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An energy imbalance cause obesity: more energy intake or less energy

expenditure, or both. Obesity could be the origin of many metabolic disorders,

such as type 2 diabetes and cardiovascular disease. UCP1 (uncoupling protein1),

which is highly and exclusively expressed in the thermogenic adipocytes,

including beige and brown adipocytes, can dissipate proton motive force into

heat without producing ATP to increase energy expenditure. It is an attractive

strategy to combat obesity and its relatedmetabolic disorders by increasing non-

shivering adipocyte thermogenesis. Adipocyte thermogenesis has recently been

reported to be regulated by several new genes. This work provided novel and

potential targets to activate adipocyte thermogenesis and resist obesity, such as

secreted proteins ADISSP and EMC10, enzyme SSU72, etc. In this review, we have

summarized the latest research on adipocyte thermogenesis regulation to shed

more light on this topic.
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1 Introduction

Obesity is becoming more and more prevalent all over the world and is a huge risk to

human health (1). An energy imbalance causes obesity: more energy intake or less energy

expenditure, or both. So it is effective to prevent and treat obesity by reducing energy intake

or increasing energy expenditure. GLP-1 has been clinically used to treat obesity effectively

by decreasing energy intake (2, 3). In these years, lots of studies have reported that non-

shivering adipocyte thermogenesis, which always maintains the body temperature, can be

promoted to increase energy expenditure and resist obesity. It is a promising strategy to

combat obesity by activating the thermogenic adipocytes (4, 5).

Adipose tissue is classically divided into white adipose tissue (WAT) and brown

adipose tissue (BAT). Morphologically, white adipocyte has a unique large lipid droplet,

while brown adipocyte has many small lipid droplets and more functional mitochondria

(6). Functionally, white adipocyte stores energy and secrets many cytokines, including

adiponectin and leptin et ac., to regulate metabolism (7); brown adipocyte highly express a
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mitochondrial inner membrane protein UCP1 (Uncoupling protein

1), which can dissipate proton motive force into heat without

producing ATP. Under cold or pharmacological conditions, a

brown-like adipocyte called a beige adipocyte or brite adipocyte,

is induced in white adipose tissue (8). Like brown adipocyte, beige

adipocyte have many small lipid droplets and highly expressed

UCP1 to produce heat; brown and beige adipocytes are also called

thermogenic adipocytes (Figure 1). Brown and beige adipocytes are

functionally the same, but their origins differ. Beige and white

adipocytes are mostly Myf5 negative (9–11), while brown

adipocytes are Myf5 positive and share a precursor cell with

myocyte (12). Prdm16 is the master gene for brown and beige

adipocyte identity. Overexpression of Prdm16 in myoblast can

trans-differentiate it into brown adipocyte (13, 14), and the

knockout of Prdm16 in white adipocyte tissue abolished the

induction of beige adipocyte by cold (15, 16).

Interestingly, when the beta-adrenergic signaling pathway was

ablated in white adipose tissue, a kind of glycolytic beige adipocyte

was induced fromMyf5 positive precursor cells (17). Brown adipose

tissue is located in the interscapular depot in mammals, and white

adipose tissue is mainly located in the subcutaneous and visceral

depot (6). It is noted that brown adipose tissue gradually

disappeared when humans grew up (18, 19). There are brown

and beige adipocytes in the deep human neck (20, 21). In addition,

beige and brown adipocytes positively correlate with body weight

(22, 23).

Cold exposure is the most effective way to stimulate adipocyte

thermogenesis. Upon cold exposure, adipose tissue was

sympathetically innervated. The secreted norepinephrine binds

with a beta-adrenergic receptor in adipocytes and activates the Gs

signaling pathway and adenylyl cyclase to elevate the cycle

adenosine (cAMP) contents. And then, cAMP binds with the

regulatory subunit of protein kinase A (PKA) to activate its

catalytic subunit C to phosphorylate the following transcriptional

factor CREB. The phosphorylated protein CREB enters the nucleus

and upregulates thermogenic genes, including Ucp1 et al. (24–27).

