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Exploration and validation of key
genes associated with early
lymph node metastasis in thyroid
carcinoma using weighted gene
co-expression network analysis
and machine learning

Yanyan Liu1, Zhenglang Yin1, Yao Wang2 and Haohao Chen1*

1Department of General Surgery, The Third Affiliated Hospital of Anhui Medical University (The First
People’s Hospital of Hefei), Hefei, Anhui, China, 2Digestive Endoscopy Department, Jiangsu Province
Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
Background: Thyroid carcinoma (THCA), the most common endocrine

neoplasm, typically exhibits an indolent behavior. However, in some instances,

lymph node metastasis (LNM) may occur in the early stages, with the underlying

mechanisms not yet fully understood.

Materials and methods: LNM potential was defined as the tumor’s capability to

metastasize to lymph nodes at an early stage, even when the tumor volume is

small. We performed differential expression analysis using the ‘Limma’ R package

and conducted enrichment analyses using the Metascape tool. Co-expression

networks were established using the ‘WGCNA’ R package, with the soft threshold

power determined by the ‘pickSoftThreshold’ algorithm. For unsupervised

clustering, we utilized the ‘ConsensusCluster Plus’ R package. To determine

the topological features and degree centralities of each node (protein) within the

Protein-Protein Interaction (PPI) network, we used the CytoNCA plugin

integrated with the Cytoscape tool. Immune cell infiltration was assessed using

the Immune Cell Abundance Identifier (ImmuCellAI) database. We applied the

Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector

Machine (SVM), and Random Forest (RF) algorithms individually, with the

‘glmnet,’ ‘e1071,’ and ‘randomForest’ R packages, respectively. Ridge regression

was performed using the ‘oncoPredict’ algorithm, and all the predictions were

based on data from the Genomics of Drug Sensitivity in Cancer (GDSC) database.

To ascertain the protein expression levels and subcellular localization of genes,

we consulted the Human Protein Atlas (HPA) database. Molecular docking was

carried out using the mcule 1-click Docking server online. Experimental

validation of gene and protein expression levels was conducted through Real-

Time Quantitative PCR (RT-qPCR) and immunohistochemistry (IHC) assays.

Results: Through WGCNA and PPI network analysis, we identified twelve hub

genes as the most relevant to LNM potential from these two modules. These 12

hub genes displayed differential expression in THCA and exhibited significant

correlations with the downregulation of neutrophil infiltration, as well as the
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upregulation of dendritic cell and macrophage infiltration, along with activation

of the EMT pathway in THCA. We propose a novel molecular classification

approach and provide an online web-based nomogram for evaluating the LNM

potential of THCA (http://www.empowerstats.net/pmodel/?m=17617_LNM).

Machine learning algorithms have identified ERBB3 as the most critical gene

associated with LNM potential in THCA. ERBB3 exhibits high expression in

patients with THCA who have experienced LNM or have advanced-stage

disease. The differential methylation levels partially explain this differential

expression of ERBB3. ROC analysis has identified ERBB3 as a diagnostic marker

for THCA (AUC=0.89), THCA with high LNM potential (AUC=0.75), and lymph

nodes with tumor metastasis (AUC=0.86). We have presented a comprehensive

review of endocrine disruptor chemical (EDC) exposures, environmental toxins,

and pharmacological agents that may potentially impact LNM potential.

Molecular docking revealed a docking score of -10.1 kcal/mol for Lapatinib

and ERBB3, indicating a strong binding affinity.

Conclusion: In conclusion, our study, utilizing bioinformatics analysis

techniques, identified gene modules and hub genes influencing LNM potential

in THCA patients. ERBB3 was identified as a key gene with therapeutic

implications. We have also developed a novel molecular classification

approach and a user-friendly web-based nomogram tool for assessing LNM

potential. These findings pave the way for investigations into the mechanisms

underlying differences in LNM potential and provide guidance for personalized

clinical treatment plans.
KEYWORDS

thyroid cancer, bioinformatics analysis, The Cancer Genome Atlas, nomogram,
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Introduction

The continuous advancement in detection technology has

resulted in an ongoing rise in the rate of thyroid carcinoma

(THCA) detection. Compared to other types of endocrine

malignancies, THCA holds the highest prevalence, experiencing

an annual increase in its incidence (1). Surgical resection is the

primary treatment modality for THCA. Post-surgery, the decision

to perform neck lymph node dissection or radioactive iodine

therapy should be based on the patient’s condition and

pathological type. Additional treatment modalities include

radioisotope therapy, endocrine inhibition therapy, and external

beam radiation therapy (mainly used for anaplastic thyroid cancer),

among others. Despite typically displaying an indolent nature and

promising overall prognosis, THCA has a significant potential to

exhibit an invasive phenotype and in some cases may metastasize

(2). Recent reports indicate an approximate 38.5%~58.8% rate of

lymph node metastasis (LNM) in THCA (3). Moreover, cervical

LNM may occur at the early stages of disease progression (4). The

presence of LNM serves as a key indicator for prognosis and

treatment options in individuals afflicted with THCA (5). In cases

where LNM is detected, a comprehensive approach incorporating

radical surgery with lymph node dissection is deemed necessary (6).
02
Furthermore, the implementation of iodine-131 treatment may also

be considered based on specific indications (7). LNM constitutes an

important prognostic determinant, exhibiting a close association

with both tumor recurrence and unfavorable prognostic outcomes

among individuals afflicted with THCA (8). Additionally,

performing neck lymph node dissection due to suspected cervical

lymph node metastasis can potentially lead to damage to glands and

nerves, such as the internal jugular vein, submandibular gland,

brachial plexus, and accessory nerve. This can also result in adverse

postoperative outcomes for the patients (9). Hence, gaining clarity

regarding the occurrence or inclination towards lymph node

metastasis in instances of THCA would facilitate the development

of a more scientifically-informed treatment plan, enable regular

assessment of patient prognosis, prompt timely treatment

adjustments, and ultimately enhance patient prognosis.

In the case of THCA, several known risk factors have been

linked to LNM, such as patient age, sex, multifocality, calcification,

and extrathyroidal extension (ETE) (5, 10–12). In addition to

established clinical factors, there has been a burgeoning interest

in exploring genetic variations associated with LNM in recent years

(13, 14). For example, experimental evidence from both in vitro and

in vivo studies has demonstrated that the upregulation of lnc-

MPEG1-1:1 in papillary thyroid cancer (PTC) cell lines can
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elevate cell proliferation and migration (15). Moreover, this long

non-coding RNA (lncRNA) is observed to be overexpressed in the

cytoplasm of PTC cells and has been shown to exert its function by

acting as a competitive endogenous RNA (ceRNA), competitively

sequestering the shared binding sequences of miR-766-5p (15). In

addition, researchers have reported that primary patients with

positive lymph node status tend to exhibit relatively advanced TI-

RADS levels and higher prevalence of the RET genetic alteration

(16). Therefore, a comprehensive understanding and analysis of

genomic alterations in THCA with LNM are necessary to advance

the current knowledge of the underlying pathophysiology involved

in the development and predisposition to LNM. Such enhanced

understanding could potentially pave the way for the development

of improved resources and novel strategies for the prevention and

treatment of LNM (17, 18).

Endocrine-disrupting chemicals (EDCs) are exogenous

compounds found in the environment that can emulate or impair

the functioning of endogenous hormones (19, 20). EDCs have the

ability to interfere with reproductive, neuroendocrine,

cardiovascular, and metabolic function, resulting in compromised

health outcomes (20). The extensive impact of EDCs on the

progression and metastasis of tumors of endocrine organs has

been widely documented. According to a recent study report,

bisphenol A (BPA), a kind of EDCs, has a promotional effect on

breast ductal carcinoma in situ (DCIS) cell proliferation and

migration, as well as macrophage migration (21). When exposed

to an orally-administered, environmentally human-relevant low

dose of 2.5 mg/l BPA for 70 days through drinking water in a

DCIS xenograft model, primary tumor growth rate was promoted

approximately 2-fold and lymph node metastasis was significantly

increased, along with a notable enhancement of CD206+ M2

macrophage polarization, indicating a protumorigenic response.

These findings reveal the role of BPA as an accelerator in advancing

DCIS progression into invasive breast cancer by influencing DCIS

cellular activity and macrophage polarization toward a cancer-

supporting phenotype (21). Moreover, Tamoxifen, being an EDC,

is widely used as a hormone therapy in postmenopausal women

with breast cancer who are ER+ and is regarded as one of the most

effective adjuvant breast cancer treatments available (22). Its

effectiveness in controlling breast cancer recurrence and

metastasis has been extensively reported. Previous studies have

revealed the potential role of EDCs in THCA. Existing literature has

revealed that exposure to certain congeners of flame retardants,

polychlorinated biphenyls (PCBs), phthalates, and specific isomers

of pesticides can lead to an increased risk of thyroid cancer (23).

Exposure to Bisphenol A (BPA) has been associated with an

increased risk of thyroid nodules in Chinese women (24).

