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Background: Glucose metabolism (GM) plays a crucial role in cancer cell

proliferation, tumor growth, and survival. However, the identification of

glucose metabolism-related genes (GMRGs) for effective prediction of

prognosis in head and neck squamous cell carcinoma (HNSC) is still lacking.

Methods:We conducted differential analysis between HNSC and Normal groups

to identify differentially expressed genes (DEGs). Key module genes were

obtained using weighted gene co-expression network analysis (WGCNA).

Intersection analysis of DEGs, GMRGs, and key module genes identified

GMRG-DEGs. Univariate and multivariate Cox regression analyses were

performed to screen prognostic-associated genes. Independent prognostic

analysis of clinical traits and risk scores was implemented using Cox

regression. Gene set enrichment analysis (GSEA) was used to explore

functional pathways and genes between high- and low-risk groups. Immune

infiltration analysis compared immune cells between the two groups in HNSC

samples. Drug prediction was performed using the Genomics of Drug Sensitivity

in Cancer (GDSC) database. Quantitative real-time fluorescence PCR (qRT-PCR)

validated the expression levels of prognosis-related genes in HNSC patients.

Results: We identified 4973 DEGs between HNSC and Normal samples. Key gene

modules, represented by black and brown module genes, were identified.

Intersection analysis revealed 76 GMRG-DEGs. Five prognosis-related genes

(MTHFD2, CDKN2A, TPM2, MPZ, and DNMT1) were identified. A nomogram

incorporating age, lymph node status (N), and risk score was constructed for

survival prediction in HNSC patients. Immune infiltration analysis showed

significant differences in five immune cell types (Macrophages M0, memory B

cells, Monocytes, Macrophages M2, and Dendritic resting cells) between the high-

and low-risk groups. GDSC database analysis identified 53 drugs with remarkable

differences between the groups, including A.443654 and AG.014699. DNMT1 and

MTHFD2 were up-regulated, while MPZ was down-regulated in HNSC.

Conclusion: Our study highlights the significant association of five prognosis-

related genes (MTHFD2, CDKN2A, TPM2, MPZ, and DNMT1) with HNSC. These

findings provide further evidence of the crucial role of GMRGs in HNSC.
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1 Introduction

Head and neck cancer is one of the most common malignant

tumors, with the sixth highest incidence in the world, and the most

common pathological type is squamous cell carcinoma (1). The

global annual incidence and mortality of head and neck squamous

cell carcinoma (HNSC) are estimated to be 900,000 and 450,000

deaths (2, 3), respectively. Since the early symptoms of HNSC are

not obvious, most HNSC patients are diagnosed at an advanced

stage, with a poor prognosis and a 5-year survival rate of less than

50% (4). Therefore, further research on the molecular mechanism of

HNSC and the development of effective early screening, diagnosis

and treatment methods are crucial to improve the prognosis of

HNSC patients.

Changes in glucose metabolism (GM) are critical to the growth

and progression of cancer (5), which mainly involve four aspects:

tricarboxylic acid cycle, glycolysis, gluconeogenesis and glycogen

synthesis (6). Traditionally, it is believed that cancer cells

metabolize glucose mainly through glycolysis to produce

sufficient energy and other key metabolites needed for survival.

Glucose is processed through glycolysis to produce ATP and

pyruvate, and then through the pentose phosphate pathway to

produce ribose 5-phosphate and NADPH, or enter the

tricarboxylic acid (TCA) cycle in the mitochondria. Glucose-

derived citrate is converted to acetyl-CoA, oxaloacetic acid

(OAA) or a-ketoglutaric acid (a KG). Glutamine is deaminated

to form glutamate, which is processed to produce a KG for use in

the TCA cycle (7). This classical type of metabolic change provides

the substrates required for cancer cell proliferation and division

(8), which are involved in tumor growth, metastatic progression

and long-term survival. Studies have shown that the number of

genes related to glycolysis is associated with tumor proliferation,

invasion, angiogenesis, chemotherapy and radiotherapy resistance,

and there is a correlation between glycolysis and clinical outcomes

(9, 10). The glucose metabolism of cancer cells is mainly regulated

by a series of transcription factors, including c-Myc, p53, HIF-1a,
etc, under the interaction of signaling pathways dominated by Akt,

PI3K, PTEN, mTOR, and AMPK (11, 12). So far, targeted drugs

targeting tumor glucose metabolism have been released, such as

GLUT-1 inhibitors, LDHA inhibitors, IDH2 mutation inhibitors,

etc. (13). Although many prognostic models for HNSC have been

constructed by researchers, the effectiveness and sensitivity need to

be improved, so it is necessary to construct more accurate

prognostic models to improve the prognosis of HNSC patients

(14–18). Besides, in HNSC, there is still a lack of glucose

metabolism related genes (GMRGs) signature to predict patient

prognosis more effectively.