Many studies have reported that many kinds of cytokines,
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transcriptional factors, kinases, and membrane receptors, like

FGF21, IRF4, and ZFP516 et al., are involved in adipocyte

thermogenesis (28–31). Here, we have summarized the latest

studies involved in adipocyte thermogenesis listed in Table 1 and

Figure 2.
2 Factors directly act on adipocyte

2.1 Secreted proteins

2.1.1 EMC10
Due to differential splicing, endoplasmic reticulum membrane

complex subunit 10 has two isoforms: membrane EMC10 and

secreted EMC10 (scEMC10) (45, 46). ScEMC10 serum contents

in white and Chinese Han human populations were positively

correlated with obesity and insulin resistance. After bariatric

surgery or exercise and caloric restriction, serum scEMC10 levels

decreased. The whole-body Emc10 knockout mice, displaying more

adipocyte thermogenesis and higher whole-body energy

expenditure, resisted obesity and insulin resistance induced by

high-fat diets. Conversely, Emc10 overexpression mice were more

easily induced into obesity and insulin resistance on high-fat diets,

had less adipocyte thermogenesis, and lower whole-body energy

expenditure. In addition, the circulating neutralizing antibody to

EMC10 also helped mice to reduce body weight gain. Mechanically,

secreted EMC10 can be taken up by adipocytes and interacted with

the Protein Kinase A catalytic subunit a to inhibit it from

phosphorylating CREB. So the decreased phosphorylated CREB

proteins led to a reduction in adipocyte thermogenesis (47).

2.1.2 ADISSP
ADISSP (Adipose secreted signaling protein) is a new

uncharacterized adipokine, highly and selectively expressed in

brown adipose tissue in humans and mice. The expression of this

protein is higher in adipose tissue in normal people than in obese

people and is negatively correlated with body weight index. The
FIGURE 1

Three types of adipocytes: white adipocyte, beige adipocyte, and brown adipocyte. Beige adipocyte and brown adipocytes are thermogenic
adipocytes for non-shivering thermogenesis.
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overexpression of Adissp in adipose tissue by Ap2 promoter-driven

promoted adipocyte thermogenesis, augmented oxygen

consumption, increased glycolysis, elevated body temperature,

and resisted body weight gain induced by high-fat diets. In

contrast, adipose-specific Adissp knockout mice had lower body

temperature, less adipocyte thermogenesis, and were more

susceptible to high-fat diet-induced obesity and hyperglycemia.

ADISSP promoted white adipocyte browning and brown

adipocyte activity by paracrine signaling but not by endocrine

signaling. A more sensitive assay is lacking to measure ADISSP

endogenous circulating contents. The PKA signaling pathway can
Frontiers in Endocrinology 03
be activated independently of the beta-adrenergic signaling pathway

by ADISSP (32). Though a surface receptor in adipocytes binds to

ADISSP, the receptor gene is still not confirmed and unknown.
2.2 Transcriptional factors

2.2.1 HIFa
HIFa (Hypoxia-inducible factor a, HIFa) has two family

members: HIF1a and HIF2a (48). These two genes were

upregulated in white and brown adipose tissue after cold exposure.
TABLE 1 Genes involved in adipocyte thermogenesis.

Genotype
Targeted
tissue

Adipose
thermogeneis

Diet
Metabolic
symptom

Potential mechanism
Human
study

Reference

Emc10-/- Whole body Up
High fat
diet

Decrease body weight and
improve insulin sensitivity

Interact with PKA Ca to block
its activity

Yes 47

AdisspTg
Adipose
tissue

Up
High fat
diet

Decrease body weight,
increase glycolysis and

imporve glucose
homeostasis

Activate PKA independent on
adrenergic signaling pathway

Yes 32

Hif2a-/- Adipose
tissue

Up
Standard
chow
diet

Enhance white adipose
browing upon cold

exposeure

Increase the expression of PKA
Ca

None 33

Ovol2boh/boh Whole body Down
Standard
chow
diet

Increase body weight, cold
intolerant and insulisn

resistance

Interact with CEBPa to inhibit
adipogenesis

Yes 34

Tmem86a-/-
Adipose
tissue

Up
High fat
diet

Decrease body weight,
attenuate inflammation
and improve insulin

sensitivity

Increase cAMP contents None 35

Ssu72-/-
Adipose
tissue

Down
Standard
chow
diet

Dysfucntion of
mitochondira and cold

intolerance

Inhibit the phosphorylation of
eIF2a

Yes 36

Cul2-/-

or
Appbp2-/-

Adipose
tissue

Up
High fat
diet

Counteracts diet-induced
obesity, insulin resistance

and dyslipidaemia

CUL2–APPBP2 catalyses the
polyubiquitinatio of PRDM16
protein and decreased its half