Additionally, animal experiments have demonstrated a correlation

between BPA exposure and the risk of thyroid cancer (25). Despite

THCA being the most frequent type of endocrine tumor, there has

not been widespread research into the impact of EDCs on the LNM

of THCA. Therefore, utilizing bioinformatics to investigate EDCs

relevant to LNM in THCA is advantageous for further screening of

potential therapeutic drugs and improving patient prognosis.

In light of the recent progress in high-throughput sequencing

technology, the integration of multiple omics analysis has gained
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widespread utilization in tumor research (26–28). The high-

throughput sequencing technology is capable of exploring tumor

biomarkers, evaluating therapeutic responsiveness, and providing

convenience for the development of clinical management plans

among tumor patients (29–32). Therefore, the aim of this study is to

comprehensively investigate the key genetic variations and EDCs

relevant to LNM in THCA using multiple bioinformatics

techniques. Additionally, we aim to screen for potential

therapeutic drugs and corresponding treatment targets capable of

inhibiting the incidence of LNM in THCA.
Materials and methods

Data acquisition

The clinical data, RNA-seq data, 450K methylation data, and

copy number variation (CNV) data pertaining to the THCA

(THCA) cohort were extracted from the GDC database (https://

portal.gdc.cancer.gov/projects/TCGA-THCA) (33). A total of 510

THCA specimens, along with 58 normal specimens, were identified

in the TCGA-THCA cohort. After obtaining the RNA-seq FPKM

dataset, we proceeded to transform the expression profile into

transcripts per kilobase million (TPM). The GSE60542 cohort,

comprising 33 primary thyroid tumor samples, 23 metastatic

lymph nodes, 30 normal thyroid samples, and 4 normal lymph

node samples, was extracted from the Gene Expression Omnibus

(GEO) database (http://www.ncbi.nlm.nih.gov/geo/), and it served

as the validation cohort (34).

Gene Expression Profiling Interactive Analysis (GEPIA)

database was used to obtain the differentially expressed genes

(DEGs) between THCA and normal tissues (35). The criterion for

screening DEGs is that the |Log2FC|>1 and q-value<0.05. The DEGs

were also plotted as chromosomal distribution via GEPIA database.
Identification of the potential for tumors to
undergo lymph node metastasis

Our study introduces a novel concept called ‘LNM potential. ‘ In

cases where a thyroid cancer patient experiences LNM with a small

primary tumor volume, they are considered to have a high LNM

potential. Conversely, if a thyroid cancer patient does not

experience LNM despite having a larger primary tumor volume,

they are considered to have a low LNM potential. In the TCGA-

THCA cohort, patients with a tumor size exceeding the median but

without LNM were classified as having low LNM potential (LNM

Low), while patients with a tumor size below the median but with

LNM were classified as having high LNM potential (LNM High).
Weighted correlation network analysis

The transcriptional profiles of the DEGs obtained from GEPIA

database were used as the input file for the R package “WGCNA” to

establish the co-expression networks (36). WGCNA was performed
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with the default-recommended parameters. To distinguish modules

with different expression patterns, a soft threshold power obtained

from “pickSoftThreshold” algorithm was used for creating co-

expression networks. The minimum module size was set to 30,

and the dissimilarity threshold for module merging was set to 0.25.

Pearsons correlation analysis were carried out to estimate

correlation between Module eigengenes (MEs) and clinical traits

and then the module with the highest and lowest pearsons

coefficient was identified as the module most relevant to

clinical traits.
Identification of the hub genes

The online database STRING was employed to formulate the

Protein-Protein Interaction (PPI) Network for all the genes in the

module most relevant to clinical traits (37). Default setting was used

in STRING database. The visual representation of the PPI network

was accomplished through the Cytoscape tool (Version 3.7.2). The

CytoNCA plugin, integrated with the Cytoscape tool, was utilized

for determining the topological features and degree centralities of

each node (protein) within the PPI network (38). Subsequently, the

hub genes was singled out and delineated as the prominent node of

the PPI network, crucial for mediating protein-protein interactions.

The hub gene-miRNA, Transcription factor (TF)-hub gene and

TF-miRNA interactions was established using NetworkAnalyst

on l i n e t o o l b a s e d on ENCODE da t ab a s e ( h t t p : / /

www.encodeproject.org/ENCODE/), miRTarBase (v8.0; http://

mirtarbase.mbc.nctu.edu/) and Regulatory Network Repository

(https://regnetworkweb.org/) (39–42).
Pathway enrichment analysis and immune
infiltration analysis

Conducting pathway and process enrichment analyses was

accomplished through employment of the Metascape platform

(43) (Metascape, http://metascape.org). By following the default

settings, the Metascape tool facilitated hierarchical clustering to

segregate enrichment terms into unique clusters, with the

representative term being selected based on minimal p-value criteria.

In order to ascertain the relative enrichment of a gene set in the

given sample population, gene set variance analysis (GSVA) was

implemented (44). The higher scores indicate a relatively greater

activation of the gene set in the given sample. In this study, 10

cancer-associated pathways’ activity scores were computed for 7876

samples collected from 32 cancer types using the Reverse Phase

Protein Array (RPPA) data derived from the TCPA database and

the TCGA database (45). The pathways examined in this study are

TSC/mTOR, RTK (receptor tyrosine kinase), RAS/MAPK, PI3K/

AKT, Hormone ER, Hormone AR, EMT (epithelial-mesenchymal

transition), DNA Damage Response, Cell Cycle, and Apoptosis

pathways, all of which are well-known pathways associated with

cancer. RPPA is a high-throughput antibody-based technology that

involves procedures analogous to those of Western blots (46). In

this technique, the proteins are extracted from cancerous tissue or
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cultured cells, denatured with SDS, and then immobilized on

nitrocellulose-coated slides. Next, an antibody probe is used for

analysis. Utilizing the Gene Set Cancer Analysis (GSCA) tool, the

aforementioned analytical process was carried out to compute a

pathway activity score (PAS) that effectively represents activation

levels of the respective signaling pathway (47).

Immune Cell Abundance Identifier (ImmuCellAI) database was

utilized to evaluate immune cell infiltration in each sample of

TCGA-THCA cohort (48). The aforementioned tool was

developed to assess the abundance of 24 immune cells within a

given gene expression dataset, including RNA-Seq and microarray

data. The 24 immune cells encompass 18 T-cell subtypes, as well as

an additional six immune cells, specifically, B cells, NK cells,

monocytes, macrophages, neutrophils, and DC cells.
Recognition of molecular subtypes

Unsupervised hierarchical clustering of the hub genes was

established by R package “ConsensusClusterPlus” to identify the

different molecular subtypes in TCGA-THCA cohort (49).

ConsensusClusterPlus was executed with default settings for all

parameters, with the maximum evaluated ‘k’ (max K) restricted to

10. The optimal number of clusters (‘k’) was determined using the

Consensus Cumulative Distribution Function (CDF) Plot.

Visualization of the expression patterns of hub genes across

different molecular subtypes was performed using the R package

‘pheatmap,’ with a heatmap-type display.
Machine learning framework

In the TCGA-THCA cohort, a comprehensive analysis was

conducted to identify key gene from the hub genes of PPI network

utilizing the Least Absolute Shrinkage and Selection Operator

(LASSO), Support Vector Machine (SVM), and the Random

Forest (RF) algorithms available in the “glmnet”, “e1071”, and

“randomForest” R packages, respectively (50–55). The application

of these machine learning techniques enabled the effective screening

of genes with potential diagnostic significance in the context of the

studied cohort.

In order to perform LASSO algorithmic analysis, a set of specific

parameters were established, including the family parameter, set to

“binomial”, alpha parameter which was set to 1, type measure

parameter defined as “deviance”, as well as the nfolds parameter set

to 10 (31). For the construction of a forest of 500 trees, the

“randomForest” package within R was effectively utilized through

standard settings (29). Additionally, feature importance scores were

calculated through the application of the “importance” function,

which was performed through the utilization of the “randomForest”

package in R. Following the implementation of randomForest

algorithms, genes exhibiting an importance value exceeding the

median were selected and subjected to downstream analysis. The

SVM method ran using the default parameters. Through cross-

referencing the results generated by the three methodologies, an

intersectional subset was identified as the key gene set (30).
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Comparative toxicogenomics database

The publicly accessible CTD database (http://ctdbase.org/) is a

comprehensive repository of toxicogenomic data, offering reliable

and meticulously scrutinized information regarding gene/protein

interactions with chemicals across an extensive range of peer-

reviewed scientific literature (56). This trustworthy and vigorous

database serves as a valuable platform for researchers seeking to

access critical toxicogenomic information. Against the backdrop of

default parameters, the CTD database is utilized to explore the

potency of EDCs, antineoplastic drugs, and environmental toxins in

their ability to incite changes in key gene expression within all

species. Dependable EDCs were sourced from previously published

literature (19).
Discovery of potential drugs by
computational methods

Drug sensitivity of anticancer drugs was estimated in each

tumor specimen of TCGA-THCA by R package “oncoPredict”

(57). Ridge regression was performed by “oncoPredict” algorithm

and all above prediction was performed based on the Genomics of

Drug Sensitivity in Cancer (GDSC) database (58).
Molecular docking procedure

To obtain the crystal structures of proteins encoded by the hub

gene, the RCSB Protein Data Bank (PDB) (www.rcsb.org/pdb/

home/home.do) was accessed, while the 3D structures of the

d r u g s we r e down l o ad ed f r om PubChem (h t t p s : / /

www.ncbi.nlm.nih.gov/pccompound) (59, 60). The molecular

docking process was conducted using mcule 1-click Docking

server online (https://mcule.com/apps/1-click-docking/) (61). The

best pose was selected based on the docking score and the

rationality of the molecular conformation.
Exploration of protein expression level and
subcellular localization of the key gene

The Human Protein Atlas (HPA) database (https://

www.proteinatlas.org/), a comprehensive collection of human

proteins in normal and tumor cells and tissues, integrates

mult ip le cut t ing-edge omics technologies , inc luding

immunohistochemistry (IHC) and immunofluorescence (IF) (62).