Machine learning offers significant advantages and impressive

progress in identifying disease biomarkers (19–22). While

traditional biomarker research usually takes a lot of time and

resources, machine learning methods can efficiently extract key

features from large-scale biological data and accelerate the

biomarker discovery process (23–25). In addition, machine

learning can integrate multiple data sources, such as genomics,
Frontiers in Endocrinology 02
transcriptomics and proteomics data, to reveal the molecular

mechanisms of diseases at different levels and provide more

reliable biomarkers for precision medicine (26–28). Overall, the

advantages of machine learning in recognizing disease biomarkers

lie in its efficient feature selection capability, its classification ability

to adapt to complex data structures (29, 30), and its integration and

mining of data from multiple sources, and these advances have

brought new hope to the fields of disease diagnosis, treatment, and

prognosis assessment (31–33). However, with the continuous

development of technology, there are still many challenges and

opportunities waiting to be explored and solved in our

understanding and application of disease biomarkers.

In this study, based on genes related to glucose metabolism, a

series of bioinformatics methods such as differential expression

analysis, weighted gene co-expression network analysis (WGCNA),

gene set enrichment analysis (GSEA) functional enrichment and

immune infiltration analysis were used to establish a prognostic

model of HNSC and explore its pathogenesis.
2 Materials and methods

2.1 Data sources

Clinical information data and RNA-sequencing (RNA-seq)

were acquired from The Cancer Genome Atlas (TCGA) database.

There were 500 head and neck squamous cell carcinoma (HNSC)

and 44 Normal samples with clinical information in the TCGA

database. External validation dataset GSE65858 of Gene Expression

Omnibus (GEO) database has 270 patients with survival

information. In the GeneCard database, 605 GMRGs were

obtained by Relevance score ≥ 2.
2.2 Analysis of differential expression
and WGCNA

Differentially expressed genes (DEGs) between 500 HNSC and

44 Normal samples were obtained by limma (version 3.42.2)

package (|log2FC| >0.5 and p.value < 0.05) (34). Then, volcano

and heat map were drawn by ggplot2 (version 3.3.2) and pheatmap

(version 1.0.12) packages (35), respectively. In this study, to find out

the genes associated with different traits, 544 samples in TCGA-

HNSC were used as traits for WGCNA analysis. 500 HNSC and 44

Normal samples were employed in build a co-expression network

by WGCNA (version v1.70-3) package (36). Firstly, samples

clustered were performed on 500 HNSC and 44 Normal samples,

and outlier samples were eliminated to secure the precision of the

analysis. The soft threshold was resolved to ensure that the

engagement between genes conforms to the scale-free distribution

to the maximum extent. The module was divided by dynamic cut

tree algorithm, and the parameter minModuleSize were set to 300.

The key module was acquired by correlation analysis between

module and HNSC.
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2.3 Identification of GMRG-DEGs and the
prognostic risk model

DEGs between HNSC and Normal groups, genes in key module

and 605 GMRGs were crossed to identify GMRG-DEGs. In

addition, to assess whether GMRG-DEGs were significantly

different from the survival of HNSC patients, we extracted

GMRG-DEGs expression data from TCGA-HNSC samples

expression data. Then, the TCGA-HNSC samples were stochastic

divided into training set and test set in a ratio of 7: 3 (37).

Furthermore, univariate and multivariate Cox regression analyses

were performed in the training set to verify whether these genes

were risk factors. Next, univariate Cox regression analysis was

conducted on GMRG-DEGs expression profiles of the training

set. Variables acquired by univariate Cox analysis were embraced

in multivariate Cox analysis, followed by stepwise regression

function (step). Moreover, we used the surviminer (0.4.6) package

to calculate the cut-off value of continuous independent variables of

survival data (train: 1.28; test: 1; GSE65858: 3.17), HNSC samples

were separated into high-and low-risk groups based on cut-off

values. For each patient, the risk score was calculated by

combining the expression levels of these genes with their

corresponding coefficients: Risk score = ExpressionmRNA1 ×

CoefmRNA1 + Express ionmRNA2 × CoefmRNA2 +

ExpressionmRNAn × CoefmRNAn. Based on the two groups,

Kaplan-Meier (K-M) curve were plotted. Finally, to further

assessment the effectiveness of the risk model, we plotted receiver

operating characteristic (ROC) curves with 1-, 3- and 5-years as

survival time nodes according to the risk model obtained by

multivariate risk regression. After constructing the risk model, it

was checked by TCGA test set and GSE65858 external verification

set in turn. Subsequently, the risk curve, K-M curve of two groups

and ROC curves were drawn for validation data.
2.4 Independent prognostic risk model