life

Yes 37

Gpr180-/- Whole body Down
High fat
diet

Increase body weight and
insulin resistance

Component of TGFb signaling
pathway

Yes 38

Ncc-/-
Adipose
tissue

Down
High fat
diet

Increase body weight and
insulin resistance

Mediate IL-18 function Yes 39

Opa1Tg Whole body Up
High fat
diet

Decrease body weight,
resist cold and improve

insulin sensitivity
Activate CREB Yes 40

Mcu1-/-

Emre-/-
Adipose
tissue

Down
High fat
diet

Increase body weight and
decrease body temperature

Form thermoporter with UCP1 Yes 41

UCP1 C253A
Adipose
tissue

Down

High-fat,
high-
sucrose
diet

Cold intolerance, more
inflammation in male mice

Increase mitochondria ROS None 42

ACE2Tg Whole body Up
Standard
chow
diet

More theromogenci
adipocyte and less adipose

tissue weight

Promote the expression of
VEGF

Yes 43

Mt2-/-
Adipose
tissue

Up
High fat
diet

Increase sympathetic
innervation and energy

expenditure

Promote sympathetic neuron
induced thermogenesis

Yes 44
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The adipose Hif1a, or Hif2a, or double-specific knockout mice had

more beige adipocytes in the inguinal adipose tissue and higher energy

expenditure compared to the wild-type mice upon cold exposure or

CL316243 (beta-adrenergic agonist) stimulation. By RNA-Seq analysis,

Prkaca, which encodes PKA catalytic subunit a (PKA Ca), was a

highly ranked gene in adipose tissue of Hif2a knockout mice. Using in

silico analysis, miR-3085-3p, directly regulated by HIF2a, was
identified to target the evolutionarily conserved region of 3’ UTR of

Prkaca. So, adipocyte HIF2a could suppress PKA Ca-mediated

thermogenic properties by promoting miR-3085-3p expression (33).
2.2.3 OVOL2
Ovo-like zinc finger 2 (OVOL2) belongs to the Ovo family of

zinc-finger transcription factors family and is highly conserved in

invertebrates and vertebrates (49). The C57BL/6J mice with Oval2

mutations induced by Nethyl-N-nitrosourea (ENU), named Oval2
boh/boh, were characterized by increased body weight without

affecting food intake under a standard chow diet. The boh

mutation is a single nucleotide transition from G to A, causing

the substitution of tyrosine for a conserved cysteine, and does not

affect the OVOL2 protein’s stability. Ovol2 knockout is

embryonically lethal. The heterozygotes with the boh allele and

the null allele of Ovol2 (Ovol2 boh/-) exhibited overall stronger

phenotypes: obesity, reduced energy expenditure, and adipocyte

thermogenesis. Overexpression of Ovol2 in adipocytes reduced total

body and liver fat and improved insulin sensitivity in mice fed on a

high-fat diet. Ovol2 is highly expressed in white adipose stromal

cells but not in mature white adipocytes. OVOL2 can block

adipogenesis by interacting with the C-terminal portion of C/

EBPa to inhibit its adipogenic function in both mouse and

human adipocytes (34). The mechanism of OVOL2 in brown

adipocytes remains elusive and needs more investigation.
Frontiers in Endocrinology 04
2.3 Enzyme

2.3.1 TMEM86A
Transmembrane protein 86A (TMEM86A) is a putative

lysoplasmalogenase, a close homolog of TMEM86B, and a YhhN

family protein member (50, 51). Tmem86a expression was

significantly upregulated in adipose tissue on high-fat diets compared

to the standard chow diet and heavily enriched in mature adipocytes.

Transcriptome-profiling (GEO: GSE94753) also shows that TMEM86A

expression is upregulated in abdominal subcutaneous WAT

from female patients with obesity compared to individuals

without obesity. The adipose tissue-specific Tmem86a knockout mice

had increased mitochondrial metabolism, adipocyte thermogenesis, and

energy expenditure and exhibited significantly lower body weight gain.

