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Enteroviral infections are not
associated with type 2 diabetes
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1Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany, 2The JDRF
nPOD-Virus Group, 3Diabetes Research Institute, Department of Medicine, Division of Endocrinology
and Metabolism, Miami, FL, United States, 4Department of Microbiology and Immunology, Leonard
Miller School of Medicine, University of Miami, Miami, FL, United States, 5Department of Diabetes
Immunology & The Wanek Family Project for Type 1 Diabetes, Arthur Riggs Diabetes & Metabolism
Research Institute, City of Hope, Duarte, CA, United States
Introduction: For more than a century, enteroviral infections have been

associated with autoimmunity and type 1 diabetes (T1D). Uncontrolled viral

response pathways repeatedly presented during childhood highly correlate with

autoimmunity and T1D. Virus responses evoke chemokines and cytokines, the

“cytokine storm” circulating through the body and attack cells especially vulnerable

to inflammatory destruction. Intra-islet inflammation is a major trigger of b-cell
failure in both T1D and T2D. The genetic contribution of islet inflammation

pathways is apparent in T1D, with several mutations in the interferon system. In

contrast, in T2D, gene mutations are related to glucose homeostasis in b cells and

insulin-target tissue and rarely within viral response pathways. Therefore, the

current study evaluated whether enteroviral RNA can be found in the pancreas

from organ donors with T2D and its association with disease progression.

Methods: Pancreases from well-characterized 29 organ donors with T2D and 15

age- and BMI-matched controls were obtained from the network for pancreatic

organ donors with diabetes and were analyzed in duplicates. Single-molecule

fluorescence in-situ hybridization analyses were performed using three probe

sets to detect positive-strand enteroviral RNA; pancreas sections were co-

stained by classical immunostaining for insulin and CD45.

Results: There was no difference in the presence or localization of enteroviral

RNA in control nondiabetic and T2D pancreases; viral infiltration showed large

heterogeneity in both groups ranging from 0 to 94 virus+ cells scattered

throughout the pancreas, most of them in the exocrine pancreas. Very rarely, a

single virus+ cell was found within islets or co-stained with CD45+ immune cells.

Only one single T2D donor presented an exceptionally high number of viruses,

similarly as seen previously in T1D, which correlated with a highly reduced

number of b cells.

Discussion: No association of enteroviral infection in the pancreas and T2D

diabetes could be found. Despite great similarities in inflammatory markers in

islets in T1D and T2D, long-term enteroviral infiltration is a distinct pathological

feature of T1D-associated autoimmunity and in T1D pancreases.
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GRAPHICAL ABSTRACT
Highlights
Fron
• Enteroviral RNA+ cells were found scattered throughout the

whole pancreas from organ donors.

• They were very rarely seen within islets.

• Enteroviral RNA+ cells were similar in controls and T2D

donors.

• CD45+ lymphocytes were increased and b-cell area

decreased in the pancreases in T2D.

• In contrast to T1D, enteroviral infiltration is not a

pathological feature of T2D pancreases.
Introduction

Ever since Cerasi and Luft have recognized that type 2 diabetes

(T2D) is caused by the relative inability of b cells to secrete sufficient
amounts of insulin to compensate for insulin resistance, and not by

insulin resistance itself (1), underlying mechanisms of this b-cell
defect have been searched for and found quite complex, with b-cell
inflammation as a major factor in both T1D (2) and T2D (3, 4).

Low-grade inflammation is detectable in serum (5) and in single

cells within the islets in the pancreas (3, 6) and correlates with

accelerated b-cell loss in T2D (7).

Although there is little sign of an acute viral infection in the

pancreas, the association of enteroviruses and autoimmune disease,

especially T1D (8), has been identified through highly sensitive

methods and analyses of carefully collected patients’material in the

context of well-powered studies (9–11). The increased presence of

enteroviral RNA in the pancreas from organ donors with T1D has

just been confirmed in a large meta-analysis (12). Especially, long-

duration or multiple enterovirus B (EVB) infections correlate with

islet autoimmunity and T1D progression (13, 14). Isolated

enteroviruses from human pancreas obtained via biopsy near the

T1D onset could be transmitted to cells in culture and produced an

immune response (15). Enteroviruses can persist in the pancreas

and chronic and/or repeated infection results in the production of
tiers in Endocrinology 02
inflammatory mediators and triggers an inflammatory response

against islet cells (16). The virus is suggested to carry a deletion at

the 5′ terminus that renders it persistent and non-cytopathic (17).

Using vaccines against coxsackieviruses group B, preclinical studies

have successfully prevented infection and CVB-induced diabetes,

and clinical studies are in progress (18).