To further study the clinicopathological features and prognosis

of risk model, in the risk model, gender, stage, age, grade and TMN

stage were included. Univariate and multivariate Cox independent

prognostic analysis were performed using the survival (3.2-7)

package (38–40). Then, based on the TCGA-HNSC training set of

316 samples with clinical information, a nomogram was

constructed using rms (version 6.2-0) package to project the 1-,

3- and 5-year survival rate for HNSC patients. Moreover,

calibration curves were drawn to evaluate the precise of

the prediction.
2.5 Functional enrichment and immune
microenvironment analyses

GSEA on all genes in two groups were performed by GSEA

software (v4.1.0). SIZE > 20 and NOM.p.val < 0.05 were set as

significantly enriched pathways. Furthermore, to study immune cell
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infiltration in two groups, Cell type Identification By Estimating

Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm and

LM22 gene set were used to calculate the proportion of 22 immune

cells of all HNSC samples (high-risk = 96, low-risk = 254) in two

groups, and excluding samples with p > 0.05 (remaining samples

high-risk = 95, low-risk = 252). Then, according to the score of each

immune cell in two groups, the score heat map of 22 immune cells

was drawn. Differences in immune cells between two groups were

compared by Wilcoxon test, and ggplot2 package was employed to

draw violin plot. Subsequently, Spearman correlation analysis of

immune cells and prognostic related genes were conducted.

Immune score and matrix score of the TCGA-HNSC

transcriptome data were calculated.
2.6 Immunotherapy responsiveness
analysis and sensitivity analysis of
chemical drugs

Firstly, we calculated tumor mutation burden (TMB) and

microsatellite instability (MSI) for two groups. Then,

Dysfunction, Exclusion and tumor immune dysfunction and

exclusion (TIDE) for the two groups were estimated and

analyzed. In addition, Pearson correlation analysis were

performed on prognostic related genes and TIDE (39). Finally,

according to the above HNSC samples in two groups of the

Genomics of Drug Sensitivity in Cancer (GDSC) database, a ridge

regression model was constructed to predict the half maximal

inhibitory concentration (IC50) values of drugs by pRRophetic

algorithm. Moreover, calculation of drug level of expression in

two groups was performed by Wilcoxon test.
2.7 qPCR assay

HNSC tumor and paracancerous tissue samples were obtained

from HNSC patients with knowledge and consent from Chongqing

general hospital, and this study was approved by the Chongqing

general hospital ethics committee. Seven pairs of frozen tissue

samples were divided into two groups, of which seven

paracancerous tissue samples were Normal group and the other

seven tumor tissue samples were HNSC group (Case). Then, total

RNA of samples was isolated and purified by TRIzol (Ambion)

reagent following the instruction manual. Then, the extracted RNA

was tested for concentration by NanoPhotometer N50. Next,

reverse transcription via SureScript-First-strand-cDNA-synthesis-

kit (Servicebio) by an ordinary PCR instrument. Reverse

transcription product cDNA was diluted 5-20 times with ddH2O

(RNase/DNase free). Subsequently, polymerase chain reaction

(PCR) amplification reaction was performed by CFX96 real-time

quantitative PCR instrument. 1 min at 95 °C (pre-denaturation),

followed by at 95 °C for 20 s (denaturation), 55 °C for 20 s

(annealing) and 72 °C for 30 s (elongation). The above reactions

were subjected to forty cycles. Primer sequences were showed

in Table 1.
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2.8 Statistical analysis

The qPCR results were analyzed using GraphPad Prism

Software (version 8.3.0). The data are presented as means ±

standard deviation (SD) from three independent experiments and

were analyzed by analysis of variance (ANOVA). A p-value less

than 0.05 was considered statistically significant.
3 Results

3.1 Acquisition of DEGs and key
module genes

There were 4973 DEGs between HNSC and Normal groups

(Figure 1A). Heat map showed the expression of up-regulated and

down-regulated top 100 DEGs between HNSC and Normal groups

(Figure 1B). Samples clustering result indicated there were 5 outlier

samples. Therefore, the remaining of 539 samples were used for

subsequent analysis (Figure 1C). When the soft threshold is 7, the

network was closest to the distribution without network scale

(Figure 1D). 12 modules were obtained by dynamic cut tree

algorithm (Figure 1E). Black module gene (1590 genes) and brown

module gene (3487 genes) were selected as key modules (Figure 1F).
3.2 Acquisition of GMRG-DEGs and the
evaluation of prognostic risk model

According to the intersection of DEGs between HNSC and

Normal groups, genes in key module and 605 GMRGs, there were

76 GMRG-DEGs (Figure 2A, Table S1). 8 prognosis related genes

(TP73, TXNDC9, MTHFD2, CDKN2A, TPM2, MPZ, DNMT1 and

IGF2BP2) were obtained by univariate Cox regression analysis
Frontiers in Endocrinology 04
(Table 2). There were 5 prognosis related genes (MTHFD2,

