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Diabetic nephropathy (DN) is a complication of diabetes mellitus (DM) and the

main cause of excess mortality in patients with type 2 DM. The pathogenesis and

progression of DN are closely associated with disorders of glucose and lipid

metabolism. As a member of the sirtuin family, SIRT6 has deacetylation, defatty-

acylation, and adenosine diphosphate-ribosylation enzyme activities as well as

anti-aging and anticancer activities. SIRT6 plays an important role in glucose and

lipid metabolism and signaling, especially in DN. SIRT6 improves glucose and

lipid metabolism by controlling glycolysis and gluconeogenesis, affecting insulin

secretion and transmission and regulating lipid decomposition, transport, and

synthesis. Targeting SIRT6 may provide a new therapeutic strategy for DN by

improving glucose and lipid metabolism. This review elaborates on the important

role of SIRT6 in glucose and lipid metabolism, discusses the potential of SIRT6 as

a therapeutic target to improve glucose and lipid metabolism and alleviate DN

occurrence and progression of DN, and describes the prospects for

future research.
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1 Introduction

Diabetic nephropathy (DN) is the main microvascular complication of diabetes

mellitus (DM) (1). Approximately 30–40% of patients with DM will develop DN, the

main cause of end-stage renal disease (2). DN is the main cause of mortality in patients with

type 2 DM (T2DM) (3). The all-cause mortality of patients with DM and DN is

approximately 30 times that of those without DN, and the vast majority of patients with

DN die of cardiovascular disease before end-stage renal disease (4). Multiple risk factors

accelerate DN progression, including hypertension, hyperglycemia, obesity, insulin

resistance, atherosclerotic dyslipidemia, and familial aggregation (5–9). DN pathogenesis

is complex and includes glucose metabolism disorders, changes in fatty acid metabolism,
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oxidative stress, changes in energy utilization, and mitochondrial

dysfunction, which can lead to endothelial dysfunction, glomerular

sclerosis, inflammatory cell recruitment, renal tubular fibrosis, and

other pathological changes (10, 11). Dyslipidemia and renal ectopic

lipid accumulation are associated with kidney disease (especially

DN) (12). Almost all renal cell types, from mesangial cells (MCs) to

podocytes and proximal tubular epithelial cells (PTECs), can

deposit lipids (13). Therefore, glucose and lipid metabolism

disorders are important causes of DN onset and progression.

High blood glucose levels and excessive carbohydrate intake can

produce toxic effects on cells and tissues through hyperglycemia

and carbon stress (14). Hyperglycemia stress including reduction of

stress, polyol pathway (15–19), hexosamine pathway (20, 21),

protein kinase C (PKC) activation pathway (22, 23), advanced

glycation end-product pathway (24–26) and oxidative stress (27–

29). Excessive uptake of nutrients (including glucose and lipids)

causes carbon overload in cells, resulting in accumulation of a large

number of reactive acyl metabolites (including malonyl-coa,

succinyl-coa, and acetyl-coa) and ultimately leading to protein

modification and dysfunction (30, 31), including through protein

acetylation (30, 32) and succinylation (30, 33). Long-term exposure

to high concentrations of lipids and lipid derivatives can produce

lipotoxicity to cells (34). Long-term elevation of free fatty acid
Frontiers in Endocrinology 02
(FFA) levels destroys glucose homeostasis, and exposure to high

glucose (HG) causes synergistic glucolipotoxicity (35). Lipotoxicity

in DM can aggravate glucotoxicity-induced mitochondrial damage

(36). Enhanced fatty acid synthesis and inhibition of fatty acid

oxidation are the main causes of renal lipid accumulation (37).

Renal lipid deposition induces cell damage by activating oxidative

stress, inflammation, fibrosis, and apoptosis pathways (38). Aging is

not only a risk factor for the occurrence and development of kidney

disease (39), but also leads to adipose tissue dysfunction (40) and

decreased glucose tolerance (41), which lead to glucose and lipid

metabolism disorders. Therefore, changes in carbohydrate and lipid

metabolism as well as kidney aging are associated with the

development of chronic kidney disease (42, 43).

Sirtuins, as a diverse group of histone deacetylases, that are core

participants in anti-aging effects and metabolism (44) and can play

an anti-aging role in DN (45, 46). SIRT6 is an important regulator

of glucose and lipid metabolism (Figure 1) (47–49). It is also

involved in anti-aging (45), NAD+ metabolism (50),

inflammation (51, 52), autophagy (53, 54) and oxidative stress

(55, 56). SIRT6 deacetylase activity prevents the transcription of

genes involved in renal fibrosis (57). SIRT6 is a key regulator of DN

progression. SIRT6 expression is downregulated in DN kidney

tissues (58), and podocyte-specific SIRT6 deletion aggravates
FIGURE 1

SIRT6’s function in the metabolism of lipids and glucose. SIRT6 exerts its influence on lipid and glucose metabolism through various enzymatic
activities, including deacetylation, defatty-acylation, and ADP-ribosylation. These activities enable SIRT6 to modulate metabolic pathways in multiple
ways. Glucose metabolism encompasses important processes such as glycolysis, gluconeogenesis, and insulin signaling. SIRT6 is implicated in these
processes, and its involvement is associated with several proteins, including HIF-1a, PKM2, PGC-1a, FOXO1, p53, and GLUT4. These proteins play a
role in mediating the effects of SIRT6 on glucose metabolism. Lipid metabolism involves the lipolysis, transport, and synthesis of lipids. SIRT6 is
involved in regulating lipid metabolism through interactions with various proteins, including FOXO1, PPARa, ABCG1, and SREBP. These proteins
collectively contribute to the control of lipid metabolism. By understanding the impact of SIRT6 on these metabolic pathways and its interactions
with specific proteins, we can gain valuable insights into its potential as a therapeutic target for managing metabolic disorders.
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podocyte injury and proteinuria in mice with DN (58). In addition,