We employed the HPA online tool to investigate protein expression

profiles of specific genes in both normal and tumor tissues, utilizing

the immunohistochemistry data available in the HPA database.

Using the subcellular domain of the HPA database, we gained a

high-resolution understanding of the spatiotemporal distribution

and expression of proteins. Subcellular protein localization was

investigated through immunofluorescence (ICC-IF) and confocal

microscopy, involving up to three distinct cell lines. Based on image

analysis, protein subcellular localization was systematically
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categorized into distinct organelles and intricately detailed

subcellular structures.
Real time quantitative PCR and IHC

Total RNA extraction was performed utilizing TRIzol reagent

(Ambion, USA), followed by conversion of the extracted mRNA to

cDNA using PrimeScript™ RT Master Mix (Takara, Japan). The

gene transcripts were quantified through RT-qPCR assay utilizing

ChamQ SYBR qPCR Master Mix (Vazyme, China). The 2-DDCT
method was used to evaluate the relative expression levels of the

genes, with GAPDH serving as the internal reference. To detect

ERBB3 and GAPDH expression levels, the forward primer of

ERBB3 was 5′-GCAGATCAGTGTGTAGCGTG-3′, and the

reverse primer of ERBB3 was 5′-CGTGTGCAGTTGAA

GTGACA-3′; while the forward primer of GAPDH was 5′-
TGTTCGTCATGGGTGTGAAC-3′ and the reverse primer of

GAPDH was 5′-ATGGCATGGACTGTGGTCAT-3′ . The

experiment was repeated thrice for establishing the average. Gene

expression was detected utilizing the RT-qPCR method.

The tumors were fixed in 4% paraformaldehyde and embedded in

paraffin. Subsequently, 4 mm sections were obtained from the paraffin-

embedded samples and fixed on glass slides. Epitope retrieval of the

sections was performed in 10 mmol/L citric acid buffer at pH7.2,

heated in a microwave. Following epitope retrieval, the slides were

incubated at 4°C overnight with the primary antibody (rabbit anti-

ERBB3, dilution 1:100, K113334P, Solarbio; Beijing, CN), followed by

HRP-conjugated secondary antibody for 1 h at room temperature.

The detection of antibodies was done using the substrate

diaminobenzidine (DAB, Beyotime), and slides were counterstained

with hematoxylin (Beyotime). For statistical analysis, Average Optical

Density (AOD) was used as a scoring method. AOD measurements

were executed by professional pathologists using the ImageJ software,

and at least three measurements were taken per IHC sample to

establish the mean AOD values.

The study utilized samples from 9 THCA patients without LNM

and 11 patients with LNM from The Third Affiliated Hospital of

Anhui Medical University. The samples were employed for RT-

qPCR and IHC analyses. All patients involved in the study provided

informed consent prior to their inclusion in the study.
Statistical analyses

For statistical analysis, we employed R software (version 4.2.1).

To compare continuous variables, the Wilcoxon/Kruskal-Wallis

Test was utilized, whereas differences in proportion were assessed

by the Chi-Square test. A p-value of less than 0.05 was regarded as

statistically significant. For evaluation of diagnostic performance,

the Receiver Operating Characteristic (ROC) curve was employed.

Correlations were analyzed using Spearman’s correlation. T-

Distribution Stochastic Neighbor Embedding (t-SNE), uniform

manifold approximation and projection (UMAP), and principal

component analysis (PCA) were employed for dimensionality

reduction (63–65).
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Results

Alterations in biological processes and
immune cell infiltration associated with
LNM in thyroid cancer

The median tumor diameter in the TCGA-THCA cohort was

2.5cm. There were 99 cases of patients (LMN Low) with tumor

diameter exceeding 2.5cm but no LNM, and 88 cases of patients

(LMN High) with tumor diameter below 2.5cm but with LNM. The

Table 1 presented patient clinical characteristics.

Differential gene analysis of the LMN High and LMN Low

groups was performed using the limma R package, with a screening

criterion of |Log2FC| > 1 and p-value < 0.05. A total of 1038

upregulated genes and 332 downregulated genes were identified in

the LMN High group of patients (Supplementary Table 1). Pathway

enrichment analysis was performed on upregulated and

downregulated genes separately, revealing that the upregulated

genes were mainly enriched in adaptive immune response, NABA

MATRISOME ASSOCIATED, and positive regulation of immune

response. Meanwhile, the downregulated genes were mainly

enriched in positive regulation of CoA-transferase activity,

Meta l lo th ioneins bind meta l s , and monoatomic ion

transmembrane transport (Supplementary Figures 1A, B).
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Moreover, there were significant differences in immune

infiltration status between the LMN High and LMN Low groups

(Supplementary Table 2). Specifically, nTreg, iTreg, Th1, and CD8T

cells exhibited relatively higher infiltration levels in the LMN High

group, while neutrophils exhibited relatively higher infiltration

levels in the LMN Low group (Supplementary Figure 1C). Out of

the 10 cancer-related pathways obtained using RPPA technology,

only the PI3K/AKT, TSC/mTOR, and RTK pathways were found to

have significantly lower activation levels in the LMN High group

compared to the LMN Low group (Supplementary Figure 1D).
LNM potential-related gene module
revealed by WGCNA

To achieve a signed scale-free co-expression gene network, a

power of b=4 and a scale-free R2 = 0.93 were chosen as the soft-

threshold parameters (Figures 1A, B). Within the context of

WGCNA analysis, sample clustering was conducted utilizing gene

expression patterns in order to identify outliers (Figure 1C).

Consequently, 9 gene modules were successfully delineated in the

TCGA-THCA cohort (Figure 1D; Supplementary Table 3). The

“grey” module was created to encompass genes that could not be

sorted into any other discernible genetic module. The module with
TABLE 1 The clinical data from enrolled patients into the study.

Characteristics LNM High(N=88) LNM Low(N=99) Total(N=187) pvalue FDR

Age 0.1 0.58

<=46 39(20.86%) 57(30.48%) 96(51.34%)

>46 49(26.20%) 42(22.46%) 91(48.66%)

Sex 1 1

FEMALE 63(33.69%) 71(37.97%) 134(71.66%)

MALE 25(13.37%) 28(14.97%) 53(28.34%)

Primary neoplasm 3.20E-03 0.02

Multifocal 52(27.81%) 34(18.18%) 86(45.99%)

Unifocal 35(18.72%) 63(33.69%) 98(52.41%)

unknow 1(0.53%) 2(1.07%) 3(1.60%)

T 3.00E-09 2.70E-08

T1 40(21.39%) 7(3.74%) 47(25.13%)

T2 17(9.09%) 53(28.34%) 70(37.43%)

T3 27(14.44%) 36(19.25%) 63(33.69%)

T4 4(2.14%) 3(1.60%) 7(3.74%)

N 1.10E-41 1.10E-40

N0 0(0.0e+0%) 99(52.94%) 99(52.94%)

N1 88(47.06%) 0(0.0e+0%) 88(47.06%)

M 0.67 1

M0 51(27.27%) 57(30.48%) 108(57.75%)

(Continued)
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the greatest number of included genes was the “blue” module

(n=585), while the “grey” module (n=2) contained the fewest

number of included genes (Figure 1E). The calculation of

correlation between module eigengenes (MEs) and clinical

features was conducted using the Pearson’s correlation analysis.

Through this analytical process, it was discovered that the “brown”

module displayed the highest positive correlation with LMN High,

while conversely, the “yellow” module showed the highest negative

correlation with LMN High (Figure 1F). The significant correlation

observed between GS and MM within both the “brown” and

“yellow” modules suggests a strong association between these

modules and the potential for LNM (Figures 1G, H). The

biological processes primarily enriched by genes within the

“yellow” module included organic hydroxy compound metabolic

process, homeostasis, and monocarboxylic acid metabolic process,

among others (Figure 2A). The “brown” module was primarily

enriched in genes associated with biological processes such as cell

junction organization, cell-cell adhesion, skin development, and

positive regulation of cell motility (Figure 2B).
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Identification of hub genes in the LNM
potential-related gene modules

PPI network analysis of all genes within the ‘yellow’ and ‘brown’

modules was performed using the STRING tool (Figure 3A). A key

cluster (Cluster 1) of the PPI network was extracted using the

CytoNCA plugin within the Cytoscape software, and ERBB3 served

as the seed of this cluster (Supplementary Table 4). The identified

cluster consisted of 12 hub genes related to LNM potential, with 4 of

them originating from the ‘yellow’ gene module and the rest from

the ‘brown’ module (Figure 3B).