Mechanistically, the untargeted lipidomics analysis suggested

that Tmem86a overexpression downregulated the content of

lysoplasmalogens, including plasmatic lysophosphatidylethanolamine

18:0 (LPE P-18:0) and adipocyte-specific Tmem86a knockout (AKO)

increases LPE P-18:0 content in adipose tissue. LPE P-18:0 could reduce

the activity of PDE3B (phosphodiesterase 3b), which is abundantly

expressed in adipocytes and can degrade cAMP. Furthermore, LPE P-

18:0 treatment reduced body weight and fat mass, increased energy

expenditure, and strongly activated the PKA signaling pathway in

adipose tissue (35).

2.3.2 SSU72
SSU72 is a dual-specific protein phosphatase and is expressed in a

tissue-specific manner. Recent studies have demonstrated that SSU72

plays an important role in controlling the carboxyl-terminal domain

(CTD) function of RNA polymerase II (RNAPII) and monitoring the

liver (52–54). In adipose tissue, SSU72 phosphatase was highly

enriched in brown adipose tissue relative to white adipose tissue.
FIGURE 2

A schematic picture illustrates the latest studies on adipocyte thermogenesis regulation. The green color stands for the positive regulators, and the
brown color stands for the negative ones.
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Ssu72 mRNA and protein levels were increased significantly in BAT

and WAT after cold exposure. BAT from adipose-specific Ssu72

knockoutmice appeared pale and showed enlargedmitochondria and

disorganized cristae structures compared to WT mice. The knockout

mice were much more cold-sensitive and intolerant after cold

exposure. The expression of thermogenic genes and fatty acid b-
oxidation genes was significantly attenuated in the brown adipose

tissue of AKO mice.

When endoplasmic reticulum (ER) homeostasis is disrupted, PKR-

like ER-regulated kinase (PERK) is activated to phosphorylate the a
subunit of eukaryotic initiation factor 2 (eIF2a) at serine 51 (Ser51).

EIF2a phosphorylation represses most of the proteins’ translation to

reduce ER stress. Dephosphorylation of eIF2a by its phosphatase

GADD34 in the liver can improve insulin sensitivity and reduce

hepatosteatosis in mice fed high-fat diets. By RNA-Seq analysis, most

PERK-eIF2a target genes were significantly upregulated in AKO BAT.

Mechanistically, SSU72 can directly interact with eIF2a to inhibit its

phosphorylation and increase the protein translation of mitochondrial

oxidative phosphorylation and adipocyte thermogenesis in BAT.

Furthermore, metabolic dysfunction in Ssu72-abated BAT could

return to almost normal after restoring Ssu72 expression (36).

2.3.3 CUL2-APPBP2
PR domain-containing 16 (PRDM16) is a master gene that

controls the biogenesis of brown and beige adipocytes by forming a

complex with transcriptional and epigenetic factors (12, 13, 15).

PRDM16 is dynamically regulated at the post-translational level.

Overexpression of euchromatic histone-lysine N-methyltransferase 1

(EHMT1) or chronic treatment with synthetic ligands of peroxisome

proliferator-activated receptor-g (PPARg) prolongs PRDM16 protein’s

half-life (55, 56). CUL2–APPBP2 complex as the ubiquitin E3 ligase

was identified to determine PRDM16 protein stability by catalyzing its

polyubiquitination. CUL2 functions as a scaffold protein by interacting

with an E2 enzyme, elongation B (ELOB), elongation C (ELOC), and

APPBP2 substrate receptor, also found in RING E3 ligase complexes

(57, 58). Cul2 depletion in white adipocytes extended the half-life of

PRDM16 protein and significantly increased uncoupled cellular

respiration. Overexpression of Cul2 in adipocytes reduced brown/

beige-fat-selective genes’ expression. Consistent with the results of

Cul2 deletion, deletion of Appbp2 also led to higher PRDM16

protein levels and increased expression of brown/beige-fat-selective

genes compared with the control cells. APPBP2 (S561N) variant,

associated with lower levels of 2 h postprandial serum glucose and

insulin, weakly interacted with PRDM16 protein relative to WT

APPBP2. Differentiated primary adipocytes from Appbp2 mutant

mice expressed higher thermogenic gene levels than WT adipocytes.