SIRT6 deficiency is associated with mitochondrial and podocyte

apoptosis (59, 60).

In this review, we systematically elaborate on the targeting of

SIRT6 to regulate glucose and lipid metabolism to delay DN

progression and on the feasibility of utilizing SIRT6 in DN treatment.
2 Localization, structure, and
enzymatic activity of SIRT6

2.1 Localization and structure

The sirtuin family includes seven proteins (SIRT1–SIRT7), of

which SIRT6 is a member of class IV (61). SIRT6 is primarily localized

in the nucleus (62). The human SIRT6 gene contains eight exons, with

exon 4 being the shortest at 60 bases and exon 8 the longest at 838

bases (63). The gene is located on chromosome 19p13.3. A protein of

355 amino acids with a projected molecular weight of 39.1 kDa and an

isoelectric point of 9.12 is encoded by the human SIRT6 mRNA (63).

Most tissues produce SIRT6, and research has shown that its gene is

mostly expressed in the embryonic heart, kidney, and brain (64). Eight

a-sheets and nine b-strands make up the two globular domains found

in SIRT6: a large Rossmann fold for NAD+ binding (residues 25–128

and 191–266) and a smaller zinc-binding domain (residues 129–190).

The parallel b-sheets of six strands (b1, b2, b3, b7, b8, and b9) that
make up the large Rossmann fold domain are surrounded by two

helices (a6 and a7) on one side and four on the other (a1, a4, a5, and
a8). The smaller domain, which consists of three antiparallel b-sheets
(sheets b4, b5, and b6), is created by two extension loops of the large

domain (linking loops b3 and a6) (Figure 2) (65). Despite lacking

acetylated substrates, SIRT6 has a structurally strong single helix that

allows it to bind NAD (65). Deacetylation, defatty-acylation, and

ADP-ribosylation are three unique enzymatic activities that SIRT6 has

shown (66).
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2.2 Deacetylation

NAD+-dependent histone deacetylases are the most distinctive

features of SIRT6. There are multiple SIRT6-targeted deacetylation

sites on histone H3, including at H3K9, H3K18, and H3K27 (67).

Histone H3 lysine 9 (H3K9Ac) is the first specific deacetylation

substrate that regulates telomere chromatin (68). Lysine 56 in the

histone H3 globular nucleus (H3K56Ac) is the second substrate (69)

and is involved in DNA repair (70). SIRT6 promotes H3K18

deacetylation in paracentric heterochromatin (71). Further

research has shown that the role of SIRT6 as a protein

deacetylase extends beyond the scope of histones. C-terminal-

binding protein interacting protein (CtIP) was the first discovered

non-histone substrate and promotes DNA end resection and

homologous recombination (72) to maintain genomic stability.

When SIRT6 is activated by ribosomes or fatty acids, its

deacetylation activity is significantly enhanced (73, 74).
2.3 Defatty-acylation

Fatty acylation of lysine is a novel mechanism that regulates

protein secretion (75). Palmitoylation affects cellular protein

dynamics and differential regulation (76). Myristoylation affects

plasma targeting, subcellular tracking, and protein localization (77).

Enzymatic and structural studies have shown that SIRT6

preferentially hydrolyzes long-chain fatty acyl groups (myristoyl

and palmitoyl) (73, 78). SIRT6 knockdown increases lysine fatty

acylation of the RAS-related protein R-Ras2 (79). SIRT6 regulates

the lipid acylation level of K19 and K20 and affects the secretion of

tumor necrosis factor a (TNFa) (78). In addition, SIRT6 can

remove the fatty acylation of H3K9, H3K18, and H3K27 in fatty-

acylated nucleosomes; however, the physiological function of this

reaction requires further study (67).
2.4 ADP-ribosylation

ADP-ribosylation is a post-translational modification (80)

involved in glucose and lipid metabolism (81), DNA repair (82)

and cell proliferation (83). SIRT6 is an ADP-ribosyltransferase (62).