CDKN2A, TPM2, MPZ and DNMT1) based on multivariate Cox

analysis (Figure 2B, Table 3). In the high-risk group, TPM2, MPZ

and MTHFD2 were highly expressed, moreover, it was found that

CDKN2A and DNMT1 had a higher expressed in low-risk group

(Figure 2C). In two groups, there was a significant difference in the

survival of HNSC patients between (p < 0.05), and in the high-risk

group, it was found that the survival rate of HNSC patients was

lower (Figure 2D). The area under curve (AUC) values of ROC

curve were greater than 0.6, indicated that the risk model had better

performance (Figure 2E).
3.3 Verification of the prognostic
risk model

TPM2, MPZ and MTHFD2 were highly expressed in the high-

risk group of the TCGA test set, moreover, CDKN2A and DNMT1

had a higher expressed in the low-risk group (Figure 3A). The

survival rate of the high-risk group in the validation data was lower

(Figure 3B). AUC values were basically greater than 0.6, the result

was basically consistent with the training set (Figure 3C). In

addition, in the GSE65858 external verification set, it was found

that TPM2, MPZ and MTHFD2 had a higher expressed in high-risk

group, and we could see CDKN2A and DNMT1 had a higher

expressed in the low-risk group (Figure 3D). In the GSE65858

dataset, K-M curve showed the survival rate was lower of the high-

risk group (Figure 3E). Besides, it was found that the risk model was

credible (Figure 3F).
3.4 Risk model evaluation of
independent prognostic

In addition, univariate Cox independent prognostic results

showed that the p.value for age, N, and riskScore was less than

0.05 (Figure 4A). According to the multivariate Cox independent

prognostic analysis, it was found that the p.value for age, N, and

riskScore were all less than 0.05. Therefore, age, N, and riskScore

were considered as independent prognostic factors (Figure 4B). A

nomogram for survival prediction in HNSC patients was

constructed using age, N, and riskScore (Figure 4C). The

calibration curve was plotted based on the above nomogram, and

3-year slope closest to 1 indicated that the prediction effect of the

model could be used as an effective model (Figure 4D).
3.5 GSEA functional enrichment and
immune microenvironment analyses
between two groups

GO functional enrichment analysis showed that genes in high-

risk groups were mainly enriched in striated muscle cell

development, sarcomere organization and muscle cell

development, and in low-risk groups, genes were participated in
TABLE 1 Primer sequences used in the quantitative reverse transcriptase
PCR (qRT-PCR).

primer sequence

DNMT1 F GAGGAGGGCTACCTGGCTAA

DNMT1 R CGGGCTTCACTTCTTGCTTG

MPZ F ATGCCATTTCGATCTTCCACT

MPZ R GAGGTCTTGCCCACTATGTCTG

TPM2 F TCACCAGACCTTGGACCAGA

TPM2 R AGGATTAAAGGGCCTTGAGAGG

CDKN2A F GCTAGACACAAAGGACTCGGT

CDKN2A R CTCTGACGCGACATCTGGAC

MTHFD2 F GGCAGTTCGAAATGAAGCTGTTG

MTHFD2 R AGGATCACACTCAGGTGTGGC

internal reference-GAPDH F CGAAGGTGGAGTCAACGGATTT

internal reference-GAPDH R ATGGGTGGAATCATATTGGAAC
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epidermis development, keratinocyte differentiation and regulation

of water loss via skin (Figure 5A). In the KEGG functional

enrichment analysis, it was found that genes in high-risk groups

were associated with oxidative phosphorylation, cardiac muscle

contraction and ecm receptor interaction. Besides, genes in low-

risk groups were involved in primary immunodeficiency, DNA

replication and T cell receptor signaling pathway (Figure 5B). Each

immune cell of scores in two groups were displayed in the heat map

(Figure 5C). The result showed that there were 5 kinds of immune

cells with significant difference (p < 0.05), including memory B cells,

Macrophages M0, Macrophages M2, Monocytes and Dendritic

resting cells (Figure 5D). TPM2 was positively associated with

Macrophages M0 and Macrophages M2, and we also could see a

remarkable negative correlation between MTHFD2 and Dendritic

resting cells. In addition, it was found that DNMT1 had a

significantly negative associated with Macrophages M2 and

Dendritic resting cells (Figure 5E, Table S2). Moreover, we could

found there were significant differences in Stromal, ESTIMATE and

TumorPurity scores between high- and low-risk groups (p < 0.05)

(Figure 5F, Table S3).
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3.6 Immunotherapeutic response and
chemosensitivity analysis

TMB and MSI were not significant difference in two groups

(Figure 6A). The result showed that TIDE, Dysfunction and

Exclusion were remarkable differential expression in two groups

(p < 0.05) (Figure 6B). It was found that TPM2 and MPZ had a

certain correlation with TIDE (Figure 6C). There were 53 drugs

significantly different between two groups, such as A.443654 and

AG.014699 (Figure 7, Supplementary Figure 1, Table S4).
3.7 QuantitativeReal-timePCR
(qPCR) identification

Based on the qPCR verification results, it can be seen that

DNMT1 and MTHFD2 were up-regulated in Case (HNSC).

