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Diabetic-associated cognitive dysfunction (DACD) is a major central nervous system

(CNS) complication in patients with diabetes and is attracting increasing attention (1).

Cognitive dysfunction in patients with diabetes includes decreased learning ability,

memory, problem-solving, attention and information processing speed (2). Microglia, as

immune cells of the central nervous system, play an important role in maintaining tissue

homeostasis and contribute to brain development under normal conditions (3). When

brain damage occurs, microglia are activated to secrete either proinflammatory factors that

increase cytotoxicity or anti-inflammatory neuroprotective factors that aid wound healing

and tissue repair. However, excessive microglial activation damages the surrounding

normal neurons, and the factors secreted by the dead or dying neurons in turn

exacerbate the chronic activation of microglia, causing progressive loss of neurons,

accelerating the progression of DACD. Hence, clarifying the role of microglia in DACD

and resolving chronic inflammation mediated by microglia is helpful to bear a novel

treatment strategy for DACD.

Mature microglia in the postnatal brain respond to their extracellular environment

rapidly through a wide variety of surface molecules, including cytokines, chemokines,

purines, hormones, and neurotransmitters (4). Microglia express common markers, similar

to other macrophages residing in tissues, such as the fractalkine receptor CX3CR1, CSF1R,

the integrin CD11b, surface glycoproteins F4/80 and CD68, ionized calcium-binding

adaptor molecule 1 (Iba1), and pan-hematopoietic CD45. Microglia in the central

nervous system injury and disease has a complicated connection, referring to

“activation”. Microglial activation has been detected by positron emission tomography in

patients with mild cognitive impairment. M1 phenotype is the classical activation, be

considered pro-inflammatory and neurotoxic, as well as closely related to the concept of

“activated” microglia. M2 phenotype or alternative activation, be considered anti-

inflammatory and neuroprotective, plays an important role in resolving inflammation,
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clearing toxicity, and preserving brain tissue (5). These cells can be

further divided into subgroups, each with its unique function in the

CNS. M2a is involved by removing cellular debris and regeneration,

M2b in immune regulation, and M2c in neuroprotective and anti-

inflammatory cytokine production such as interleukin-10 (IL-10)

and interleukin-4 (IL-4) (6). However, this dualistic classification of

good or bad microglia is inconsistent with the wide repertoire of

microglial states and functions in development, plasticity, aging,

and diseases that were elucidated in recent years. Macrophage

responses are more complex than simply “M1” and “M2”. In the

case of microglia, the advent of single-cell technologies provided

clear evidence that microglia in the living brain do not polarize to

either of these categories, often co-expressing M1 and M2 markers.

Microglia activation was more diverse and dynamic than previously

anticipated, both in terms of omics features and functional

outcomes, suggesting that microglia respond differently to

different diseases. The altered phenotype allows microglia to exert

a protective role, which is regulated by the brain microenvironment.

When organotypic brain slices from aged APP/PS1 mice were co-

cultured with young neonatal WT mice, aged microglia from aged

mice moved towards amyloid plaques and cleared plaque halos (7).

Opsonizing mediators from young microglia also promoted the

proliferation and phagocytosis of amyloid plaques by old microglia,

suggesting that microglia function could be reversed by

microenvironment-driven therapies.

Insulin resistance is the pathophysiological basis and the core

mechanism of DACD (8). In the early stage of DACD, insulin

resistance and neuroinflammation are interrelated pathological

features, and they are considered to be the two main factors that

directly or indirectly lead to synaptic destruction and

neurophysiological alterations (9). Brain insulin resistance occurs

through the release of pro-inflammatory cytokines, peripherally

produced pro-inflammatory cytokines such as tumor necrosis

factor-a (TNF-a), interleukin-6 (IL-6), interleukin -12 (IL-12)

and interleukin-1b (IL-1b) can cross the blood-brain barrier,

leading to neuroinflammation and central insulin resistance (10).

It is noteworthy that IL-1b and IL-6 play a particularly important

role in microglia function and IL-1b signaling pathways enhance

the pro-inflammatory response of microglia (11). Occurrence and

development of DACD, the insulin signaling pathway is impaired in

the brain and insulin function adjustment by potential

glucoregulatory function in the CNS neurons (12). It is becoming

increasingly apparent that the insulin level is increased, the

degradation of the insulin-degrading enzyme, interfering with

amyloid plaques clearance and disrupting neurons. The severity

of the microglial response depends on the severity of the

nerve injury.

As resident immune cells of the CNS, microglia are the main

effector cells of neuroinflammation and latently adjust their

inflammatory processes (13). Most of the histological features of

many neurological diseases are characterized by “microgliosis”,

including changes in microglia morphology, changes in gene

expression, migration, growth, and proliferation after injury. Multiple

studies have demonstrated that factors such as neuronal apoptosis,

oxidative stress, neuroinflammation and altered neurogenesis may play

a role in DACD (14, 15). Neuroinflammation is the protection and
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repair of tissue damage and extreme deviations from internal balance in

the central nervous system. It is not appropriate to always assume that

neuroinflammation is harmful. Instead, it should be recognized that

each inflammatory response may have adaptive or maladaptive effects,

depending on the context. There is many clinical evidence of cerebral

inflammation in type 2 diabetes mellitus (T2DM) and experimental

findings support the notion that microglial activation contributes to

neuronal injury and cognitive impairment in T2DM models (16).