SIRT6 mono-ADP-ribosylation of KDM2A can locally increase

H3K36me2 at DNA damage sites, thereby inhibiting transcription

and promoting repair (84). In response to oxidative stress, SIRT6

ribosylates K521 and activates poly (ADP-ribose) polymerase 1 to

promote double-strand break repair (85). SIRT6 inhibits long

interspersed element 1 retrotransposons by ribosylating KRAB

domain-associated protein 1 (86).
2.5 Regulation of SIRT6 enzyme activity

Deficiency of SIRT6 SUMOylation specifically reduces H3K56

deacetylation (87). Compared to patients without DM, SIRT6 DNA

methylation levels in patients with DM are lower and are negatively
FIGURE 2

Structure of human SIRT6.
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correlated with blood glucose levels, suggesting that epigenetic

mechanisms regulate SIRT6 expression (88). Oxidative stress

inhibited SIRT6 expression in a mouse model of DM

embryopathy (89). SIRT6 expression was inhibited by 2,3-

dimethoxy-1,4-naphthoquinone (89) in vitro. p53 directly

activates SIRT6 expression (90, 91). Under normal growth

conditions, p53 positively regulates SIRT6 protein levels; however,

under nutrient-limited conditions, p53 has no relationship with

SIRT6 stability (92). Ubiquitination is a common post-translational

modification that regulates target protein stability (93). Ubiquitin-

specific peptidase 10 (USP10) inhibits SIRT6 ubiquitination and

degradation, reducing liver fat deposition, insulin resistance, and

inflammation (94). The ubiquitin ligase CHIP (carboxyl terminus of

HSP70-interacting protein) ubiquitinates SIRT6 at K170 (95).
3 SIRT6 regulation in glycolipid
metabolism

3.1 SIRT6 and glucose metabolism

3.1.1 SIRT6 and blood glucose
Cys144 of SIRT6 is a functional redox-sensitive site that regulates

glucose metabolism in monocytes (96), including inhibition of

glucose transporters and glycolytic enzyme expression (97, 98).

SIRT6 inhibitors increase expression of glucose transporters and

glycolytic enzymes, reducing blood glucose levels (99). Sirt6-

deficient mice exhibit lethal hypoglycemia in early life (100). SIRT6

deficiency did not affect intestinal glucose absorption or renal glucose

secretion in mice (98). The kidney regulates glucose homeostasis

through gluconeogenesis, glucose uptake from circulation, and

glucose reabsorption from glomerular filtrate (101). In DM, the

kidneys increase blood glucose by increasing glucose reabsorption

in the prourine and upregulating gluconeogenesis in the proximal

tubules (PTs) (102). The glucose transporter (GLUT) and sodium-

glucose co-transporter (SGLT) are both expressed in renal tissues

(103). SIRT6 deletion enhances the membrane association between

GLUT1 and GLUT4, thereby enhancing glucose uptake (104). In cell-

specific SIRT6 KO mice, SIRT6-mediated forkhead box protein O1

(FOXO1) deacetylation leads to nuclear export and restoration of

pancreatic duodenal homeobox 1 (Pdx1) expression. It may also

promote glucose-stimulated insulin secretion (GSIS) and upregulate

GLUT2 expression (105).

3.1.2 SIRT6 and glycolysis
Glycolysis, a key energy production process in almost all

mammalian cells, converts glucose into pyruvate. Under aerobic

conditions, it enter the mitochondria (106). When cells are deprived

of nutrients or under hypoxia, they undergo anaerobic respiration

and convert pyruvate to lactate (107–109). Hyperglycemic toxicity

can be reduced by increasing glycolysis. The elevation of enzymes

involved in the metabolism of free glucose and its metabolites in

glomerular cells is related to the maintenance of renal function in

T2DM (110). Anaerobic glycolysis and glucose fermentation into

lactate are the main metabolic pathways in podocytes. Under
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physiological conditions, podocytes do not rely on mitochondrial

energy sources, but metabolize glucose to lactate to meet energy

demands, similar to the Warburg effect (111). In DN, regulating

glucose metabolism, reducing the levels of glucotoxic products, and

improving mitochondrial function can protect the kidneys (112).

After 8 days of hyperglycemia intervention in renal tubular cells, the

downregulation of respiratory parameters persisted and glycolysis

increased to compensate (113).

Hypoxia-inducible factor-1a (HIF-1a) regulates glycolytic gene
expression. HIF-1 activates glycolytic genes such as pyruvate

dehydrogenase kinase (PDK), which is key to hypoxic metabolism

adaptations by increasing the conversion rate of glucose to pyruvate

and lactate (114). SIRT6 negatively regulates HIF-1a to regulate

glycolysis. The two SIRT6 Cys residues Cys18 and HIF-1a (Cys800)

form a reversible disulfide bond, thereby inhibiting the

transcriptional activity of HIF-1a (115). In a cross-sectional study

of patients with T2DM (313 cases), patients with pre-DM (102 cases),

and healthy volunteers (100 cases), SIRT6 was elevated in patients

with different severities of DM and microalbuminuria with increased

TNFa, HIF1-a, and urinary protein biomarkers (116). Thus, HIF1-a
is a target for SIRT6 intervention in glycolysis. In SIRT6-deficient