Besides, we could see that MPZ was down-regulated in Case, and

the validation results are consistent with the above analysis

(Figure 8, Table 4).
A

B D

E F

C

FIGURE 1

Acquisition of differentially expressed genes (DEGs) and key module genes. (A) Volcano plot of DEGs between HNSC and Normal samples (|log2FC|
>0.5 and p.value < 0.05). (B) Heatmap of Top100 DEGs between HNSC and Normal samples. (C) Sample clustering dendrogram to remove outliers
and trait heatmap. (D) Analysis of the scale-free fit index (left) and the mean connectivity (right) for various soft-thresholding powers (Soft threshold
= 7). (E) Cluster dendrogram of all DEGs under the clustering tree. (F) Correlations heatmap between modules and traits.
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TABLE 2 Univariable Cox regression analysis results.

id HR HR.95L HR.95H Pvalue

TP73 0.74016 0.60627 0.903618 0.003122

TXNDC9 1.663991 1.157881 2.391323 0.005918

MTHFD2 1.401012 1.071705 1.831508 0.013643

CDKN2A 0.90169 0.82885 0.980931 0.016042

TPM2 1.131322 1.019291 1.255666 0.02039

MPZ 1.279329 1.014195 1.613775 0.037625

DNMT1 0.789719 0.629614 0.990537 0.041131

IGF2BP2 1.152585 1.002501 1.325137 0.046037
F
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FIGURE 2

Obtaining GMRG-DEGs and evaluation of the prognostic risk model in training set. (A) Venn diagram of module genes, DEGs and glucose
metabolism related genes (GMRGs) for screening GMRG-DEGs. (B) Forest plot of multivariate Cox regression analysis. (C) Distribution of risk scores,
survival times gene expressions of high and low risk groups in the training set. (D) Survival curve of high- and low-risk groups in the training set.
(E) ROC curves of 1-, 3-, and 5-year based on the training set.
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4 Discussion

In recent years, the study of abnormal metabolism of cancer

cells has become the focus of attention and is considered to be a

promising area for cancer therapy. Cancer cells are characterized by

consuming glucose through Warburg metabolism (41), to provide

energy for their growth and proliferation. Abnormal glucose

metabolism is the most prominent feature of tumor metabolism

(42, 43). A study has shown that HNSC is a highly glycolytic tumor

(44), and abnormal glucose metabolism is an important biological

factor for the diagnosis and treatment of HNSC (45). A previous

study confirmed that GMRGs such as PKM2 (pyruvate kinase) and

PGK1 (phosphoglycerate kinase 1) were up-regulated in gastric
Frontiers in Endocrinology 07
cancer cell lines (46). So far, unfortunately, the role of glucose

metabolism-related genes in HNSC is unclear.

In order to clarify the prognostic biomarkers related to glucose

metabolism in HNSC, this study screened 605 GMRGs based on the

existing HNSC gene data, and finally identified 5 key prognostic

genes that may be prognostic markers or potential therapeutic

targets in HNSC (MTHFD2, CDKN2A, TPM2, MPZ, and

DNMT1). The mechanism of action of these five genes in tumors

is summarized as fol lows. Methylenetetrahydrofolate

dehydrogenase 2 (MTHFD2) predominantly localizes within the

mitochondria and efficiently drives the folate cycle in embryonic

tissues to sustain cellular proliferation. Conversely, in most adult

tissues, MTHFD2 exhibits minimal to negligible expression. This
A B

D E F

C

FIGURE 3

Validation of the risk model. (A) Distribution of risk scores, survival times gene expressions of high and low risk groups in the test set. (B) The survival
curve of the high- and low-risk groups in the test set. (C) The ROC curve of 1-, 3-, and 5-year in the test set. (D) Distribution of risk scores, survival
times gene expressions of high and low risk groups in GSE65858. (E) Survival curves for high- and low-risk groups in the GSE65858 dataset. (F) ROC
curves for 1-, 3-, 5-year in the GSE65858 dataset.
TABLE 3 Multivariate Cox regression analysis results.

id coef HR HR.95L HR.95H Pvalue

MTHFD2 0.557097 1.745598 1.327335 2.295662 6.72E-05

CDKN2A -0.10193 0.903092 0.826861 0.986351 0.023488

TPM2 0.093444 1.097949 0.98012 1.229944 0.106682

MPZ 0.221411 1.247837 0.949366 1.640144 0.112417

DNMT1 -0.36682 0.692933 0.528348 0.908787 0.008019
fron
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enzyme possesses both dehydrogenase and cyclohydrolase activities

(47). It catalyzes the conversion of CH2-tetrahydrofolic acid (CH2-

THF) into 10 CHO-THF, while simultaneously converting oxidized

nicotinamide adenine dinucleotide phosphate [nicotinamide

adenine dinucleotide phosphate, NAD(P)+] into NAD(P)H, thus

facilitating one-carbon metabolic reactions (48). It catalyzes the

conversion of CH2-tetrahydrofolic acid (CH2-THF) into 10 CHO-

THF, while simultaneously converting oxidized nicotinamide

adenine dinucleotide phosphate [nicotinamide adenine

dinucleotide phosphate, NAD(P)+] into NAD(P)H, thus

facilitating one-carbon metabolic reactions (49). Studies have

revealed its reactivation in diverse tumor types, and this

phenomenon correlates with adverse patient prognoses (50–56).

