001 for

both). Among oocytes from the RB group, NT staining was

observed in oocytes and cumulus cells retrieved at 13.5 and 17 h.

However, proportion of NT-positive oocytes and cumulus cells was

significantly higher in the 17 h subgroup compared to 13.5 h, and

significantly higher than 17 h subgroup from the YB group. Among

the oocytes from the OA group, all oocytes stained positive for NT

(5 out of 5 tested, P<0.0001 for all). Very scant to no cumulus cells

were available in the OA group and NT staining quantification or

analysis was not performed for the cumulus cells in the OA group.

Thus, NT positivity increased in oocytes as well as cumulus cells

with advancing chronological age as well as post-ovulatory age with

the highest number of NT positive oocytes and cumulus cells noted

in the RB group (Figures 3, panel II C, D, 5). Incidence of NT

positivity in oocytes and cumulus cells thus increased progressively

with both postovulatory and chronological aging.
Discussion

Impairment in follicular dynamics with advancing age is known

among mice as well as several other species, including human, in the

form of lower number of recruited oocytes after superovulation (30,
A

B

FIGURE 4

Bar chart (A) depicts percentages of oocytes with minimal, moderate and increased microtubule dynamics after exposure to the NO donor S-
Nitroso-N-acetyl-DL-penicillamine (SNAP, test groups) versus penicillamine (control group). Significantly higher numbers of oocytes with minimal
(P=0.0177), and significantly decreased numbers of oocytes with increased OMD were noted in the RB group oocytes exposed to SNAP compared
to controls (P=0.001). Bar chart (B) depicts the status of spindle morphology and cortical granules in RB oocytes exposed to SNAP versus controls,
similar to (A). Significantly higher number of RB oocytes exposed to SNAP had normal spindle morphology compared to the control oocytes
((P=0.0007). RB oocytes exposed to SNAP also had significantly lower number of oocytes with cortical granule loss compared to the control
oocytes (P=0.022).
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38). Similarly, increased oocyte spindle abnormalities and ZP

hardening events are consistent with previous observations, for

example, among oocytes from cycling women with advancing age

(35, 36, 39). Our study showed a serial and significant decrease in

the number of oocytes with advancing age from YB to RB and OA.

Moreover, an increased incidence of spindle abnormalities, CG loss

and ZP hardening indicated worsening oocyte quality as a function

of chronological age.

Freshly ovulated oocytes from the RB group had a significant

increase in ZP hardening, premature CG loss, and increased OMD

compared to YB. This was noted even at 13.5 h after ovulatory

trigger, whereas under physiological conditions, these changes are

typically induced only after several hours post-ovulation, e.g., at >17

h post ovulatory trigger (Figure 3). These events also mark the end

of the physiological temporal window for optimal fertilization, as

indicated by their association with fertilization and cleavage

abnormalities, fragmentation as well as apoptosis (34, 35, 37). On

the other hand, the oocytes retrieved from old animals not only

showed signs of CG loss and ZP hardening, but also showed signs of

in-vivo spontaneous activation, with pronuclear formation. Both

phenomena noted in RB and OA are likely a continuum of the same

process, well known to be related to alteration of cell cycle factors

involved in meiosis exit (40). Hence, these oocytes have likely

undergone alterations indicative of abolition or narrowing of the

temporal window for optimal fertilization (35).
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Increase in OMD in oocytes from older mice indicates a failure

of sustained meiotic arrest in the M II stage. Oocytes undergo a

unique meiotic cell cycle, which is arrested in the dictyate stage of

prophase for an indefinite time period that can last even up to 5

decades, making them vulnerable to meiotic chromosome

segregation errors during M I phase, which largely contribute to

aneuploidies in the oocyte and embryo (41, 42). However,

abnormality of the M II spindle and subsequent occurrence of

fertilization abnormalities as well as mitotic errors in the embryo

are the additional phenomena reported in older individuals (42).

Stability of the M II spindle apparatus, a consequence of the stability

of meiotic cell cycle factors, is critical for development of

chromosomally normal embryos. Instability of the M II arrest

results in a spontaneous partial meiotic exit of the oocytes due to

changes in cell cycle factors. Such oocytes undergo asynchronous

cytoplasmic and/or nuclear progression that is incompatible with

normal development (43).

Accelerated premature meiosis transition occurring within pre-

ovulatory oocytes frommeiotic stage to an interphase like stage may

be due to altered follicular dynamics or increased ROS, or both [

(44–47), inducing untimely meiotic exit exhibited in form of post-

maturation changes. Hence, these oocytes have likely undergone

alterations indicative of abolition or narrowing of the temporal

window for optimal fertilization (48). At the cellular level, relatively

low M phase promoting factor (MPF) and/or rapid decline in MPF
FIGURE 5

(A) through (F) are photomicrographs showing optical sections of oocytes depicting microtubules (green), chromosomes (blue) and CG (red).
Oocytes in (A) through (C) were retrieved from the RB group at 13.5 h and were treated with SNAP (100 µM, 3 hours, 37°C, 5% CO2), whereas their
sibling control oocytes were exposed to penicillamine under similar conditions (D-F). Optical section (A) passes through the cortical cytoplasm
depicting the spindle apparatus with normal morphology (arrowhead in A). Oocyte in (B) has minimal OMD despite treatment with Taxol. Intact CG
are noted along and immediately beneath the oolemma (arrowheads in B and C). Oocyte in (D) shows a control oocyte untreated with NO-donor,
with disrupted spindle and the metaphase plate. Similar control oocyte treated with taxol is depicted in (E), with significant enhancement in
ooplasmic microtubules (arrowheads in E). Photomicrograph (F) depicts abnormal morphology of spindle apparatus with disruption of the
chromosome metaphase plates (arrow). A moderate loss of CG was noted in the same oocyte on 3-D image reconstruction, while a CG free domain
is depicted. Photomicrograph (G) is obtained from an optical section on a specimen of cumulus cells separated from a cumulus cell-oocyte
complex retrieved from the RB group at 13.5 h. The cumulus cells depict the presence of nitrotyrosine (NT, red), while the nuclei are stained with
DAPI (blue). Oocyte in (H) is from RB, showing the presence of positive staining for NT (arrowhead depicts abnormal metaphase). Original
magnification 600×, bar in H represents 50 µm.
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activity in oocytes may cause these changes (35, 43, 48). Thus, cell