cells, HIF-1a protein synthesis and stability are increased, leading to

the overexpression of HIF-1a target genes involved in glycolysis, such

as those coding for lactate dehydrogenase, triose phosphate

isomerase, aldolase, and the rate-limiting glycolytic enzyme

phosphofructokinase (98). Under normal nutritional conditions,

SIRT6 acts as a histone deacetylase to inhibit the expression of

glycolytic genes and maintain an appropriate flux of glucose into

the tricarboxylic acid cycle (98). Under nutritional stress, SIRT6

inactivation can activate HIF-1a and recruit p300. Acetylation of

H3K9 at the promoter increases the expression of a variety of

metabolic genes, resulting in increased glycolysis and decreased

mitochondrial respiration (98). In mice specifically overexpressing

pyruvate kinase M2 (PKM2) in podocytes, PKM2 protects

mitochondrial function in all glomerular cells by activating and

inducing the HIF-1a/VEGF pathway, resisting hyperglycemic

toxicity, and slowing down DN progression (117). PKM2 activation

protects podocytes from glucose-induced injury by increasing glucose

metabolic flux, inhibiting the production of toxic glucose metabolites,

and inducing mitochondrial biogenesis to restore mitochondrial

function (118). SIRT6 deacetylates PKM2, leading to its nuclear

export. Therefore, the interaction of SIRT6 with PKM2 and HIF-

1a can be further investigated to provide strategies for the treatment

of altered podocyte metabolism in DN.
3.1.3 SIRT6 and gluconeogenesis
Gluconeogenesis is an important metabolic process that

provides energy to the body, particularly during fasting and

physical activities. Systemic SIRT6 overexpression improves the

utilization of two major gluconeogenic precursors (glycerol and

lactate), blocking age-dependent deterioration of euglycemia and

gluconeogenic capacity, indicating that organs other than the liver

are critical for SIRT6-mediated gluconeogenesis activation (50). PTs

are the second most important gluconeogenic tissue after the liver

(119). In DM, both the liver and kidneys increase gluconeogenesis;
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however, the relative increase in glucose production in the kidneys

is much stronger than that in the liver (102). The most important

renal gluconeoprecursors are lactate, glutamine, and glycerol (101).

During gluconeogenesis, SIRT6 is regulated by the peroxisome

proliferator-activated receptor-g coactivator 1a (PGC-1a), FOXO1,
and other targets. PGC-1a is a key mediator of gluconeogenic gene

transcription, and this function depends on its acetylation status

(120, 121). Metabolomics suggests that the characteristics of

mitochondrial dysfunction in DN are related to decreased

expression of the PGC-1a gene, which is evidence of the global

impairment of mitochondrial biogenesis (122, 123). SIRT6 binds

the histone acetyltransferase general control of nucleotide synthesis

5 (GCN5) at K549 to deacetylate it, changing protein

phosphorylation to activate GCN5. This in turn suppresses

hepatic gluconeogenesis by increasing PGC-1a acetylation (120).

p53 downregulates the rate-limiting enzymes of gluconeogenesis

(phosphoenolpyruvate carboxykinase 1 and glucose-6-

phosphatase) and activates SIRT6 expression. SIRT6 deacetylates

FOXO1 and exports it to the cytoplasm to regulate gluconeogenesis

(90). SIRT6 also regulates FOXO1 nuclear translocation, affecting

renal glucose reabsorption and gluconeogenesis in type 1 DM (124).

3.1.4 SIRT6 and insulin signaling
Insulin is the only hormone in the body that lowers blood

glucose levels, and it is secreted by pancreatic b-cells. The kidney

plays a major role in insulin degradation, removing 6–8 U of insulin

daily via two major pathways (125). The GSIS of pancreatic b-cell
SIRT6-knockout mice decreased by approximately 50%, suggesting

that SIRT6 activation may improve insulin secretion in DM (126).

SIRT6 deficiency also leads to abnormal upregulation of

thioredoxin-interacting protein in islet b-cells, thereby inhibiting

insulin secretion (127). SIRT6 overexpression can reduce palmitate

(PA)-induced lipotoxicity, improve pancreatic b-cell viability, and
increase GSIS (128). SIRT6 also regulates GSIS via mitochondrial

glucose oxidation, plasma membrane depolarization, and calcium

dynamics (126). Furthermore, SIRT6 inhibits multiple upstream

molecules, such as insulin receptor, insulin receptor substrate 1, and

insulin receptor substrate 2. Additionally, SIRT6 negatively

regulates AKT phosphorylation (104).

Insulin resistance (IR) is a factor that promotes DN progression

(129). SIRT6 overexpression activates transient receptor potential

vallinoid 1 (TRPV1)/calcitonin gene-related peptide (CGRP)

signaling and regulates GLUT expression at the protein and

mRNA levels, which are involved in the TRPV1-CGRP-GLUT4

signaling axis, thereby increasing glucose intake and reducing IR in

mice fed high-fat diets (HFDs) and 3T3-L1 adipocytes (130).

Therefore, SIRT6 not only affects insulin secretion and sensitivity,

but also serves as a potential target for the treatment of IR.
3.2 SIRT6 and lipid metabolism

3.2.1 SIRT6 and adipocytes
Adipose tissue is mainly composed of adipocytes, interstitial

fibroblasts, and progenitor cells, which form energy storage
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organelles in the form of triglycerides packaged into lipid droplets

(LDs). Adipose tissue also plays an important role in regulating

systemic metabolic homeostasis (131–134). Depending on

adipocyte type, fat can be classified as white, brown, or beige.