Cyclin-dependent kinase inhibitor 2A (CDKN2A), an essential

tumor suppressor gene, localizes to the 21 region of human

chromosome 9 (57). As a member of the cell cycle-dependent

kinase inhibitor gene family, CDKN2A directly regulates the cell

cycle, thus controlling cell proliferation and division. It serves as a

critical tumor suppressor in various human malignancies, including

colorectal cancer, exerting its preventive role by inducing cell

growth arrest and senescence (58). However, homozygous

deletion of CDKN2A is observed in 50% of human tumor cell

lines. Its inactivation leads to malignant cell proliferation and the

development of malignant tumors. Differential expression of the

CDKN2A gene is evident in a variety of tumor tissues, with

abnormal levels observed in tumor patients. Moreover, CDKN2A

expression correlates with clinicopathological characteristics and

patient prognosis (59). Tropomyosins (TPM) are actin-binding

proteins that are expressed in all eukaryotes, and vertebrates have

Four TPM genes containing TPM1, TPM2, TPM3, and TPM4.

Recently, a large cohort study has identified TPM2 as a prognostic
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marker for colorectal cancer things. In colorectal cancer cell lines,

the study found that TPM2 down-regulation can promote tumor

proliferation and migration, whereas TPM2 over-expression

attenuates the malignant phenotype of tumor cells (60). MPZ is a

transmembrane protein consisting of 219 amino acids, which is a

member of the immunoglobulin gene super family and has a single

extracellular, transmembrane, and cytoplasmic domain (61). Recent

studies have shown that MPZ is involved in the development of

cancer development, report that the six cores of the MPZ are most

likely to detect most clinically significant cancers but also detect

many insignificant cancers (62). Most of the articles in MPZ are in

the field of neuropathy, and there are few studies related to HNSC,

which need to be further explored. DNA methyltransferase 1

(methyltransferase1, DNMT1) is a key gene of DNA methylation

in mammalian genome epigenetic modification (63), it has the

ability to regulate the cell cycle and regulate the expression of tumor

suppressor genes, and plays a role in the formation of tumors,

Progression, and metastasis. Poor prognosis was all related to the

expression level of DNMT1. DNMT1 is highly expressed in a

variety of tumors including lung cancer, leukemia, gastric cancer,

and liver cancer (64), and the expression of DNMT1 in pancreatic

cancer tumor tissue is significantly correlated with the degree of

tumor malignancy (65). Thus, these genes play an important role in

the development of cancer, which is consistent with the consensus

that glucose metabolism plays a role in tumors.

Functional enrichment analyzes revealed the potential

biological mechanism of the involved GMRGs. GSEA showed that

genes in two groups were mainly enriched in epidermis

development, oxidative phosphorylation, and T cell receptor path

signaling. T cell receptor signaling pathway plays an important role

in T cell mediated immune response, its hyperactivation can lead to
A B

DC

FIGURE 4

Construction and evaluation of nomogram based on independent prognostic risk models. (A) Univariate Cox analysis based on the training set.
(B) Multivariate Cox analysis based on the training set. (C) Nomogram predicting 1-, 3-, and 5-year survival of HNSC patients. (D) Nomogram
calibration curve.
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autoimmune diseases. On the other hand, defects in TCR signaling

can lead to immune deficiency, that contribute to tumor escape

(66). As one of the cancer signals, oxidative phosphorylation

supports the development of a variety of cancers (67, 68).

Abnormal metabolism is inextricably linked to a dysfunctional

immune system in cancer cells (69, 70). Accumulating evidence

suggests that immune cell dysfunction in the HNSC

microenvironment promotes immunosuppression, correlates with

tumor survival and progression, tumor-infiltrating immune cells

are dependent on glucose, Impaired immune cell metabolism in the

tumor microenvironment contributes to tumor immunological
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evasion (71, 72). This study showed that there were significant

differences in B cells memory, Macrophages M0, Macrophages M2

and Dendritic cells resting in high and low risk groups. Compared

with the low-risk group, the infiltration rate of Dendritic resting cells

was lower and the infiltration rate of Macrophages M2 was higher in

the high-risk group. Dendritic cells are the most critical professional

antigen-presenting cells. In the tumor microenvironment, the

function and activity of DCs are changed to induce the expansion

of regulatory T cells, and the maturation of DCs depends on

glycolysis, and the glucose competition of tumor cells will inhibit

the activation of DCs (73). Increased infiltration of activated DCs in
A B

D E

F

C

FIGURE 5

Gene set enrichment analysis (GSEA) and immune microenvironment analysis. (A) GO enrichment analysis of high- and low-risk groups. (B) KEGG
enrichment analysis of high- and low-risk groups. (C) Heatmap of scores of 22 immune cell types in high- and low-risk groups. (D) Violin plot for
the infiltration abundances of 22 immune cell between the high- and low-risk groups. (E) Heatmap of correlations between differential immune cells
and five prognostic genes in the prognostic risk model. (F) Difference of immune score, stromal score, ESTIMATE score and tumor purity between
high- and low- risk groups. * p < 0.05,*** p < 0.001. "ns" means no significance.
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various tumors is associated with prolonged survival (74–76).