Expression levels of ALDH1A1 and NCAM1 were observed to

be upregulated in the LNM Low group, whereas PLAU, KRT19,

FN1, ITGA3, ERBB3, PLAUR, and ANPEP were found to be

overexpressed in the LNM High group (Figure 3C;

Supplementary Table 5). Using the 12 hub genes as the central

framework, we constructed gene-miRNA, TF-gene, and TF-miRNA

interaction networks to investigate the key regulatory mechanisms

underlying gene expression (Figure 3D; Supplementary Table 6).
TABLE 1 Continued

Characteristics LNM High(N=88) LNM Low(N=99) Total(N=187) pvalue FDR

M1 1(0.53%) 3(1.60%) 4(2.14%)

unknow 36(19.25%) 39(20.86%) 75(40.11%)

Stage 2.00E-07 1.60E-06

Stage I 45(24.06%) 43(22.99%) 88(47.06%)

Stage II 1(0.53%) 30(16.04%) 31(16.58%)

Stage III 24(12.83%) 21(11.23%) 45(24.06%)

Stage IV 18(9.63%) 4(2.14%) 22(11.76%)

unknow 0(0.0e+0%) 1(0.53%) 1(0.53%)

Location 0.28 1

Bilateral 19(10.16%) 14(7.49%) 33(17.65%)

Isthmus 6(3.21%) 4(2.14%) 10(5.35%)

Left lobe 27(14.44%) 25(13.37%) 52(27.81%)

Right lobe 35(18.72%) 55(29.41%) 90(48.13%)

unknow 1(0.53%) 1(0.53%) 2(1.07%)

Residual tumor 0.17 0.87

R0 65(34.76%) 79(42.25%) 144(77.01%)

R1 12(6.42%) 5(2.67%) 17(9.09%)

R2 0(0.0e+0%) 1(0.53%) 1(0.53%)

unknow 11(5.88%) 14(7.49%) 25(13.37%)

Thyroid gland disorder history 0.43 1

No 50(26.74%) 47(25.13%) 97(51.87%)

Yes 27(14.44%) 38(20.32%) 65(34.76%)

unknow 11(5.88%) 14(7.49%) 25(13.37%)
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The diagnostic ability of hub genes
in THCA

All 12 hub genes related to LNM potential exhibited significant

differential expression between THCA and normal thyroid tissues

(Figure 4A). Specifically, the gene expressions of ALDH1A1,
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NCAM1, and SNAI1 were downregulated in THCA, while the

expressions of the remaining nine genes were upregulated.

Subsequently, we conducted dimensional reduction analysis

based on hub gene expression using PCA, UMAP, and t-SNE.

These analyses effectively distinguished THCA from normal tissues

(Figure 4B). ROC analysis demonstrated that PCA1/2, UMAP1/2, t-
B
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A

FIGURE 1

An investigation into the determination of soft-thresholding power used in WGCNA. (A) An examination of the scale-free fit index for different soft-
thresholding powers (b). (B) Investigation into the mean connectivity for different soft-thresholding powers. (C) Illustration of the sample
dendrogram and clustering dendrogram via WGCNA. (D) Hierarchical cluster tree depicting the co-expression modules discovered through WGCNA.
(E) The number of genes in different gene modules. (F) The correlation between different gene modules and the LNM potential. The correlation
between module membership (MM) and gene significance (GS) in the yellow (G) and brown (H) modules.
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SNE1/2, and their combination can serve as outstanding diagnostic

biomarkers for THCA (Figures 4B, C).
The variations in immune infiltration and
pathway activation associated to LNM
potential-related hub genes

A Spearman correlation analysis was performed to investigate

the correlation between the gene expression levels of all 12 LNM

potential-related hub genes and the infiltration scores of different

immune cells (Figure 5A; Supplementary Table 7). With the

exceptions of SNAI1, NCAM1, and ALDH1A1, the infiltration

levels of DC cells showed significant positive correlations with

other hub genes, with R>0.5 and p<0.0001. Of particular note was

the strongest positive correlation observed between the infiltration

levels of DC cells and the gene expression levels of FN1 (R=0.77;

p<0.001). Furthermore, there was a significant negative correlation

between the gene expression levels of DC cells and ALDH1A1 (R=-

0.58; p<0.0001). Neutrophil infiltration levels did not show a

significant correlation with SNAI1 and CCND1. The correlation

observed between Neutrophil infiltration levels and NCAM1 was

weakly positive (R=0.17; p <0.0001). In addition, there were

significant negative correlations observed between Neutrophil

infiltration levels and the other nine identified hub genes, with

ANPEP exhibiting the strongest negative correlation (R=-0.69;

p <0.0001).
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Subsequently, we investigated the influence of CNV and SNV

status of hub genes on immune cell infiltration in tumors. A sample

was classified as either CNV-Amplification (Amp), CNV-Deletion

(Del), or SNV-Mutant based on the occurrence of a CNV or SNV

alteration in at least one of the identified hub genes. Using a

significance level of P<0.05 as a filtering criterion, it was observed

that the occurrence of CNV Amplification in hub genes was

associated with a relatively higher degree of variability in immune

cell infiltration, compared to CNV Deletion and SNV-Mutant

(Supplementary Figures 3A, B). Furthermore, we conducted an

evaluation of the influence of the activation levels of identified hub

genes (GSVA scores) on immune cell infiltration in various cancer

types using pan-cancer analysis based on the GSVA algorithm. This

analysis encompassed assessments across 33 cancer types

(Supplementary Figure 3C; Supplementary Table 8). A positive

correlation was observed between the activation levels of identified

hub genes and the levels of DC and macrophage infiltration in the

majority of the analyzed tumor types. In contrast, a negative

correlation was noted between hub gene activation levels and the

level of neutrophil infiltration.Similar results were observed in the

TCGA-THCA cohort, where a strong positive correlation was

found between the GSVA scores of identified hub genes and the

level of DC infiltration. Simultaneously, a robust negative

correlation was identified between hub gene GSVA scores and the

level of neutrophil infiltration (Supplementary Figure 3D).

Based on the median gene expression of hub genes, the samples

were segregated into two groups – High and Low. To determine the
B

A

FIGURE 2

Results of gene enrichment analysis for the yellow (A) and brown (B) gene modules.
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difference in PAS score between the groups, the student T test was

performed and the p-value was adjusted by false discovery rate

(FDR). We considered a gene to have an activating effect on a

pathway if the FDR PAS (gene A Low expression) value suggested

so (FDR<0.05), and conversely, we classified it as having an inhibitory

effect. A similar methodology was employed by Y. Ye et al. (66). The

results of the TCGA-THCA cohort highlighted a pronounced

regulatory impact of hub genes on the EMT, PI3K-AKT, and RTK

signaling pathways. The overexpression of NCAM1 and ALDH1A1

signifies a more inhibitory effect on the EMT pathway and an

enhanced activation of the RTK and PI3K-AKT pathways. The
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activation of the EMT, RTK, and PI3K-AKT pathways are not

significantly influenced by SNAI1, whereas CCND1 activates the

EMT pathway while suppressing the RTK pathway. Elevated

expression levels of the remaining hub genes indicate the activation

of the EMT pathway and inhibition of the RTK and PI3K-AKT

pathways (Figure 5B; Supplementary Table 9). Furthermore, a

pancancer analysis was conducted to investigate the regulatory

effects of different hub genes on cancer-associated pathways in

various types of cancer, as demonstrated in Supplementary

Figure 3E. The pancancer analysis revealed that these hub genes

exhibit the highest advantage in activating the EMT pathway.
B
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A

FIGURE 3

(A) PPI network for all genes within the yellow and brown gene modules. (B) The PPI network’s hub genes were screened through the use of
CytoNCA, with the top 12 hub genes being further selected via CytoNCA. (C) Expression levels of these 12 hub genes in THCA patients with high and
low LNM potential. (D) Gene-miRNA, TF-gene, and TF-miRNA interaction networks centered around these 12 hub genes.
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The establishment of a molecular
classification scheme

To further integrate the features of the 12 identified hub genes

for predicting LNM potential in THCA patients, we performed

unsupervised clustering using “ConsensusClusterPlus”. Based on

the consensus CDF and relative changes in the area beneath the

CDF curve, it was determined that all patients could be effectively
Frontiers in Endocrinology 11
clustered into two distinct groups (cluster 1 and cluster 2;

Figures 6A–D). The heatmap revealed distinct gene expression

patterns across different patient clusters (Figure 6E).