White adipocytes have unilocular LDs mainly responsible for

energy storage (131). Brown fat cells are rich in mitochondria

that consume energy to produce heat (135). Mice with SIRT6-

deficient adipose tissue have shown elevated blood glucose levels

and severe IR (136). Obesity, hyperglycemia, and other factors can

reduce SIRT6 expression. SIRT6 expression was observed to have

decreased in the adipose tissue of db/db mice in a model of T2DM

(120). SIRT6 expression in the abdominal adipose tissue of patients

with obesity and pre-DM is lower than that in healthy patients,

while nuclear transcription factor-kB (NF-kB), peroxisome

proliferator-activated receptor g (PPARg), and sterol regulatory

element-binding protein 1 (SREBP-1) expression levels increase,

suggesting their involvement in the inflammatory pathway (137).

SIRT6 expression in subcutaneous adipose tissue increases

significantly after weight loss (138). Low temperature can induce

SIRT6 to interact with the PGC-1a promoter and promote

phospho-activating transcription factor 2 (p-ATF2) binding,

thereby activating thermogenic genes and promoting fat

thermogenesis (136). SIRT6 also inhibits preadipocyte

differentiation by activating the adenosine monophosphate-

activated protein kinase-a (AMPKa) pathway (139). Adipose

tissue can also function as a secretory organ for leptin and

adiponectin (140, 141). SIRT6 deficiency impairs leptin-induced

signal transduction (142). Increased adiponectin can reduce

proteinuria, glomerular hypertrophy, and inflammatory responses

in the renal tissue (143).

3.2.2 SIRT6, lipolysis, and transport
SIRT6 overexpression significantly reduces blood triglycerides

in mice (144). FOXO1 is involved in lipid metabolism, promotes

lipolysis, and inhibits adipocyte differentiation. Acetylation and

deacetylation are the most important regulatory mechanisms

affecting FOXO1 expression and activity (145). SIRT6 is a

FOXO1 deacetylase that drives lipid catabolism, and its activity is

enhanced by the loss of mTOR complex 2 (mTORC2) (146).

mTORC2 promotes glucose uptake and adipogenesis in

adipocytes, and counteracts the inflammatory response of

macrophages (147). It also regulates lipid metabolism in brown

adipocytes via the SIRT6-FOXO1 pathway (146). However, the lack

of SIRT6 can increase FOXO1 acetylation, promote FOXO1 nuclear

export, and reduce the positive regulation of adipose triglyceride

lipase, a key enzyme in fat mobilization (148). PPARa, one of the
PPAR isoforms, is a key transcription factor involved in hepatic

oxidation. PPARa activates PDK4 to inhibit the oxidation of

pyruvate produced by glycolysis and increase the production of

lactate and alanine, thereby indirectly promoting lipid oxidation in

the liver (149). SIRT6 can bind PPARa and its response elements in

the promoter region to activate gene transcription and promote

lipid b-oxidation (150). Lipoproteins include phospholipids, free

cholesterol, and apolipoproteins (151). Disorders of cholesterol

metabolism are also associated with lipotoxicity and lipid
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accumulation in DM (152). SIRT6 affects cholesterol efflux in

podocytes by regulating the expression of ATP-binding cassette

transporter G1 (ABCG1) expression. SIRT6 deficiency exacerbates

Ang II-induced cholesterol accumulation and podocyte injury

SIRT6 is a potential target for renin-angiotensin system-related

podocyte injury (153).

3.2.3 SIRT6 and lipid synthesis
SREBP is a lipogenic transcription factor regulated by

cholesterol, insulin, and glucose. PPARa can inhibit the SREBP-

mediated synthesis of cholesterol and triglycerides (154, 155).

SREBP1 regulates adipogenesis by activating the genes involved in

fatty acid and triglyceride biosynthesis, whereas SREBP2 activates

the genes involved in cholesterol synthesis (156). SREBP1

overexpression in the kidneys induces glomerulosclerosis (157).

SIRT6 can bind to the promoter regions of SREBP1c and SREBP2

and repress transcription by deacetylating histone H3K56 in the

promoter. FOXO3 recruits SIRT6 to the SREBP-2 gene promoter,

and SIRT6 deacetylates H3K9AC and H3K56AC to reduce low-

density lipoprotein (LDL) cholesterol (158). SIRT6 also inhibits

SREBP1c by increasing the adenosine monophosphate (AMP)/ATP

ratio and stimulating AMPK phosphorylation (159). miRNAs are

key regulators of lipid synthesis, fatty acid oxidation, and

lipoprotein formation and secretion (160). However, miR33a and

miR33b from the SREBP2 and SREBP1 introns can inhibit SIRT6

expression (159, 161). SIRT6 inhibits lipid deposition by activating

the AMPKa pathway (139). Ectopic lipid deposition (ELD) is
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associated with DN progression (12). SIRT6 improves lipid

accumulation via FOXO1 and PPARg (162). Therefore, SIRT6

can affect the lipogenic transcription factors SREBP1 and SREBP2

through a variety of mechanisms. Further studies are needed to

determine whether SIRT6 alleviates renal ELD.
4 Effect of glucose and lipid
metabolism on DN

Disorders of glucose and lipid metabolism are closely related to

the occurrence and progression of DN (Figure 3). Glucotoxicity and

lipotoxicity can affect a variety of intrinsic renal cells in DN, causing

structural and functional changes in the glomeruli and tubules.
4.1 Glucotoxicity and DN

DN is a microvascular disease in which vascular endothelial

cells are unable to downregulate glucose transport in response to

high glucose levels, resulting in a large flow of intracellular glucose

that triggers the production of pathogenic mediators (163).