Previous studies believed that B cells could promote the occurrence

of tumors by regulating the immune response (77). However, the role

of memory B cell infiltration in tumor immune response is still

unclear. Some studies have found that memory B cells in HNSC

patients are significantly reduced. Memory B cells play an important

role in tumor memory immune response, whichmay be due to tumor

suppression of its immune environment, sex regulation, and

promotion of tumor immune escape (78, 79). Monocytes can bind
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to a variety of chemokines and be recruited to tumor or inflammatory

sites (80). Monocytes infiltrate tumors and differentiate into tumor-

associated macrophages (81), tumor-associated dendritic cells, etc

(82). It affects the tumor microenvironment through multiple

mechanisms, inducing immune tolerance, angiogenesis, and tumor

cell metastasis. Tumor-associated macrophages (tumor-associated

macrophages, TAM), mainly manifested as M2 type to promote

tumor progression through strong immunosuppression (83, 84). The

high infiltration of M2 cells is associated with breast cancer, gastric
A B

C

FIGURE 6

Immunotherapy responsiveness analysis. (A) Box plots for differences of the TMB and MSI values in high- and low-risk groups. (B) Box plots for
differences of TIDE values, Dysfunction values and Exclusion scores in high- and low-risk groups. (C) Correlation scatter plots of TIDE scores with
different prognostic risk model genes.
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cancer, and hodgkin lymph, and it is related to the poor survival of

tumors such as tumors (85–87). According to the subtype of

microenvironment, HNSC is divided into two types: active immune

response and exhausted immune response. The exhausted immune

response type is characterized by high M2 macrophage infiltration,

activation of WNT/TGF-b pathway, and poor prognosis. Rich M1

macrophage enrichment, and rich tumor infiltrating lymphocytes are

associated with sensitivity to immunotherapy, and usually have a

better prognosis (88). Another study divided HNSC into three

immune subtypes: ICA, ICB, and ICC. The ICA type is marked by

the infiltration of high M1 macrophages, memory CD4 T cells, and

CD8 T cells. The immune subtype has a better prognosis. ICB type

cluster patients are characterized by markedly increased dendritic cell

(DC), activated natural killer (NK) and follicular helper T cell

densities and have an intermediate prognosis. Overall survival is

shorter in patients with the ICC type, which is characterized by
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infiltration of stromal components and increased infiltration of M2

macrophage with immunosuppression, and decreased DC infiltration

(89). This type is similar to the immune failure type in the previous

study, consistent with the conclusions of this study. The results of

immune infiltration analysis in this study also showed that TPM2 was

positively correlated with macrophage M0 and M2, MTHFD2 was

significantly negatively correlated with dendritic resting cells, and

DNMT1 was significantly negatively correlated with macrophage M2

and dendritic resting cells. In this study, we found that GMRGs

promoted the development of HNSC to some extent. Based on these

five key predictors, this study constructed a pre-risk model, divided

HNSC patients into high- and low-risk groups after scoring, and

found that high-risk groups is associated with poorer prognosis of

patients, and its prognostic value is verified, suggesting that the risk

score feature can be used as an independent factor to predict the

prognosis of patients. In addition, TMB plays an important role in
A B

FIGURE 7

Chemotherapy responsiveness analysis. Box plots demonstrating the half maximal inhibitory concentration (IC50) values of A.443654 (A) and
AG.014699 (B) in high- and low-risk groups.
FIGURE 8

The expressions of DNMT1, MPZ, TPM2, CDKN2A and MTHFD2 were identified by quantitative real-time PCR in case and normal samples. *** p <
0.001,**** p < 0.0001. "ns" means no significance.
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tumors as an indicator of tumormutational load, reflecting the degree

of mutation in the genome of tumor cells, which is closely related to

tumor response to immunotherapy and prognosis. But unfortunately,

our results showed no difference in TMB between high and low

risk groups.