Subsequently, we conducted further investigations into the

relationship between the molecular classification scheme and

LNM in THCA patients. In the TCGA-THCA cohort, patients

with low LNM potential were found to be predominantly composed

of individuals within cluster 2 (65%; chi-square test, chi-square
B

C

A

FIGURE 4

(A) Expression levels of 12 LNM potential-related hub genes between THCA and normal thyroid tissue. (B) The PCA (left), UMAP (middle), and TSNE
(right) dimensionality reduction algorithms were utilized to generate data visualization. (C) The diagnostic capability of various dimensionality
reduction algorithms on THCA was evaluated via ROC plot, utilizing the first two principal components and the sum of the first and second
principal components.
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value= 14.92, p-value<0.001; Figure 6F), whereas those within

cluster 1 demonstrated a higher incidence of LNM (64%; chi-

square test, chi-square value= 41.03, p-value<0.0001, Figure 6G).
Establishment of an online nomogram tool
for improved clinical decision making

We constructed a nomogram based on the gene expression levels

of 12 hub genes that serves to assess the LNM potential of THCA

patients (Figure 7A). Establishment of the nomogram was executed

using the rms R package. Performance assessment of the nomogram

was conducted using decision curve analysis (DCA) (Figure 7B),

receiver operating characteristic curve (ROC) (Figure 7C), and

calibration curve (Figure 7D). Clinical utility of the nomogram was

confirmed by DCA. Figure 7C demonstrated that the area under the

ROC curve (AUC) of the nomogram incorporating all predictors for

high-LNM potential patients was 0.816. The calibration curve’s

proximity to the ideal diagonal line was indicative of the good

predictive performance of the nomogram. Furthermore, in order to

further promote the accessibility and clinical utilization of our

nomogram, it is noteworthy that an online web tool named “LNM
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potential” has been devised. The web address for this online tool is

located at http://www.empowerstats.net/pmodel/?m=17617_LNM.

By means of this online tool, the application of our research

findings to the clinical setting may be further actualized. This tool

contributes to the identification of THCA patients with a high LNM

potential, providing a foundation for the development of

individualized clinical treatment regimens.
Further exploration based on machine
learning to identify key genes associated
with LNM potential

Three machine learning methods (Lasso, Random forest, SVM)

were employed to further screen key genes that could influence the

LNM potential in patients with THCA from 12 hub genes

(Figures 8A–C). ERBB3 was identified as being important for

LNM potential in all three machine learning algorithms

(Figure 8D). ERBB3 expression was upregulated in patients with

high lymph node metastatic potential (LNM High) and ROC

analysis indicated ERBB3 as a promising diagnostic biomarker for

LNM High patients (Figures 8E, F).
B

A

FIGURE 5

Spearman’s correlation analysis was performed to evaluate the correlation between the expression levels of LNM potential-related hub genes and
tumor immune cell infiltration (A), as well as the ten cancer-related pathways (B). The red lines indicate positive correlation, the blue lines indicate
negative correlation, and the thickness of the lines represents the correlation coefficient.
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FIGURE 6

Constructing a novel molecular subtyping scheme using unsupervised clustering. (A) relative change in area under cumulative distribution function
(CDF) curve. (B) Consensus clustering CDF for k=2-10. (C) Consensus matrix of THCA samples co-occurrence proportion for k = 2. (D) Cluster
consensus values when K=1 to 10. (E) The expression levels of LNM potential-related hub genes between different clusters are shown in a heatmap.
(F) The proportions ofpatients with high and low LNM potential in Cluster 1 and Cluster 2. (G) The proportions of patients with N0 and N1 staging in
Cluster 1 and Cluster 2. ***: p<0.001.
B

C D

A

FIGURE 7

(A) A nomogram for predicting LNM potential in THCA. The DCA curve (B), ROC curve (C), and calibration curve (D) for the predictive nomogram.
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The relationship between ERBB3 mRNA
expression and DNA methylation levels
with different clinical features

Further investigation was conducted to explore the association

between ERBB3 and various clinical characteristics (Table 2).

ERBB3 was significantly upregulated in THCA patients with

lymph node metastasis as well as those with higher T stage, but
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there was no significant difference in ERBB3 expression between

M0 and M1 patients (Figures 8G–I). Patients in Stage II had the

lowest level of ERBB3 expression (Figure 8J). It is noteworthy that

patients of older age or with a medical history of thyroid gland

disorder exhibited a significant upregulation of ERBB3 mRNA

levels (Figures 8K, L). In the TCGA-THCA cohort, the variables

of Sex, primary neoplasm location, and number did not significantly

perturb the expression level of ERBB3 (Supplementary Figures 4A–
B C
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FIGURE 8

Results of selection by LASSO (A), random forest (B), and SVM (C). (D) Venn diagram depicting the overlapping genes selected by LASSO, random
forest, and SVM models. (E) The expression level of ERBB3 in individuals with different LNM potentials of THCA. (F) ROC analysis for the ability of
ERBB3 to diagnose individuals with high LNM potentials of THCA. The expression level of ERBB3 has been examined in relation to different N stages
(G), M stages (H), T stages (I), tumor stages (J), and ages (K). (L) The gene expression levels of ERBB3 in patients with and without a history of
Thyroid gland disorder.
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C). ERBB3 has no impact on the complete surgical resection rate of

THCA (Supplementary Figure 4D).

A pan-cancer analysis was conducted to investigate the DNA

methylation levels of ERBB across various types of cancer

(Supplementary Figure 5A). It was observed that the methylation

levels of ERBB3 in the THCA samples were significantly lower than

those in normal tissue, which partially explains the high expression

of ERBB3 mRNA in THCA. The Shiny Methylation Analysis

Resource Tool (SMART) was employed to annotate the

methylation sites of ERBB3 (Supplementary Figures 5B, C). As

anticipated, the methylation level of ERBB3 was notably higher in

patients with low LNM potential, which could be a significant

contributing factor impeding the expression level of ERBB3 mRNA

in patients with low LNM potential (Supplementary Figure 5D;

Table 3). Age and gender did not exhibit a significant effect on the

degree of ERBB3 methylation (Supplementary Figure 5E). Patients

who experienced LNM or were classified as T4 exhibited a

diminished level of ERBB3 methylation, whereas stage II patients
Frontiers in Endocrinology 15
experienced an elevated amount of methylation. The occurrence of

tumor metastasis, however, did not impact the degree of ERBB3

methylation (Supplementary Figures 5G–J). Furthermore, a tumor

that develops in the isthmus or a patient with a history of thyroid

gland disorder results in lower levels of ERBB3 methylation. The

degree of ERBB3 methylation shows no significant correlation with

the number of tumors or postoperative residual tumors

(Supplementary Figures 5K–N).
Exploring EDCs, antineoplastic drugs, and
environmental toxins that potentially
influence the LNM potential

The thyroid gland is regarded as one of the most crucial

endocrine organs. The endocrine system has been demonstrated

to impact the metastasis and prognosis of various endocrine organ

tumors. Hence, we aspire to investigate whether certain EDCs can
TABLE 2 Clinical information of patients with high and low ERBB3 mRNA expression levels.

Covariates Type Total mRNA-High mRNA-Low Pvalue

Age <=46 266(52.99%) 128(51%) 138(54.98%) 0.4209

>46 236(47.01%) 123(49%) 113(45.02%)

Sex FEMALE 367(73.11%) 180(71.71%) 187(74.5%) 0.5459

MALE 135(26.89%) 71(28.29%) 64(25.5%)

Primary neoplasm Multifocal 226(45.02%) 119(47.41%) 107(42.63%) 0.3618

Unifocal 266(52.99%) 128(51%) 138(54.98%)

unknow 10(1.99%) 4(1.59%) 6(2.39%)

T T1 143(28.49%) 57(22.71%) 86(34.26%) 0

T2 164(32.67%) 73(29.08%) 91(36.25%)

T3 170(33.86%) 103(41.04%) 67(26.69%)

T4 23(4.58%) 18(7.17%) 5(1.99%)

unknow 2(0.4%) 0(0%) 2(0.8%)

N N0 229(45.62%) 90(35.86%) 139(55.38%) 0

N1 223(44.42%) 141(56.18%) 82(32.67%)

unknow 50(9.96%) 20(7.97%) 30(11.95%)

M M0 282(56.18%) 148(58.96%) 134(53.39%) 1

M1 9(1.79%) 5(1.99%) 4(1.59%)

unknow 211(42.03%) 98(39.04%) 113(45.02%)

Stage Stage I 281(55.98%) 135(53.78%) 146(58.17%) 2.00E-04

Stage II 52(10.36%) 16(6.37%) 36(14.34%)

Stage III 112(22.31%) 59(23.51%) 53(21.12%)

Stage IV 55(10.96%) 40(15.94%) 15(5.98%)

unknow 2(0.4%) 1(0.4%) 1(0.4%)

Location Bilateral 86(17.13%) 50(19.92%) 36(14.34%) 0.012
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TABLE 2 Continued

Covariates Type Total mRNA-High mRNA-Low Pvalue

Isthmus 22(4.38%) 14(5.58%) 8(3.19%)

Left lobe 175(34.86%) 95(37.85%) 80(31.87%)

Right lobe 213(42.43%) 89(35.46%) 124(49.4%)

unknow 6(1.2%) 3(1.2%) 3(1.2%)

Residual tumor R0 384(76.49%) 185(73.71%) 199(79.28%) 0.1177

R1 52(10.36%) 32(12.75%) 20(7.97%)

R2 4(0.8%) 3(1.2%) 1(0.4%)

unknow 62(12.35%) 31(12.35%) 31(12.35%)

Thyroid gland disorder history Yes 165(32.87%) 69(27.49%) 96(38.25%) 0.0069

No 279(55.58%) 155(61.75%) 124(49.4%)

unknow 58(11.55%) 27(10.76%) 31(12.35%)
F
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TABLE 3 Clinical information of patients with high and low ERBB3 methylation levels.