Hyperglycemia is considered a key initiating factor in DN-related

renal injury. Excess glucose flux generates reactive oxygen species

via several pathways (164). Mesangial expansion and podocyte loss

are important early features of DN, and tubulointerstitial injury and

fibrosis are key to the progression of DN to renal failure (11).
FIGURE 3

Regulation of glucose and lipid metabolism in DN and SIRT6’s possible role as a treatment target for DN. The imbalance of lipid and glucose
metabolism is a crucial etiological component in the development of DN, a microvascular complication of DM. In podocyte glucotoxicity, MEF2C,
MYF5, PGC-1a, and RANK are involved, whereas in podocyte lipotoxicity, SMPDL3b and NLRP3 are. The glucotoxicity of mesangial cells is mediated
by bFGF, PDGF, and PKC, whereas the lipotoxicity of mesangial cells is mediated by PERK and ATF6. TGF-b and CTGF support glucotoxicity in PTCs,
whereas HIF-1a and ANXA1 support lipotoxicity. In contrast to lipotoxicity, which is mediated by LRG1 and TRAIL, macrophage glucotoxicity is
mediated by ICAM-1 and VCAM-1. Recent studies show that SIRT6 plays a role in the activation of the Notch pathway, AMPK, miR-33a-5p, Smad3,
FOXO3a, Nampt, and M2 macrophages in DN. Potential targets for treating DN using SIRT6 are suggested, including HIF-1a, PGC-1a, FOXO1,
FOXO3, AMPK, PPARa, ABCG1, and SREBP, given the involvement of SIRT6 in glucose and lipid metabolism. By targeting SIRT6 and its associated
pathways, there is potential to modulate glucose and lipid metabolism and mitigate the development and progression of DN. Further research and
investigation are warranted to explore the therapeutic implications of targeting SIRT6 in DN treatment.
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Podocyte structure and dysfunction are the core factors in DN

pathogenesis. Hyperglycemia can induce podocytopathy, which is

characterized by cell hypertrophy, foot process loss, and podocyte

depletion (165, 166). Expression levels of myocyte-specific enhancer

factor 2C (MEF2C), myogenic factor 5 (MYF5), and PGC-1a are

decreased in renal tissues of patients with DN. This suggests that

hyperglycemia reshapes energy metabolism in human podocytes

(167). SIRT6 promotes the expression of PGC-1a (168). Receptor

activator of NF-kB (RANK) is induced in DM and promotes

glomerular oxidative stress as well as the secretion of pro-

inflammatory cytokines, leading to podocyte injury and mediating

the occurrence of DN (169). SIRT6 attenuates NF-kB signaling via

deacetylation of H3K9 on chromatin (170).

Increased glucose load in PTs in the early stage of DM leads to

maladaptive hypertrophy, hyperplasia of cortical tubules (171), and,

at the same time, upregulated glucose transport (172), which

promotes glucose reabsorption. In PTECs, SGLT2 and SGLT1

actively reabsorb glucose and passively return it to the blood via

GLUT2 (173). These conditions can activate tubule-glomerular

feedback, leading to increased intraglomerular pressure and

ultrafiltration (174, 175). SIRT6 regulates the expression of

GLUT2 during glucose reabsorption and gluconeogenesis (124).

Renal tubular epithelial-to-mesenchymal transition (EMT) and

tubulointerstitial fibrosis are important pathological features of

DN (176, 177) and represent the “final common pathway” of

associated renal function loss (178). Increased extracellular matrix

(ECM) deposition in the kidney can be regulated by transforming

growth factor-beta (TGF-b), connective tissue growth factor

(CTGF), and other profibrotic mediators (179). Human PTECs

and cortical fibroblasts exposed to HG show altered cell growth and

collagen synthesis independent of hemodynamics and glomerular

or vascular pathology (180). SIRT6 attenuates TGF-b-induced
fibrosis in renal tubular cells by blocking b-catenin expression

(57, 181).

MCs proliferate in the early stages of DN and are closely related

to basic fibroblast growth factor (bFGF) and platelet-derived growth

factor (PDGF) (182). Studies shows that SIRT6 regulate the

expression of PDGF (183). PKC activation by glucose increases

the permeability of endothelial cells to albumin, stimulates the

synthesis of matrix proteins in MCs, and changes the function and

structure of DM glomeruli (184). PKC also phosphorylates SIRT6 to

mediate fatty acid b-oxidation (185).