Our study shows that GMRGs (MTHFD2, CDKN2A, TPM2,

MPZ and DNMT1) may be a valuable biomarker in the diagnosis of

HNSC. We also demonstrate the potential association of MTHFD2,

CDKN2A, TPM2, MPZ and DNMT1 and infiltrating immune cells,

its important role in the development of HNSC, thereby providing a

new insight into the prevention and treatment of HNSC. Despite the

demonstrated utility of our model in prognosticating HNSC patients

and aiding treatment decisions, our investigation has certain

limitations. Primarily, our analysis hinges on data sourced from

public databases, which could introduce disparities between

predicted outcomes and real-world scenarios. As a result, validation

of our model’s clinical effectiveness necessitates the acquisition of

prospective clinical information and post-immunotherapy

sequencing data. Additionally, the uniqueness of each HNSC

patient may influence the characteristics of the GMRGs. To

surmount these constraints and bolster the resilience of our model,

novel approaches and continued research endeavors are imperative.
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8. Ždralević M, Vučetić M, Daher B, Marchiq I, Parks SK, Pouysségur J. Disrupting
the 'Warburg effect' re-routes cancer cells to OXPHOS offering a vulnerability point via
'ferroptosis'-induced cell death. Adv Biol Regul (2018) 68:55–63. doi: 10.1016/
j.jbior.2017.12.002

9. Fu Y, Wang D, Wang H, Cai M, Li C, Zhang X, et al. TSPO deficiency induces
mitochondrial dysfunction, leading to hypoxia, angiogenesis, and a growth-promoting
metabolic shift toward glycolysis in glioblastoma. Neuro-oncology (2020) 22:240–52.
doi: 10.3390/cancers15041158

10. Chen C, Shi Y, Li Y, He ZC, Zhou K, Zhang XN, et al. A glycolysis-based ten-
gene signature correlates with the clinical outcome, molecular subtype and IDH1
mutation in glioblastoma. J Genet Genomics = Yi Chuan xue bao (2017) 44:519–30. doi:
10.1016/j.jgg.2017.05.007

11. Gupta S, Roy A, Dwarakanath BS. Metabolic cooperation and competition in the
tumor microenvironment: implications for therapy. Front Oncol (2017) 7:68. doi:
10.3389/fonc.2017.00068

12. Koczula KM, Ludwig C, Hayden R, Cronin L, Pratt G, Parry H, et al. Metabolic
plasticity in CLL: adaptation to the hypoxic niche. Leukemia (2016) 30:65–73. doi:
10.1038/leu.2015.187

13. Lin X, Xiao Z, Chen T, Liang SH, Guo H. Glucose metabolism on tumor
plasticity, diagnosis, and treatment. Front Oncol (2020) 10:317. doi: 10.3389/
fonc.2020.00317

14. Chi H, Xie X, Yan Y, Peng G, Strohmer DF, Lai G, et al. Natural killer cell-related
prognosis signature characterizes immune landscape and predicts prognosis of
HNSCC. Front Immunol (2022) 13:1018685. doi: 10.3389/fimmu.2022.1018685

15. Chi H, Jiang P, Xu K, Zhao Y, Song B, Peng G, et al. A novel anoikis-related gene
signature predicts prognosis in patients with head and neck squamous cell carcinoma
and reveals immune infiltration. Front Genet (2022) 13:984273. doi: 10.3389/
fgene.2022.984273

16. Wang X, Zhao Y, Strohmer DF, Yang W, Xia Z, Yu C. The prognostic value of
MicroRNAs associated with fatty acid metabolism in head and neck squamous cell
carcinoma. Front Genet (2022) 13:983672. doi: 10.3389/fgene.2022.983672

17. Chi H, Yang J, Peng G, Zhang J, Song G, Xie X, et al. Circadian rhythm-related
genes index: A predictor for HNSCC prognosis, immunotherapy efficacy, and
chemosensi t iv i ty . Front Immunol (2023) 14:1091218. doi : 10 .3389/
fimmu.2023.1091218

18. Peng G, Chi H, Gao X, Zhang J, Song G, Xie X, et al. Identification and
validation of neurotrophic factor-related genes signature in HNSCC to predict
survival and immune landscapes. Front Genet (2022) 13:1010044. doi: 10.3389/
fgene.2022.1010044

19. Zhao S, Chi H, Ji W, He Q, Lai G, Peng G, et al. A bioinformatics-based analysis
of an anoikis-related gene signature predicts the prognosis of patients with low-grade
gliomas. Brain Sci 12 (2022) 10:1349. doi: 10.20944/preprints202209.0342.v1

20. Wang Q, Liu Y, Li Z, Tang Y, Long W, Xin H, et al. Establishment of a novel
lysosomal signature for the diagnosis of gastric cancer with in-vitro and in-situ
validation. Front Immunol (2023) 14:1182277. doi: 10.3389/fimmu.2023.1182277

21. Chi H, Peng G, Wang R, Yang F, Xie X, Zhang J, et al. Cuprotosis programmed-
cell-death-related lncRNA signature predicts prognosis and immune landscape in
PAAD patients. Cells (2022) 11:3436. doi: 10.3390/cells11213436

22. Huang X, Liu Y, Wang Q, Rehman HM, Horváth D, Zhou S, et al. Brief literature
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