DACD patients and mouse models have elevated levels of

inflammatory markers, and several DACD risk genes associated with

innate immune function have been identified, suggesting that

neuroinflammation plays a critical role in DACD pathogenesis (14,

17). APP/PS1xdb/db mice show significant increases in microglial

activation (18). Our previous studies suggested that changes in the

abundance of hippocampal cell populations, most notably microglial

cell populations, which confirm the novel opinion that microglia play a

vital role in DACD (19). Research showed that disease-associated

microglia (DAM), the subpopulation of microglia, could play a

neuroprotective role to alleviate the disease by enhancing

phagocytosis in the late stages of AD (20). Given that DACD as the

early stage of dementia, it may be relevant to cerebrovascular damage.

The pro-inflammatory DAM emerges in hippocampus of T2DM

mouse model and are characterized by expression of pro-

inflammatory genes and regulators (21). Therefore, some studies have

improved DACD by reducing microglia-mediated neuroinflammation.

Microglia cell membrane expression is rich in receptors in

response to changes in “danger” signals in the surrounding

environment (22). Different types of transcription factors can

tightly control the phenotypic diversity and function of microglia

(23). The markers of tissue damage caused by persistent cerebral

ischemia and hypoxia are related to the expression of Toll-like

receptor 4 (TLR-4) on the membrane of microglia. TLR-4 and

triggering receptor expressed on myeloid cells-2 (TREM-2) to

promote the activation of microglia (24, 25). TREM-2 is mostly

involved in aiding microglial phagocytosis and its variants found in

AD patients most likely impair this microglial function (26).

Activated microglia move to the injury site, phagocytoses

apoptotic neurons and cell debris, and produces a large number

of pro-inflammatory mediators, resulting in a persistent

inflammatory microenvironment in the brain, which further

causes the death of neurons and neural progenitor cells, leading

to a vicious cycle characterized by microglial activation,

inflammatory factor release, and neuronal death. The major

signaling pathways that drive microglia to transform into a

proinflammatory involve the MAPK pathway, JAK/STAT

pathway and PI3K/Akt pathway which mainly activates the

transcription factor NF-kB leading to the synthesis of various

proinflammatory cytokines. In the contrast, metabolic receptors

involved in lipid metabolism, and Sirt1-mTORC1 signaling mostly

function to downregulate or inhibit the proinflammatory pathways

(27). Therefore, targeting microglial signaling pathways needs to be

studied as the foundation of therapy target DACD.

Microglia function does not occur in isolation but is linked to

the activity of neurons, astrocytes, and vascular cells. Neurons

exhibit hyperactivity in response to neurotoxic factors,

hyperglycemia, and hyperlipidemia, and secrete latent microglial
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activators such as matrix metalloproteinase-9, ATP, and

chemokine. Meanwhile, p38 MAPK activation in microglia results

in the production of mediators such as neurotrophins and

inflammatory factors to regulate synaptic transmission and

inflammation, respectively. Thereby, targeting microglial signaling

through inhibiting the actions of ATP receptors, matrix

metalloproteinase-9, chemokines, p38 MAPK, and IL-6, TNF-a,
and IL-1b may contribute to new therapies for DACD. Meanwhile,

the tendency of microglia concentrated to neuronal axons and

dendrites play a pivotal role between neurons and microglia

interactions. Delayed activation of microglia may contribute to

endocrine dysregulation and increased sympathetic nerve activity

in diabetic rats (28). Overexpression of a dominant negative mutant

of the transcription factor cAMP response element-binding protein

in neurons induces neuronal apoptosis and microglial

activation (29).

As macrophages of the brain parenchyma, microglia are involved

in many key central nervous system functions, from gliosis,

vascularity and neurogenesis to synapsis and myelination, through

their motor processes, and release of soluble factors. Microglia plays

an important role in synapse formation, pruning, and eliminating

and regulating synaptic function. In the process of normal brain

development, elimination includes removing unnecessary excitatory

and inhibitory synapses synaptic connections, which is crucial for the

formation of mature and effective neural circuits. Microglia can

improve synaptic plasticity through the expression and release of

brain-derived neurotrophic factor (BDNF), secrete cytokines to

regulate synaptic plasticity, such as TNF-a. However, microglia

near amyloid plaques were reduced in phagocytosis in genetic AD

mice with concomitant T2DM (30). Therefore, excessive

phagocytosis of microglia leads to neuronal synaptic dysfunction

and aggravates the progress of cognitive function.

With the deepening understanding of the pathological progress

underlying DACD, microglia play an increasingly prominent role in

the brain microenvironment. Microglia have a variety of functions

that are highly dynamic as well as interacting with many types of

cells in response to environmental changes or stimuli. At present,

some therapies targeting microglia have been proposed in animal

models, but their efficacy still needs to be validated in clinical trials

(31, 32). Using lipid nanoparticles to deliver anti-inflammatory

siRNA reduced neuroinflammation in a neurodegeneration model,
Frontiers in Endocrinology 03
highlighting the potential of lipid nanoparticles as therapeutic tools

(33). In addition, there is growing interest in non-drug therapies as

a promising intervention for the treatment of cognitive decline in

DACD. Some rodent studies have shown that lifestyle changes, such

as physical exercise and diet control, can also prevent microglia

activation, reduce neuroinflammation, and improve cognitive

function (34).
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