Besides, adipose-specific Cul2 or Appbp2 knockout mice expressed

higher levels of PRDM16 protein and adipose thermogenesis, displayed

significantly higher whole-body energy expenditure, and gained less

body weight than controls (37).

2.4 Membrane receptor

2.4.1 GPR180
The transforming growth factor b (TGFb) signaling pathway is

complex and associated with various human pathologies (59). By
Frontiers in Endocrinology 05
comparing the transcriptome of human supraclavicular BAT

(scBAT) and subcutaneous WAT and analyz ing the

transcriptome of the human multipotent adipose-derived stem

(hMADS) cells differentiated into beige and white adipocytes,

Gpr180 was found to be upregulated in brown fat on both tissue

and cellular level. The knockdown of Gpr180 shifted brown and

beige adipocytes towards a white-like phenotype. The whole body

or inducible adipose tissue knockout of Gpr180 diminished brown

and beige adipocyte function and impaired insulin resistance.

The knockdown of Gpr180 did not affect cAMP levels and

phosphorylation of PKA substrates. However, it reduced the

phosphorylation of SMAD3 protein at serine 423 in the matured

adipocyte. Besides, TGFb1-induced phosphorylation of SMAD3

and upregulation of Ucp1 were attenuated in beige adipocytes

without GPR180, which indicates that GPR180 is required for full

activation of the TGFb signaling machinery. Collagen triple helix

repeat containing 1 (CTHRC1) was identified as GRP180’s potential

ligand. Overexpression of Cthrc1 in male mice prevented body

weight gain and increased energy expenditure during the HFD-

induced weight gain. In sum, GPR180 and CTHRC1 are the

components of the TGFb signaling pathway for adipocyte

thermogenesis. These components regulate low-grade SMAD3

phosphorylation and control thermogenic adipocyte function,

whole-body energy, and glucose homeostasis (38).

2.4.2 NCC
Circulating IL18 level is associated with body weight, insulin

resistance, and metabolic syndrome in humans and mice (60). Il18

ablation in mice led to hyperphagia, obesity, insulin resistance, and

decreased energy expenditure. Whole-body deletion of Il18r

increased body weight and decreased energy expenditure, but white

adipocyte browning was enhanced in mice on a chow diet (61, 62).

This can be explained by the NaCl co-transporter (NCC) acting as an

alternative receptor for IL18’s differential function in adipocyte

thermogenesis. A single knockout of Ncc or a combined knockout

of Il18r and Ncc, but not a single knockout of Il18r, blocked adipocyte

thermogenesis. Consistent with this, brown adipocytes from Ncc−/−

and Il18r −/− Ncc−/− mice, but not those from Il18r −/− mice, showed

decreased levels of IL18 and induced uncoupled respiration.

Furthermore, Ncc fi/fi Ucp1Cre mice gained more body weight,

had lower adipocyte thermogenesis, and showed worse glucose

intolerance and insulin resistance on high-fat diets. There is no

difference in UCP1 positive areas and thermogenic genes’

expression in adipose tissue between Il18rfi/fi Ucp1Cre mice and

control mice. However, the concise mechanism of IL18 for Ucp1

promotion is still unclear. It is only known that it is not dependent

on the cAMP signaling pathway in brown adipocytes. Overall, IL18

uses NCC to promote thermogenesis in BAT but uses IL18R to

enhance glucose sensitivity in WAT (39).
2.5 Other proteins

2.5.1 OPA1
The mitochondrial cristae biogenesis protein optic atrophy 1

(OPA1) was significantly downregulated in the human
frontiersin.org
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subcutaneous adipose tissue (SAT) of heavy co-twins by gene

expression analysis and correlated with mitochondrial gene

express ion. Opa1 t g mice with ubiquitous mild Opa1

overexpression were slightly resistant to high-fat diet-induced

obesity, glucose intolerance, and hepatic steatosis compared to

their littermate controls. Similarly, resistance to obesity was

observed in a mouse model of Opa1 haploinsufficiency (63).

Opa1tg mice produce more heat at room temperature by

promoting BAT function and WAT browning. Opa1 facilitates

cell-autonomous adipocyte browning by upregulating Kdm3a, a

member of the Jumanji demethylase. This increases brown and

beige thermogenic activity by controlling the H3K9 methylation

status of Adrb1 and Ucp1 (64, 65). Metabolomic profiling further

revealed that fumarate levels produced from the urea cycle derived

Kdm3a-dependent Ucp1 induction in adipocytes. Moreover,

overexpression of Opa1 can increase cAMP contents to activate

CREB to upregulate the rate-limiting urea cycle enzyme Cps1

(carbamoyl phosphate synthetase-1) in adipose tissue (40).