Macrophages are the main immune cells, and activation of

resident and infiltrating macrophages in DN can promote

inflammation and fibrosis of the glomeruli and tubulointerstitium

(186). HG induces high expression of intracellular adhesion

molecule-1 (ICAM-1) and vascular cell adhesion molecule-1

(VCAM-1) in vascular endothelial cells, which promotes the

recruitment of renal macrophages in DN (187). Deacetylation of

MRTF-A by SIRT6 leads to nuclear expulsion, thereby inhibiting

the binding of MRTF-A to the ICAM-1 promoter and subsequently

inhibiting the transcription of ICAM-1 (188). SIRT6 inhibits

monocyte adhesion through downregulation of endothelial

VCAM-1 expression (189).
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4.2 Lipotoxicity and DN

Renal lipotoxicity, caused by lipid metabolism disorders, is

involved in DN progression and renal dysfunction. Lipid

metabolism disorders are significantly correlated with

inflammation, podocyte dysfunction, fibrosis, and estimated

glomerular filtration rate (eGFR), while lipid deposition is related

to disorders of lipid metabolism genes (152). DM often coexists

with obesity and leads to renal lipid accumulation (190). The degree

of renal lipid deposition is related to renal function in DN (152,

191). Cholesterol accumulation in podocytes is associated with

glomerulosclerosis progression (192). In DN, accumulation of

lipids exceeding LD storage damages podocytes and renal tubular

cells (193). Compared to healthy patients, patients with obesity have

increased phospholipid accumulation, larger lysosomes, and

impaired autophagic flux in the kidney (194). HFDs induce

autophagolysosome dysfunction in mice accompanied by

impaired autophagy, increased hypertrophy, lipid peroxidation

and aging markers in the S2 segment of PTECs, sparse

peritubular capillaries with localized interstitial fibrosis, and

glomerular hypertrophy with mesangial expansion (195).

The expression of sphingomyelinase-like phosphodiesterase 3b

(SMPDL3b) is increased in DN podocytes, and SMPDL3b promotes

degradation of ceramide-1-phosphate (C1P) to ceramides and

sphingolipids, which causes the insulin receptor to shift from the

caveolin-1-rich domain in a C1P-dependent manner, leading to

impaired AKT phosphorylation and podocyte injury (196, 197).

Inhibition of nucleotide-binding oligomerization domain-like

receptor protein 3 (NLRP3) inflammasome activation inhibits

lipid accumulation and improves podocyte injury (198). SIRT6 is

involved in the NLRP3-mediated cell pyroptosis (199).

Healthy PTECs are rich in mitochondria and mainly depend on

fatty acid beta-oxidation (FAO) for energy. They activate PGC-1a
transcription through multiple signaling pathways, including the

mTOR and AMPK pathways. The balance between mitochondrial

dynamics and energetics maintains mitochondrial homeostasis

(119). A shift from fatty acid utilization to glycolysis and lipid

accumulation is a metabolic change characteristic of PTs in the

development of DN and progression of renal fibrosis and is

associated with increased HIF-1a expression (200). LDs are

energy storage cellular organelles closely related to mitochondria

(201). A single phospholipid bilayer can isolate neutral lipids from

the cytoplasm and protect cells from FFA toxicity (202). Lipophagy

occurs when LDs are isolated by autophagosomes and fuse with

lysosomes to form autolysosomes, which are subsequently degraded

by lysosomal hydrolases within the autolysosomes. This hydrolysis

produces FFAs, which are recycled back into the cytoplasm for

mitochondrial oxidation (203, 204). Lipophagy deficiency plays a

key role in the development of ELD and lipid-related renal injury in

DN (205). Overexpression of SIRT6 enhances autophagy (206).

Annexin A1 (ANXA1) may improve mitochondrial FAO in PTECs

through the AMPK/PPARa/CPT1b signaling pathway, thereby

reducing intracellular lipid accumulation and improving

lipotoxicity-mediated, DN-related tubular damage (191). The
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AMPK-SIRT6 pathway is involved in aging-related lipid deposition

due to metabolic disorders (207).

MCs are susceptible to lipotoxicity, and lipotoxicity-induced

MC apoptosis is related to decreased renal function (208, 209).

Lipotoxicity is mediated by protein kinase R-like endoplasmic

reticulum kinase (PERK) and activating transcription factor 6

(ATF6) signaling pathway-induced apoptosis in MCs (210). It is

found that upregulation of SIRT6 expression inhibited the

expression of p-PERK and ATF6 (211, 212).

Macrophages infiltration around apoptotic tubular epithelial

cells induced by lipotoxicity has been observed in DN and is

associated with leucine-rich a-2-glycoprotein 1 (LRG1) and

tumor necrosis factor-related apoptosis-inducing ligand

(TRAIL) (213).
5 SIRT6 and DN

SIRT6 expression was significantly decreased in HG-stimulated

podocytes in a concentration- and time-dependent manner (47, 58).

SIRT6 mRNA levels correlate positively with eGFR and negatively

with proteinuria in renal biopsies of patients with podocyte disease

(58). In streptozotocin (STZ)- and adriamycin (ADR)-treated mice

and in db/db mice, SIRT6 expression in the kidneys decreased (58).

The reduced expression of SIRT6 in podocytes suggests that SIRT6

reduction is an important cause of podocyte injury under various

pathological conditions (58). SIRT6 inhibits the Notch pathway in

HG to increase autophagic flux, reduce pro-inflammatory

mediators, improve actin cytoskeleton disorders, and attenuate

podocyte apoptosis to protect podocytes (58). SIRT6 activates

AMPK and inhibits HG-induced mitochondrial dysfunction and

podocyte apoptosis (47).