Stark stimulation of viral response pathways seems to foster

autoimmune as well as metabolic disease, as seen during the SARS-

CoV-2 pandemic, where T1D onset after COVID-19 was identified

in several (19, 20) but not all studies (21). More apparent is the

highly increased severity of COVID-19 in patients with T2D and

obesity in one hand and progression of T2D after COVID-19 on the

other (22, 23), with circulating chemokines and cytokines

orchestrating a “cytokine storm” that impacts multiple organs in

the body. Cells especially vulnerable to inflammatory attack are

destroyed and viral response pathways uncontrolled (24) (9, 25),.

Inflammation is a major trigger of b-cell failure, loss of function
and apoptosis, both in autoimmune T1D and T2D (4). Islet

inflammation as a primary modulator of the progression of T2D

had initially been challenged (e.g., reviewed here (26, 27), but has

been confirmed by numerous studies from different laboratories

and now achieved its acceptance in textbooks (e.g. (28)). Numerous

environmental factors such as not only viral infection but also

chronic stress, overnutrition which leads to “gluco- and

lipotoxicity,” islet amyloid and islet amyloid polypeptide (IAPP)

toxic oligomer disposition in islets and bacterial LPS alone or in

concert lead to islet inflammation (29–34). Also, other mechanisms

of b-cell failure in T1D and T2D, such as dedifferentiation and loss

of identity, have been suggested to result from inflammatory insults

(35, 36).

Significantly higher protein and mRNA levels of cytokines and

chemokines such as IL-1b, IL-6, IL-8, IP-10, IL-17, and MCP1 (3, 6,

27, 32, 37, 38) together with macrophage infiltration have been

identified in islets; alterations were observed in in-vitro and in-vivo

models of T2D, in isolated islets and in autopsy-pancreases from

donors with T2D. These changes of immune components, specific

cytokines, and chemokines, and the occurrence of apoptosis,

confirm that an inflammatory response is involved in the

pathogenesis of T2D (39, 40).
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The genetic contribution to islet inflammation pathways is

apparent in T1D, with polymorphisms in the interferon system

(41, 42) and interferon and viral infection signatures identified in

islets of organ donors with T1D (43, 44). Even in T2D, where gene

mutations are related to glucose homeostasis in b cells and insulin

target tissues (45), genetic variants affecting viral response pathways

have been identified; for example, a TYK2 promoter variant

associated with a deteriorated cytokine response has been

identified as risk factor for T1D as well as T2D (46) and

correlates with increased T2D severity (47).

As coxsackievirus infection is associated with b-cell dysfunction
and apoptosis (17, 48), a connection with T2D has been

hypothesized. The European Prospective Investigation of Cancer-

Norfolk study investigated the association between infection,

coxsackievirus B serotype 1–5 seropositivity, and T2D, but no

correlation between coxsackievirus B neutralizing antibodies and

T2D has been found (49). The presence of the enterovirus-specific

viral capsid VP1 within islet cells has been found more often in

pancreases of patients with T1D than in those with T2D, and only

rarely in nondiabetic controls (48, 50). Despite these previous

studies, it remained unclear whether there is indeed more

enteroviral disposition in the pancreas associated with T2D. We

therefore applied a deep and thorough analysis of enteroviral RNA

by high-sensitivity single-molecule fluorescence in-situ

hybridization (FISH), which had been previously demonstrated

increased viral RNA in the pancreas of patients with T1D and

with islet associated autoimmunity (51), to the network for

pancreatic organ donors with diabetes (nPOD) collection of well-

characterized pancreases from organ donors with T2D and their

age- and BMI-matched controls (52).
Material and methods

Pancreas autopsy material

This study used formalin-fixed paraffin-embedded (FFPE)

pancreatic tissue sections obtained from well-characterized organ

donors from the nPOD. Donors included 29 with T2D (average

disease duration 9 years, range 0.25–26 years, and 15 control donors

(without diabetes; Supplementary Table S1). Mean donor age for

both groups is 51 years and mean BMI is 28.5 (controls) and 32.9

(T2D). Results were compared to a previous analysis of 15 organ

donors with T1D from nPOD and their nondiabetic controls (14;

mean donor age 22 years, BMI 24 and 25, respectively) (51).
Virus detection in FFPE tissue samples

Custom Stellaris® FISH Probes against enteroviral RNA labeled

with Quasar 570 were used to detect viral RNA as described

previously (Biosearch Technologies, Inc., Petaluma, CA, USA)

(51, 53). The three probe sets recognize various enteroviral strains

for positive-strand enteroviral RNA, CVB_1 was designed on the

CVB3 consensus-based sequence (M33854.1), 106 genome
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sequences of the enterovirus group B family enteroviruses were

aligned, and sequences were then divided into three subgroups

based on sequence similarities (CVB_1, CVB_2, and CVB_3) (54).