cycle factor alteration is one of the key mechanisms operative in

oocytes from older females contributing to poor oocyte quality

noted in M II stage oocytes. It can also explain the occurrence of

post-fertilization and mitotic chromosome errors, mosaicism, and

developmental arrests seen for instance, in women with advanced

age undergoing ART (38, 49). Furthermore, incomplete transition

from meiosis to interphase may also result in ooplasmic transition

to interphase while chromosomes are still in meiosis as indicated by

presence of intact normal or abnormal spindle, condensed

chromatin and absence of nuclear membrane, accompanied by

increased microtubule array in the ooplasm (34–36). This

disconnect between nuclear and cytoplasmic changes during

meiotic transition can explain the occurrence of both, meiosis II

and post-fertilization mitotic chromosome segregation errors,

leading to embryonic aneuploidy, mosaicism, and developmental

arrests seen among women with advanced age undergoing ART (38,

49). The causative mechanisms for this cell cycle advancement can

be linked to failure of intracellular Ca2+ homeostasis and resultant

elevation in cytosolic Ca2+, which triggers degradation of MPF (38,

48, 50, 51). Similar alterations in cell cycle factors may, therefore,

explain increased incidence of spindle abnormalities among M II

oocytes with advancing chronological age. This is an interesting

new concept to define diminished oocyte quality related to

advanced chronological age.

Our study also confirms the role of NO supplementation in

slowing the post-ovulatory aging in oocytes from older mice.

Furthermore, it may also be able to exert an effect on reversing

pre-ovulatory aging to some degree, depending on its preexisting

extent. Similar slowing of oocyte aging, with extension of the oocyte

temporal window for optimal fertilization was also previously noted

in our studies on NO-supplemented oocytes from younger mice as

well as diabetic mice (23, 24, 37, 52, 53). Similarly, direct

intracellular measurement showed significantly lower NO within

oocytes from older mice (54). Therefore, NO-sufficiency is a likely

mechanism operative in oocytes to both sustain their fertilization

abilities and maintain quality by preventing atresia. Moreover,

diminution in NO in oocytes could explain acceleration of both

pre-ovulatory and post-ovulatory aging in oocytes from older mice

(23, 26).

Decrease in NO levels within the oocytes and their

microenvironment may occur with increasing age, due to

decreased production or increased consumption of NO. Nitric

oxide synthases (NOS), in the presence of molecular O2,

tetrahydrobiopterin, (H4B), NADPH, flavin mononucleotide

(FMN) and flavin adenine dinucleotide (FAD) convert L-arginine

to citrulline, releasing NO. Insufficiency of NO may therefore result

either due to deficiency of substrate or co-factors or may due to its

consumption during an interaction between NO and superoxide

(O2
•-), resulting in the formation of highly reactive peroxynitrite

(ONOO-), which is capable of reacting with proteins, enhancing

nitration, and causing damage to cellular organelles and DNA,
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ultimately causing cell death (55). Furthermore, it contributes to

increased protein nitration seen in the oocytes and cumulus cells

from older mice in our study, in form of the nitrotyrosine

footprints. Increased production of NT is therefore indicative of

production of ONOO- in the oocytes and their microenvironment

with increasing chronological age. ONOO- has been shown to

augment oocyte aging (55, 56). In addition to protein nitration

events, other ROS possess the capabilities to disrupt the oocyte

microenvironment, without sufficient protection from the cumulus

cells. ROS such as •OH or HOCl have been shown to cause

disturbance to the cumulus cells and directly affect the oocyte as a

function of increasing concentration (25, 57, 58). Importantly, these

pathological alterations can be modulated through antioxidant

supplementation such as with melatonin or lycopene (59–61).

Due to their ability to enhance oocyte aging, both insufficiency

of NO and increase in O2
•- are likely candidates involved in the

process of accelerated oocyte meiotic transition and deterioration in

oocyte quality associated with advanced chronological age. It can

therefore be assumed that the role-played by ROS and NO in the

oocyte and its microenvironment are the core of what drives oocyte

quality deterioration. These events can be observed under

circumstances of excessive ROS production including exposure to

environmental toxins (62, 63), chemotherapy and drug treatments

(64), gynecological diseases involving inflammation and oxidative

stress (37, 65), and, as shown in this study, chronological maternal

aging. As the ovarian environment is highly sensitive, systematic

changes ranging from hormonal modifications to nutrition can

have a direct effect on the oocyte. Moreover, the effects of

chronological aging on oocytes can be accelerated due to genetic

factors involved in physiological aging or epigenetic factors

stemming from the environment impacting the system such as

smoking, both which can disturb the oxidant-antioxidant balance

resulting in over-accumulation of oxidative stress (66). Altogether,

correction of the aberrant overconsumption of NO either by

correcting its cause or by augmenting NO in oocytes and their

microenvironment could be a potential mechanism to rectify

decline in fertility and fecundability, that is invariably associated

with advancing female age.
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