Although OPA1 may not depend on its pro-mitochondrial fusion

role, more research is needed to determine the mechanism by which

it activates CREB.
2.5.2 MCU and EMRE
By dissipating energy as heat, UCP1 mediates adaptive

thermogenesis. Long-chain fatty acids bind on UCP1 to drive

proton leak, while purine nucleotides bind on UCP1 to block this

uncoupling process (66, 67). Sulfenylation of UCP1 on Cys253 is

essential for acute cold-induced uncoupled respiration, while the

lysine succinylation of UCP1 reduces its activity and stability (68).

Cytosolic calcium can directly stimulate adenylyl cyclase activity to

increase cAMP production and PKA activation to induce

thermogenesis (69). Two endoplasmic reticulum-located calcium

channels, sarco/endoplasmic reticulum Ca2+-ATPase 2b

(SERCA2b) and ryanodine receptor 2 (RyR2), are involved in

ATP-dependent and UCP1-independent calcium cycling

machinery to dissipate energy as heat in a beige adipocyte (70).

The mitochondrial calcium uniporter (MCU) complex, which

consists of a pore-forming subunit (MCU) and several regulatory

subunits, including essential MCU regulator (EMRE) and

mitochondrial calcium uptake 1 (MICU1) et al., is a key regulator

of mitochondrial calcium (71). Mcu BKO (Mcuf/f with Ucp1Cre mice)

and Emre BKO (AAV-Emre gRNA into BAT of Rosa26-LSL-Cas9

with AdipoqCre) mice are hypothermic. They could not maintain their

core body temperatures when challenged with cold exposure. Upon

adrenergic stimulation, MCU recruits UCP1 through EMRE to form

an MCU-EMRE-UCP1 complex (thermo porter), which increases

mitochondrial calcium uptake to accelerate the tricarboxylic acid cycle

and supply more protons that promote uncoupled respiration. A

mutant EMCU (unable to conduct Ca2+) could interact with UCP1 at

a similar level as the WT EMCU, decreasing the level of UCP1-

dependent respiration. MICU1 is the gatekeeper to prevent Ca2+

overload in mitochondria by interacting with MCU. Their

interaction markedly decreased upon cold exposure or NE/CL-

316,243 treatment. AAV-Micu1 BKO (AAV-Micu1 gRNA into

Rosa26-LSL-Cas9 with Adipoq-Cre) enhanced brown adipocyte
Frontiers in Endocrinology 06
uncoupled respiration and energy expenditure when activated by

NE. The mice carrying the enforcedly assembled thermo porter

gained less body weight, more glucose and insulin tolerance, and

increased animal energy expenditure; the opposite metabolic

phenotypes were observed in Mcu BKO and Emre BKO mice (41).

2.5.3 Cysteine 253 to alanine (UCP1 C253A)
Because UCP1 loss causes the depletion of most components of the

mitochondrial electron transport chain (ETC) in BAT, the

interpretation of phenotypes of Ucp1 KO mice is bewildering and

confusing (72). Thermogenic reactive oxygen species (ROS) could

reversibly modify a regulatory site (C253) on UCP1 to elevate

UCP1-dependent respiration (67). Based on these findings, a mouse

model in which the regulatory C253 site on UCP1 is mutated to an

alanine (UCP1 C253A mouse) was generated to examine its role in

regulating energy homeostasis and metabolic disease. Quantitative

proteomics of BAT from WT, UCP1 KO, and UCP1 C253A mice

demonstrated that BAT from UCP1 C253A mice maintained

expression of the full mitochondrial metabolic proteins. Both male

and female UCP1 C253A mice exhibited significantly lower VO2

consumption, energy expenditure, and VCO2 production in

response to cold exposure. Fed on a high-fat, high-sucrose (HFHS)

diet, male, and female WT and UCP1 C253A mice gained

indistinguishable body weight, and their food intake was identical.