SIRT6 promoted Smad3 deacetylation and inhibits Smad3

nuclear accumulation to alleviate DN kidney injury in HG-

induced HK-2 cells and in db/db mice. FOXO3a binds to the

SIRT6 promoter and enhances its expression to prevent EMT and

renal tubular injury in DN and can mediate SIRT6/Smad3

signal ing to treat DN (214) . Albuminuria decreases

nicotinamide phosphoribosyltransferase (Nampt) expression in
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the PTs of STZ-induced diabetic mice, ultimately leading to

matrix metalloproteinase (MMP) inactivation and reduced fibrous

tissue disintegration by increasing H3K9 acetylation and decreasing

SIRT6 expression in the tissue inhibitor of metal protease 1 (TIMP-

1) promoter. Therefore, ECM remodeling linked to DN fibrosis can

be efficiently controlled by the Nampt–SIRT6 axis within PTs (215).

In HG-induced rat MCs and STZ-induced DMmice, circ-ITCH

regulated SIRT6 expression through miR-33a-5p to reduce

inflammation and fibrosis (216).

In addition, SIRT6 protected podocytes from injury in a

simulated DN microenvironment by activating M2 macrophages

(217). Although there have been few reports on the relationship

between SIRT6 and glomerular endothelial cells, SIRT6 has been

shown to protect endothelial cells and exert anti-atherosclerotic

effects. SIRT6 attenuates the endothelial dysfunction induced by

cholesterol crystals by activating nuclear erythroid 2-related factor 2

(Nrf2) (218). SIRT6 deacetylates and reduces the expression of

tumor necrosis factor l igand superfamily member 4

(TNFSF4) to maintain endothelial cell function and mitigate

atherosclerosis (189).
6 Potential therapies targeting SIRT6
in DN

Recently, SIRT6 has been shown to play therapeutic roles in

various diseases. Small molecules and compounds that regulate

SIRT6 include MDL-811 (219) in ischemic brain injury, UBCS039

(220, 221) in cancer and liver injury, and anthocyanins in

osteoarthritis (222). Because SIRT6 can inhibit glycolysis, it is

considered part of a potential new generation of anticancer

treatment targets (223).

Drugs targeting SIRT6 also play important roles in the

treatment of DN (Table 1). Diosgenin can reduce lipid

accumulation by regulating SIRT6 in early DN while affecting

PDK4 and angiopoietin-like-4 (ANGPTL4) to protect podocytes

and reduce damage (224). After ginsenoside Rb3 treatment of

palmitic acid-induced podocytes (CIHP-1 cells), PPARd and
TABLE 1 Drugs targeting SIRT6 for renal glucose and lipid metabolism.

Drugs Targets Biologic effects Experimental
models

References

Diosgenin SIRT6;
PDK4;
ANGPTL4

reduced lipid accumulation;
protected against podocyte injury

DN model
(db/db mice)

(224)

Ginsenoside Rb3 PPARd;
SIRT6

alleviated inflammation;
alleviated oxidative stress;
attenuated podocytes apoptosis

hyperlipidemia
(CIHP-1 cells)

(225)

Yishen Tongluo formula Sirt6/TGF-b1/Smad2/3 pathway promoted degradation of TGF-b1;
ameliorated renal damages and fibrosis

DKD model
(db/db mice)
(SV40-MES-13 cells)

(226)

Loquat leaves total sesquiterpene glycosides IRS-1/GLUT4 pathway;
AMPK;
TRPV1;
SIRT6/Nrf2 pathway

ameliorated IR;
anti-inflammatory and antioxidant;
improved glucose and lipid metabolism

insulin resistance
(C57BL/6 mice)

(227)
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SIRT6 expression increased in a dose-dependent manner and

reduced inflammation and oxidative stress, thereby reducing

podocyte apoptosis (225). Yishen Tongluo formula (YSTLF)

treatment of db/db mice improved renal injury and fibrosis by

positively regulating SIRT6 expression, inhibiting the TGF-b1/
Smad2/3 signaling pathway and promoting TGF-b1 degradation

(226). IR is closely associated with DN (228). Total sesquiterpene

glycosides in loquat leaves can promote the SIRT6/Nrf2 signaling

pathway to improve IR (227).
7 Conclusions and perspectives

Accumulating evidence suggests that SIRT6 plays a key role in

DN treatment. This review describes the structure and enzymatic

activity of SIRT6 and summarizes its important role in glucose and

lipid metabolism. Additionally, we described the regulation of

glucose and lipid metabolic pathways, including glycolysis,

gluconeogenesis, lipolysis, and lipid synthesis, achievable by

targeting SIRT6 to affect the progression of DN. Several

compounds act as SIRT6 agonists and play potential roles in the

treatment of DN. We have focused on the role of the sirtuin family

in kidney diseases, especially in DN (46, 162, 229). However, the

role of SIRT6 in regulating glucose and lipid metabolism remains

unclear. As a potentially underappreciated and understudied target

in DN, many challenges remain in the study of SIRT6. Most studies

on SIRT6 have been preclinical, and the focus should be shifted to

clinical applications, as well as to the efficacy, safety, and stability of

targeted drugs. In conclusion, further exploration of the properties

of SIRT6 is of potential value, and targeting SIRT6 has important

clinical implications for the treatment of DN.
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