Covariates Type Total Methy-High Methy-Low Pvalue

Age <=46 266(52.99%) 139(55.38%) 127(50.6%) 0.3253

>46 236(47.01%) 112(44.62%) 124(49.4%)

Sex FEMALE 367(73.11%) 188(74.9%) 179(71.31%) 0.4207

MALE 135(26.89%) 63(25.1%) 72(28.69%)

Primary neoplasm Multifocal 226(45.02%) 112(44.62%) 114(45.42%) 1

Unifocal 266(52.99%) 132(52.59%) 134(53.39%)

unknow 10(1.99%) 7(2.79%) 3(1.2%)

T T1 143(28.49%) 80(31.87%) 63(25.1%) 0.0032

T2 164(32.67%) 90(35.86%) 74(29.48%)

T3 170(33.86%) 74(29.48%) 96(38.25%)

T4 23(4.58%) 5(1.99%) 18(7.17%)

unknow 2(0.4%) 2(0.8%) 0(0%)

N N0 229(45.62%) 136(54.18%) 93(37.05%) 0

N1 223(44.42%) 87(34.66%) 136(54.18%)

unknow 50(9.96%) 28(11.16%) 22(8.76%)

M M0 282(56.18%) 140(55.78%) 142(56.57%) 1

M1 9(1.79%) 4(1.59%) 5(1.99%)

unknow 211(42.03%) 107(42.63%) 104(41.43%)

Stage Stage I 281(55.98%) 138(54.98%) 143(56.97%) 0.0011

Stage II 52(10.36%) 37(14.74%) 15(5.98%)

Stage III 112(22.31%) 57(22.71%) 55(21.91%)

Stage IV 55(10.96%) 18(7.17%) 37(14.74%)

unknow 2(0.4%) 1(0.4%) 1(0.4%)
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impact the LNM potential of THCA. Our analysis of the CTD

database revealed a potential interaction between 14 types of EDCs

and the key gene ERBB3 that can affect ERBB3 mRNA expression,

implying their indirect impact on the LNM potential of THCA. The

14 types of EDCs identified consist of Benzo(a)pyrene, bisphenol A,

Estradiol, Genistein, Progesterone, Copper, Tamoxifen, Ethinyl

Estradiol, Arsenic, Diethylstilbestrol, Androgen Antagonists,

Cadmium, Raloxifene Hydrochloride, and Androgens

(Supplementary Table 10).

Moreover, we have identified several antineoplastic drugs that

are already in clinical use that can disturb the gene expression level

of ERBB3. These drugs include Capecitabine, Doxorubicin,

Epirubicin, Erlotinib Hydrochloride, Etoposide, Fluorouracil,

Lapatinib, Mitomycin, and Paclitaxel (Supplementary Table 10).

Therefore, we can speculate that these anticancer drugs may have

the potential to reduce the LNM potential of THCA and could

represent a potential therapeutic option for patients with thyroid

cancer who have already undergone LNM. These findings will be

further validated in the next chapter of this study.

Additionally, there are other drugs and environmental toxins

that have been found to interact with ERBB3. Therefore, our study

suggests that it would be beneficial for patients with THCA to avoid

exposure to these toxins or use these drugs with caution, thereby

contributing to the refinement of clinical care protocols

(Supplementary Table 10).
Validation of the diagnostic capability of
ERBB3 for THCA and LNM potential

In an independent validation set (GSE60542), we noted

significant differential expression of 11 of the 12 previously

identified hub genes, with the exception of ANPEP, between

normal thyroid tissue and thyroid tumors (Supplementary

Figure 6A). We noted a significant upregulation of ERBB3

expression in thyroid tumors in both the validation set and
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TCGA-THCA cohort. Furthermore, the immunohistochemical

analysis revealed a significant elevation in protein expression

levels of ERBB3 in thyroid tumors compared to normal thyroid

tissue (Supplementary Figure 6B). In the GSE60542 cohort, our

ROC analysis demonstrated that ERBB3 exhibits excellent

discriminatory power for thyroid tumors (AUC=0.89;

Supplementary Figure 6C). Notably, our results indicate a

significant upregulation in ERBB3 expression levels in metastatic

lymph nodes compared to normal lymphoid tissue (Supplementary

Figure 6D). ERBB3 also exhibited excellent diagnostic efficacy for

metastatic lymph nodes (Supplementary Figure 6E).
Exploration and validation of the
therapeutic potential of ERBB3 in THCA

The subcellular localization of ERBB3 in tumor cells was

investigated using ICC-IF and confocal microscopy techniques.

ERBB3 was detected in the plasma membrane and actin

filaments, and it is predicted to be secreted (Supplementary

Figures 7A, B). The increased expression of ERBB3 in THCA,

combined with its membrane localization, makes this protein an

attractive target for cancer therapy.

Using the “oncoPredict” algorithm and the GDSC database, we

evaluated the sensitivity of all tumor samples in TCGA-THCA to

the anti-tumor drugs identified as potentially impacting LNM

potential. Patients with high LNM potential and high expression

of ERBB3 have lower half-maximal inhibitory concentrations

(IC50) for Capecitabine, Doxorubicin, Epirubicin, Erlotinib

Hydrochloride, Etoposide, Fluorouracil, Lapatinib, Mitomycin,

and Paclitaxel, indicating increased sensitivity (Figures 9A, B).

To further verify the strong correlation between ERBB3 and

these potential therapeutic drugs, we performed molecular docking

of these drugs with ERBB3. The three-dimensional and two-

dimensional conformations of the molecular docking between

Capecitabine, Doxorubicin, Epirubicin, Erlotinib Hydrochloride,
TABLE 3 Continued

Covariates Type Total Methy-High Methy-Low Pvalue

Location Bilateral 86(17.13%) 44(17.53%) 42(16.73%) 0.2743

Isthmus 22(4.38%) 7(2.79%) 15(5.98%)

Left lobe 175(34.86%) 85(33.86%) 90(35.86%)

Right lobe 213(42.43%) 113(45.02%) 100(39.84%)

unknow 6(1.2%) 2(0.8%) 4(1.59%)

Residual tumor R0 384(76.49%) 185(73.71%) 199(79.28%) 0.5754

R1 52(10.36%) 23(9.16%) 29(11.55%)

R2 4(0.8%) 1(0.4%) 3(1.2%)

unknow 62(12.35%) 42(16.73%) 20(7.97%)

Thyroid gland disorder history Yes 165(32.87%) 100(39.84%) 65(25.9%) 0

No 279(55.58%) 110(43.82%) 169(67.33%)

unknow 58(11.55%) 41(16.33%) 17(6.77%)
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Etoposide, Fluorouracil, Lapatinib, Mitomycin, and Paclitaxel with

ERBB3 are shown in Figures 10A–G. The docking scores of

Lapatinib, Etoposide, and Doxorubicin with ERBB3 are the most

favorable, with values of -10.1 kcal/mol, -9.3 kcal/mol, and -8.8 kcal/

mol, respectively.

We further conducted a meta-analysis to validate the

therapeutic potential of Lapatinib in tumor patients with LNM.

Since there is a scarcity of research studies on the therapeutic effects

of Lapatinib in the treatment of thyroid cancer, we focused our

investigation on endocrine-related tumors instead. A total of five

clinical studies were collected (Supplementary Figure 8A) (67–70).

The heterogeneity test result of the rates of achieving PCR between

lapatinib combination therapy and monotherapy group was

(Q=23.4, P=0.0001, I2 = 83%) and the combined value of the

estimated effect was [RR=1.48, 95% CI (1.19, 1.86); P=0.0005].

The funnel plot presented is not suggestive of publication bias

(Supplementary Figure 8B). Our meta-analysis indicates that the

treatment regimen incorporating Lapatinib is more effective in

achieving pathological complete response (PCR) in patients

with LNM.
Experimental validation of expression
levels of ERBB3 in THCA cases with and
without LNM

Primarily, we observed a significant upregulation in the gene

expression levels of ERBB3 in THCA samples that had experienced

LNM through RT-qPCR experimental analysis (Supplementary

Figure 9). Subsequently, our IHC results revealed that while

ERBB3 protein was expressed in the cytoplasm of THCA cases
Frontiers in Endocrinology 18
without LNM, a significant increase in the expression levels of the

ERBB3 protein was evident in THCA cases with LNM (Figure 11A).

This was also quantified by the AOD values measured for different

pathological slides, thus corroborating the findings (Figure 11B).

Moreover, the ROC analysis indicated that the AOD values of

ERBB3 protein immunohistochemical positive staining could serve

as a promising diagnostic biomarker for determining the

occurrence of lymph node metastasis in THCA cases (AUC=0.89,

95%CI 0.73-1.00; Figure 11C).
Discussion

LNM, particularly in the cervical region, is a common

pathological feature encountered in THCA and may manifest in

the early stages of the disease. In this study, we introduce a novel

concept - LNM potential - aimed at elucidating the genetic basis of

this phenomenon. Additionally, we employ a diverse range of

bioinformatics analysis techniques, including WGCNA, machine

learning, and molecular docking, to pinpoint the key gene

underlying LNM potential and explore potentially therapeutic

drugs targeting this gene.