Remarkably, male but not female C253A mice exhibited more glucose

intolerance than WT mice. The proteomic analysis of adipose tissues

from both male and female mice on HFHS diets suggested that UCP1

C253A strongly agonizes WAT inflammation in male but not female

mice. The mutation of UCP1 C253A increased mitochondrial protein

oxidation and systemic inflammation in male mice since the

inflammatory cytokine expression was attenuated upon the

supplementation of MitoQ (73), a mitochondria-targeted antioxidant.

UCP1 C253Amale mice treated with b-estradiol showed the decreased
expression of inflammatory cytokines, which were significantly

increased in BAT of untreated C253A mice (42).
3 Factors on the adipose
tissue microenvironment

3.1 COVID-19

COVID-19 caused patients adipose atrophy, weight loss, and

cachexia by activating adipocyte thermogenesis. A transgenic

mouse (ACE2Tg) that knocked in human angiotensin-converting

enzyme 2 (ACE2) demonstrated progressive weight loss alongside

‘wild-type’ SARS-CoV-2 virus infection. SARS-CoV-2 infection

augments adipose thermogenesis and increases thermogenic

genes’ expression and UCP1 positive cells by histological and

immunohistochemical analysis in BAT, sWAT (subcutaneous

WAT) and vWAT (visceral WAT). SARS-CoV-2-infected adipose

tissues suffered from hypoxia with high HIF1a expression and

contained high levels of VEGF, a main target of HIF1a (74, 75).

VEGF is a crucial angiogenic factor that augments adipose tissue

browning (76, 77). Anti-VEGF mouse neutralizing antibody largely
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restored the sWAT and vWAT mass relative to the non-immune

IgG (NIIgG)-treated sWAT and vWAT. As seen in mouse models,

browning phenotypes of adipose tissues were also observed in

SARS-CoV-2-infected Syrian hamsters and human patients who

died of severe COVID-19 (43).
3.2 Zn

Zn is one of life’s most important essential trace elements and

has been associated with insulin resistance and adiposity (78). The

low level of plasma Zn is associated with obesity. Its

supplementation significantly reduces body weight and plasma

cholesterol and triglycerides (79, 80). Cold induces sympathetic

innervation, which promotes UCP1 expression and Zn secretion

from thermogenic adipocytes. However, Zn did not directly

influence thermogenic genes’ expression in primary beige

adipocytes. Zn stimulated the length of primary sympathetic

neurons’ neurite outgrowth to contribute to thermogenesis. Zn

injection induced sympathetic innervation in scWAT and BAT.

On the contrary, local injection of Zn chelator TPEN in scWAT

and BAT caused a decrease in sympathetic innervation. Furthermore,

6-hydroxidopamine (6-OHDA), which locally ablates sympathetic

fibers in BAT and scWAT of Zn-treated HFD mice, blocked the

anti-obesity effect of Zn treatment. MT2, cysteine-rich proteins that

bind to Zn with high affinity, in scWAT and BAT are upregulated by

high-fat diets. MT2 expression is increased in human scWAT samples

from obese individuals and positively correlated with body mass index

(BMI). Adipose tissue-specific Mt2 knockout increased VO2,

thermogenic genes’ expression, and UCP1 protein levels in scWAT

and BAT. At the same time Mt2 overexpression in BAT and scWAT

resulted in decreased sympathetic innervation, VO2, and thermogenic

gene expression without changes in body weight (44).
4 Discussion

Adipocyte thermogenesis is regulated by complex transcriptional

factors like PRDM16, PPARg, EBF2, ect, and has been studied

extensively (8, 81). Recently, Emc10, Tmem86a, Hif2a, and Adissp

have been reported to be involved in adipocyte thermogenesis by

regulating the PKA-CREB signaling pathway. This pathway is mainly

activated by cold exposure or beta-adrenergic agonists and has been

proven to be the most effective way to activate adipocyte

thermogenesis. Secreted EMC10 can interact with the Protein

Kinase A catalytic subunit a to inhibit it from phosphorylating

CREB, HIF2a negatively regulated the expression of Prkaca. In

contrast, TMEM86A blocked the activation of PKA by reducing the

level of cAMP. Conversely, OPA1 can increase cAMP contents to

activate the PKA-CREB pathway. In addition, the PKA signaling

pathway can be directly activated by ADISSP, but its concise

molecular mechanism was not clarified. Thus, regulating the PKA-

CREB pathway in adipocyte thermogenesis could still be an important

research area. Upon ER stress, PERK is activated to increase eIF2a
phosphorylation to repress most of the proteins’ translation. SSU72

can directly interact with eIF2a to inhibit its phosphorylation and
Frontiers in Endocrinology 07
increase the protein translation of adipocyte thermogenesis in BAT.

Otherwise, the knockdown or knockout of PERK was not tested to

examine whether it can promote or inhibit adipocyte thermogenesis in

this study. ISR (Integrated stress response) pathway, including PERK,

PKR, HRI, and GCN2 is also known to regulate phosphorylation of

eIF2a (82), so there are still more studies needed to investigate the

regulation of eIF2a phosphorylation in adipocyte thermogenesis.

UCP1 protein is always regarded as an independent uncoupling

protein to dissipate proton motive force without producing ATP, a

new role of UCP1 in adipocyte thermogenesis has been expanded so

that it can form a MCU-EMRE-UCP1 complex to increase

mitochondrial calcium uptake to accelerate the tricarboxylic acid

cycle and supply more protons that promote uncoupled respiration.

It was previously reported that SERCA2b and RYR2 in the

endoplasmic reticulum promote UCP1-independent adipocyte

thermogenesis by regulating ATP-dependent calcium cycling

machinery in beige adipocytes (70). This recent work revealed

how Ca2+ regulates adipocyte thermogenesis in mitochondria and

found that UCP1 can interact with other proteins to exert its effect.

Investigating whether more proteins can interact with UCP1 to play

roles in adipocyte thermogenesis is intriguing. Oval2 is reported to

promote white adipogenesis and regulate beige and brown

adipocyte thermogenesis. It’s unknown whether this gene would

affect beige or brown adipogenesis since they all share a similar

adipogenic mechanism depending on the activation of PPARg (83).
In addition, there is also an alternative way to promote adipocyte

thermogenesis by increasing sympathetic innervation in adipose

tissue. COVID-19 infection promoted the angiogenesis of adipose

tissue and Zn stimulated the length of primary sympathetic

neurons’ neurite outgrowth so that more adipocytes could be

innervated for adipose thermogenesis. Although the research

works mentioned here are novel and interesting, most of them

are firstly reported here and based on a single study from a single

research group. We consider that it will be more compelling and

reliable if these results could be repeated by other research groups.

Moreover, studies including more experimental repetitions are

needed, in order to confirm that these genes are also effective in

human adipocyte thermogenesis. In Table 1, we listed research

works that include human studies. These research works have just

tested the expression levels or functions of these relevant genes,

using experiments performed either in vitro or in adipose tissue

from healthy and obese human patients. However, they did not

include sufficient data to support their associations with human

energy expenditure. As such, it is still necessary to demonstrate that

these genes are able to in vivo regulate human energy expenditure.

It is intriguing to combat human metabolic disorders and

obesity by targeting adipocyte thermogenesis. In humans, mild

cold exposure, which can activate adrenergic receptor signaling

pathways, could increase the rates of glucose, fatty acid uptake, and

oxidative metabolism in the brown adipose tissue (84, 85).

Moreover, the oral administration of mirabegron (a human b3
adrenergic receptor agonist approved for overactive bladder

treatment), could activate human brown adipose tissue and

increase whole-body energy expenditure (86, 87). Furthermore, a

retrospective cohort study concluded that humans with positive

BAT had a healthier body fat distribution, with a decreased visceral
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adipose tissue content and an increased subcutaneous adipose tissue

content, as well as improved metabolic symptoms, such as lower

blood glucose and lipids, and decreased liver fat accumulation (88).

Moreover, another independent retrospective cohort study has also

reported an association of human positive BAT with improved

cardiometabolic health in terms of dyslipidemia, coronary artery

disease, congestive heart failure, and hypertension, especially in

overweight or obese individuals (89). However, progress in

combating obesity by targeting human thermogenic adipocyte

tissue is relatively slow due to issues including ethical reasons.

Nevertheless, extensive rodent research has demonstrated the

feasibility of combating obesity by targeting thermogenic adipose

tissues (90, 91). In sum, though most of these recent findings have

been analyzed or verified in human adipocytes or adipose tissue, it is

still a long and arduous way to transform these basic studies into

a clinic.
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