Our study identified 12 hub genes as a potential high-risk

biomarker for LNM in THCA. Simultaneously, we explored the

association between the 12 hub genes and the biological processes

and immune infiltration in THCA. Regardless of whether in THCA

or pan-cancer, hub genes were significantly associated with the

decrease of neutrophils and the increase of DC and macrophages in

tumors. Considerable research has demonstrated the utility of

neutrophil-to-lymphocyte ratio (NLR) in predicting lymph node

metastasis in multiple types of cancer (71–74). The study conducted
B

A

FIGURE 9

(A) The drug sensitivity of various anti-tumor drugs in patients with high and low LNM potential. (B) The drug sensitivity of various anti-tumor drugs
in patients with high and low ERBB3 expression level.
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by Hiromu Fujita et al. revealed that the accumulation of

neutrophils, especially CD16b-positive neutrophils, in the

peritumoral region is an independent factor contributing to

lymph node metastasis (75). Notably, the authors’ research was

centered on thoracic esophageal squamous cell carcinoma (75). The

investigations undertaken by Yuandong Liao et al. demonstrate that

STC1-dependent immune escape from macrophage phagocytosis

can be suppressed by the inhibition of competitive interaction

between LNMAS and HMGB1, resulting in the abrogation of

TWIST1 and STC1 chromatin accessibility, thereby suppressing

cervical cancer lymph node metastasis (76). DC cells, as

professional antigen-presenting cells, are responsible for

presenting cancer-associated antigens to the adaptive immune

system in the sentinel lymph nodes (77, 78). It has been observed

that sentinel lymph nodes with macrometastases in cancer patients

exhibit arrested maturation of dendritic cells, fewer interactions

between mature dendritic cells and cytotoxic T cells, and an

increased population of regulatory T cells, as opposed to sentinel

lymph nodes without metastasis. However, these observations were

not made when compared to healthy controls (79). Therefore, the

physiological basis for the influence of hub genes on the lymph node

metastatic potential of THCA lies in the observed differences in

immune cell infiltration associated with these hub genes,

particularly in neutrophils, DC cells, and macrophages. However,

it is important to note that this study is based on bioinformatics
Frontiers in Endocrinology 19
techniques for estimating immune cell infiltration within tumors.

Further in-depth experiments, such as flow cytometry and

immunofluorescence, are required for the validation of clinical

samples. Additionally, it’s worth mentioning that ITGA3, one of

the 12 Hub genes we identified, has been found to serve as a

biomarker of progression and recurrence in THCA (80). The results

of the CCK-8 experiment conducted by Jizong Zhang et al. indicate

that overexpression of ITGA3 significantly enhances the

proliferation capability of thyroid cancer cell lines. Additionally, it

markedly augments their invasive and migratory abilities (81).

It is worth noting that our pan-cancer analysis indicates a close

correlation between the activation of these 12 hub genes and the

oncological feature of EMT, a critical step in tumor invasion and

metastasis (82). In particular, SNAI1 and FN1 were found to be

positively correlated with EMT activation in more than half of the

tumor types analyzed. Consistent with previous research, SNAI1

was identified as the first and most extensively studied transcription

repressor of CDH1, a hallmark of EMT encoded by the epithelial

gene encoding E-cadherin. Direct binding of SNAI1 to the E-boxes

present in the CDH1 promoter leads to transcriptional repression of

CDH1 expression (83). SNAI1 is an EMT regulatory factor that has

been widely reported, which is consistent with our research

findings. In cancer-associated EMT, SNAI1 serves as an

imperative factor in driving the transition by strongly repressing

E-cadherin and tight junction components (claudins), while also
B

C D

E F

G

A

FIGURE 10

Molecular docking simulation between ERBB3 and 5-Fluorouracil (A), Doxorubicin (B), Erlotinib (C), Etoposide (D), Lapatinib (E), Mitomycin-C (F), and
Paclitaxel (G).
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upregulating mesenchymal marker proteins, including vimentin

and fibronectin (84). The study by Haihai Liang et al. revealed

that knockdown of PTAL resulted in increased expression of miR-

101 and consequent inhibition of FN1 expression, ultimately

leading to upregulation of EMT, which in turn promoted the

migration of OvCa cells (85). Thus, EMT represents another

potential biological basis for the hub genes we have identified that

can affect the LNM potential of THCA (86). In general, the

identification of these hub genes provides a valuable and
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significant resource for further understanding and exploring the

phenomenon of early LNM in THCA.

Furthermore, we have developed a nomogram capable of

accurately predicting the likelihood of LNM in THCA patients.

Additionally, we have established a web-based tool to access this

nomogram’s prediction model. The nomogram presented in this

study can be easily utilized in clinical practice through our web-based

tool, offering valuable resources and guidance for the formulation of

clinical treatment and care strategies for THCA patients (87, 88).
B C

A

FIGURE 11

(A) Immunohistochemical expression levels of ERBB3 in THCA with (Lower) and without (Upper) lymph node metastasis. (B) AOD of ERBB3 protein
immunohistochemical positive staining. (C) ROC curves of the AOD of ERBB3 protein for predicting LNM in THCA. **: p<0.01.
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Subsequently, employing an integrative analysis of three

machine learning techniques, we identify ERBB3 as the key gene

influencing LNM potential. ErbB/HER receptor tyrosine kinases

(RTKs) occupy a crucial position in animal development, and their

dysfunctional operation may catalyze the pathophysiological

progression of certain tumor types (89, 90). In mammals, the

existence of four ErbB/HER receptors is expounded: the

epidermal growth factor receptor (EGFR/HER1), HER2/ErbB2/

neu, HER3/ErbB3, and HER4/ErbB4 (91). Physiological

expression of these receptors has been reported in epithelial,

mesenchymal, cardiac, and neuronal tissues. The gene ERBB3

codes for HER3, a discovery credited to Kraus et al. in 1989 (92).

Located on human chromosome 12q13, HER3 exhibits a wide

expression across adult human tissues, including cells from the

reproductive, endocrine, urinary, gastrointestinal, respiratory, skin,

and nervous systems (93–96). Structurally, HER3 comprises an

extensive extracellular domain (ECD), an individual hydrophobic

transmembrane segment, and an intracellular domain, which

comprises a tyrosine-rich carboxyterminal tail, a juxtamembrane

region, and a tyrosine kinase segment (97–99). Featuring four

subdomains, the HER3 extracellular domain is known as

subdomains I-IV. ERBB3 expression has been discovered to be

upregulated in numerous types of tumors, including but not limited

to breast, ovarian, lung, colon, pancreatic, melanoma, gastric, head

and neck, and prostate cancers (100–105). In additional reports,

targeting ERBB3, such as gene knockdown and knockout, has also

been shown to impact the proliferation and migration of thyroid

cancer. This implies that targeting ERBB3 may become one of the

potential therapeutic targets for thyroid cancer (106). Notably, there

exists limited research on ERBB3 in THCA, and at present, no

studies have reported the potential biological functions of ERBB3 in

THCA lymph node metastasis.

The gene expression level of ERBB3 has been found to be

associated with distinct clinical characteristics of THCA,

particularly the occurrence of LNM. Aberrant methylation of the

gene promoter is a significant cause of deactivation (107–109). To

further investigate the underlying mechanisms of ERBB3 gene

expression alterations, our attention was directed towards the

variation in methylation levels of ERBB3. Notably, clinical traits

associated with upregulation of ERBB3 mRNA expression were

always accompanied by decreased levels of ERBB3 methylation, and

vice versa. Hence, the downregulation of ERBB3 gene expression is

partly attributed to CpG island hypermethylation in its promoter

region (104, 110).

THCA belongs to endocrine tumors which arise from

specialized cells responsible for hormone secretion. The migration

of tumor cells, which is a prerequisite for the development of

metastasis, has been demonstrated to be controlled by signaling

molecules in the environment, including neuroendocrine hormones

(111–113). Therefore, our study investigated some potential EDCs

that may impact the LNM potential of THCA in an ERBB3-

dependent manner. Some of the discovered EDCs are substances

that individuals may come into contact with in their daily lives,

including Benzo(a)pyrene, bisphenol A, and copper; while others

are drugs that may be used in the clinic, such as Estradiol,

Tamoxifen, and Raloxifene Hydrochloride (114–119). Therefore,
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it may be necessary for THCA patients to avoid exposure to these

substances or drugs in their daily lives.

We further discovered, via the CTD database, that 7 anti-tumor

drugs have the potential to interact with ERBB3 and impact its gene

expression levels (56). Subsequently, we utilized multiple techniques

to validate these findings. Initially, the GDSC database indicated

that ERBB3 serves as a biomarker for the sensitivity of these anti-

tumor drugs (58). Further molecular docking validation revealed

the binding affinity between these drugs and ERBB3 (120). Among

these drugs, Lapatinib, Etoposide, and Doxorubicin displayed the

strongest binding affinity with ERBB3, especially Lapatinib.

Furthermore, our study suggests that THCA patients with high

LNM potential may benefit more from Lapatinib, a finding that has

not been previously documented in the literature. Additionally, we

conducted a meta-analysis that demonstrated combination

regimens containing Lapatinib to have better therapeutic efficacy

for late-stage endocrine tumors with lymph node metastasis.

Certainly, the physiological basis for targeting the ERBB3 protein

is supported by its significant upregulation in THCA tumors and

lymph nodes with metastasis (121). Additionally, subcellular

structural analysis using immunofluorescence indicates that

ERBB3 is primarily enriched on the cell membrane. It is well-

known that more than 60% of all drug targets are membrane

proteins, which is also one of the bases for ERBB3 to become a

therapeutic target (122). Although no studies have been conducted

in THCA, a randomized controlled study by Alexandra Leary et al.

suggests that Lapatinib has antiproliferative effects in a subgroup of

nonamplified breast tumors characterized by high HER3

expression. It is worth investigating the potential role of high

HER2:HER3 heterodimers in predicting response to lapatinib

(123). Very few studies have explored the role of lapatinib in

thyroid cancer treatment. Koichi Ohno’s research discovered that

the combined use of lapatinib and lenvatinib significantly inhibits

the growth of TPC-1/LR (a drug-resistant thyroid cancer cell line)

in vitro and in a xenograft mouse model (124). Lingxiao Cheng’s

study suggests that the addition of lapatinib results in more

pronounced changes in iodine and glucose regulation gene

expression, sodium-iodine symporter membrane localization,

radioactive iodine uptake, and cytotoxicity in thyroid cancer cells,

indicating a more significant redifferentiation effect on thyroid

cancer cells (125). Furthermore, due to the scarcity of reports

about the role of lapatinib in thyroid cancer treatment, our

investigation into lapatinib is also one of the novelty of this study.

Therefore, our study proposes a potential therapeutic agent and

target for THCA treatment, which requires further mechanism

research to corroborate.

To validate the gene and protein expression levels of ERBB3 in

THCA cases with or without LNM, we conducted RT-qPCR and

IHC experiments. Encouragingly, our findings were consistent with

the bioinformatic analysis we previously performed. Concurrently,

we identified a quantitative index of IHC staining, AOD, which

could serve as a diagnostic biomarker for determining the

occurrence of lymph node metastasis in THCA cases.

Remarkably, the AOD value exhibited satisfactory performance in

the ROC analysis. Therefore, our IHC findings for ERBB3 in THCA

cases indicate that it could serve as a useful auxiliary diagnostic tool.
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Furthermore, ERBB3 is significantly upregulated in lymph nodes

that have undergone tumor metastasis compared to normal lymph

nodes. Therefore, ERBB3 has the potential to assist pathologists in

discriminating lymph nodes invaded by tumors. For LNM to occur,

tumor cells must flow or settle in the marginal sinus of the lymph

nodes (126–128). To detect cancer metastasis in the lymph nodes,

pathologists need to search for tumor cells in the marginal sinus

through multiple sections and tissue samples (129). However,

confirming micro-metastases in some lymph nodes can be

challenging (130). Therefore, determining whether lymph nodes

have been invaded by tumors using ERBB3 as a marker could aid in

the precise clinical staging of cancer.

This study has constructed several tools that can be further

optimized and utilized in future clinical practice. Firstly, we have

developed a novel molecular subtyping scheme that can

preliminarily assess the tumor’s ability to develop LNM at the

genetic level. Furthermore, we have built an online nomogram tool

that can conveniently calculate the probability of LNM occurrence

in different THCA patients based on our research. This tool can be

used alongside the development of clinical treatment plans, taking

into consideration the scores obtained from the online nomogram

tool. In addition, our research has provided new evidence for future

pathological precision diagnosis. Specifically, it suggests that ERBB3

positivity has the potential to assist in diagnosing lymph nodes that

have already experienced THCA metastasis. This also presents a

novel approach to confirming micro-metastases in some lymph

nodes at the early stages of the disease.

In summary, we performed comprehensive analysis of THCA

patients with different LNM potentials using multiple bioinformatic

techniques. We explored the activities of different pathways and

identified key genes that affect LNM potential. Additionally, we also

screened potential therapeutic drugs and targets for THCA. Our

study provides useful resources and new perspectives for the

development and optimization of clinical treatment plans for

THCA patients in the future. However, there are also limitations

to our study. Firstly, although we utilized multiple datasets for

exploration and validation, the lack of in vivo and in vitro

experiments restricts the understanding of underlying

mechanisms. Additionally, our study is akin to a retrospective

analysis, and the conclusions drawn require further validation

from prospective studies with larger sample sizes.
Conclusion

Utilizing multiple bioinformatics analysis techniques, we have

investigated differences in pathway activation and immune

infiltration among THCA patients with varying LNM potential.

Our analysis using WGCNA has revealed two gene modules that

influence LNM potential, with a total of 12 genes identified as hub

genes significantly impacting LNM potential. These hub genes

primarily affect the infiltration levels of neutrophils, DC cells, and

macrophages, as well as the activation of the EMT pathway in

THCA. Employing multiple machine learning algorithms, we have

identified ERBB3 as a key gene associated with LNM potential. We

have observed that ERBB3 is upregulated in THCA patients with
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LNM and advanced THCA, and this upregulation may be attributed

to changes in the methylation status of ERBB3. The interaction

between ERBB3 and Lapatinib may present a potential therapeutic

target for thyroid carcinoma patients who develop lymph node

metastasis. Furthermore, we have developed a novel and user-

friendly web-based tool (http://www.empowerstats.net/pmodel/?

m=17617_LNM) that utilizes a nomogram to assess the potential

for LNM in THCA patients. Our study lays the foundation for

future investigations into the underlying mechanisms driving

differences in lymph node metastatic potential among cases of

thyroid carcinoma. Therefore, our findings provide valuable

resources and guidance for the development of personalized

clinical treatment plans for patients with this disease.
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SUPPLEMENTARY FIGURE 1

Enrichment analysis results for up- (A) and down-regulated (B) genes in

THCA. Distinctive patterns in immune infiltration (C) and cancer-related
pathway activation (D) in THCA patients, stratified by high or low

LNM potentials.

SUPPLEMENTARY FIGURE 2

(A) Chromosomal locations of DEGs in normal thyroid and THCA. (B) A
heatmap of inter-module distances between different gene modules.

Correlation between module membership (MM) and gene significance (GS)
for blue (C), pink (D), black (E), purple (F), magenta (G), and green (H)
gene modules.

SUPPLEMENTARY FIGURE 3

Sample was classified as either CNV-Amp, CNV-Del, or SNV-Mutant based on
the occurrence of a CNV or SNV alteration in at least one of the identified

LNM potential-related hub genes. A volcano plot reveals significant
differences in immune cell infiltration between THCA patients with CNV (A)
and SNV alterations (B) relative to the wild-type group. (C) Assessing the
correlation between the GSVA scores of LNM potential-related hub genes
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and immune cell infiltrate levels in types of cancer, including THCA (D), using
Spearman’s correlation analysis. (E) Summary of the correlations between

GSVA score and cancer-related pathway activity among 33 cancer types. (*: p

value <= 0.05; #: FDR <= 0.05).

SUPPLEMENTARY FIGURE 4

Expression of ERBB3 in THCA patients differentiated by gender (A), site of
occurrence (B), number of primary tumors (C), and extent of surgical

resection (D).

SUPPLEMENTARY FIGURE 5

(A) Methylation levels of ERBB3 in tumor specimens compared to their
corresponding normal tissues among 33 cancer types. The position of CpG

islands (B) and CpG sites (C) of ERBB3 used for DNA methylation analyses.
Methylation levels of ERBB3 in THCA patients with different LNM potential (D),
age (E), gender (F), N (G)/M (H)/T (I) staging, tumor stage (J), tumor location
(K), number of primary tumors (L), extent of surgical resection (M), and history

of thyroid gland disorder (N).

SUPPLEMENTARY FIGURE 6

(A) Expression levels of LNM potential related-hub genes in primary THCA and
normal thyroid tissues in the GSE60542 cohort. (B) Protein expression levels

of ERBB3 in primary THCA and normal thyroid tissues. (C) ROC analysis of
ERBB3 for diagnosis in primary THCA and normal thyroid tissues in the

GSE60542 cohort. (D) Gene expression levels of ERBB3 in normal lymph
nodes and lymph nodes with metastatic tumors. (E) ROC analysis of ERBB3

for diagnosis in lymph nodes with metastatic tumors.

SUPPLEMENTARY FIGURE 7

(A) Subcellular localization of ERBB3 protein in various tumor cells. (B)
Schematic representation of subcellular localization of ERBB3 protein in

tumor cells.

SUPPLEMENTARY FIGURE 8

(A) Meta-analysis validates the efficacy of combined treatment regimen with
Lapatinib in advanced endocrine organ tumors with lymph node metastasis.

(B) Assessment of publication bias via funnel plot analysis.

SUPPLEMENTARY FIGURE 9

qRT-PCR verification of expression of ERBB3 in THCA with (Yes) and without

(No) lymph node metastasis (***: p<0.001).
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