The following stepwise previously established highly sensitive

protocol (53) was performed for enterovirus mRNA detection by

smFISH in pancreatic tissue sections:

Deparaffinization of FFPE tissue sections. Removal of paraffin

by a series of Xylene washes (20 min at 70°C; 10 min at 70°C; 10 min

at room temperature), followed by rehydration by ethanol (EtOH;

100%, 100%, and 95%) for 10 min each and for 1h in 70% EtOH at

room temperature and rehydrating with RNase free water 2 times

for 2 min, all under constant steering.

Prehybridization. Incubation with 0.2MHCl for 20 min at room

temperature, transfer to a 50-ml tube with prewarmed 2xSSC and

incubation at 70°C for 15 min, phosphate-buffered saline (PBS) 2

times for 2 min at room temperature, incubation with 37°C pepsin

(Sigma-Aldrich) for 10 min, washing 2 times with PBS for 1 min

and with 0.5% Sudan Black (Sigma-Aldrich) in 70% EtOH for 20

min at room temperature to quench remaining autofluorescence,

followed by serial washings with PBS and washing buffer

(1xSSC,10% formamide).

Hybridization. Three probes were diluted 1:100 in hybridization

buffer (10% w/v dextran sulfate, 10% formamide, 2xSSC) and

applied to the sections, glass-covered and incubated at 37°C for

12h–14h in a humidified chamber.

Post-hybridization wash. Cover slips were removed by

hybridization buffer, sections washed in 37°C prewarmed

solutions: 2 times 2xSSC + 10% formamide for 20 min, 2 times

with 2xSSC for 15 min, followed by 2 times wash with 1xSSC for 15

min, then with 0.1xSSC for 15 min and, last, with 0.1xSSC for 5 min.

Thereafter, classical immunostaining was performed for insulin

(Dako#A0546), the general lymphocyte marker CD45

(Dako#M0701) and VECTASHIELD® antifade mounting

medium (Vector laboratories) including 4′,6-diamidin-2-

phenylindol (DAPI). A 60× oil-immersion objective was used to

acquire images images by a Nikon Ti MEA53200 (NIKON GmbH,

Düsseldorf, Germany) microscope.
Quantification of cells and tissues

Morphometrical analyses of enteroviral mRNA, insulin, and

CD45 were performed with a NikonTiMEA53200 (NIKON GmbH,

Düsseldorf, Germany) microscope and NIS-Elements BR software.

The number of virus-infected cells and number of islets and

immune cells were counted manually throughout the whole

sections. Viral RNA appeared as small dots within cells, which

were separately counted for each cell by moving the z-focus of the

microscope through each virus+ cell. Cells were defined as “single

infected” with 1–10 puncta or “fully infected” with ≥10 puncta. A

representative picture of infected cells was taken in a way that most

“puncta” could be seen. Mean b-cell area per pancreas was

calculated as the ratio of insulin-positive to whole pancreatic

tissue area. The exocrine area was calculated as whole pancreas

area subtracted by the insulin-positive area. “Islet periphery” was
frontiersin.org
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defined as signal localization within three cell layers next to insulin

containing islets and “close proximity” as signal localization within

three cell layers next to the respective islet or immune cells.
Statistical analyses

All biological replica referred to “n” for each individual human

pancreas, which are means of two technical replicas from

independent staining analyses and presented as means ± SEM.

Mean differences were determined by the Mann–Whitney non-

parametric two-tailed test, in which the whole T2D group was

compared to the control group without diabetes. In a subgroup

analysis (Supplementary Figure S3), either the Aab–T2D group or

the Aab+-T2D group was compared to the control group without

diabetes. A p-value <0.05 was considered statistically significant.

Investigators were blinded to the cases.
Study approval

Ethical approval for the use of human pancreatic tissue had

been granted by the Ethics Committee of the University of Bremen.

The study complied with all relevant ethical regulations for work

with human tissue for research purposes. Organ donors or next of

kin provided written informed consent for organ donation for

research (52).
Results

Viral infiltration showed large heterogeneity and found

scattered throughout the pancreases with no significant difference

between controls and T2D (Figures 1A–C, I; Supplementary Table

S2). Only one single T2D donor presented an exceptionally high

number of virus-expressing cells within the exocrine pancreas,

reminiscent of viral infiltration in T1D (Figure 2) (51). The

proportion of donors with cells harboring virus RNA within the

pancreas were 73% (11 of 15) among controls, and 66% (19 of 29)

among T2D donors. A direct comparison of the cohort with our

previous analysis with organ donors with T1D (51) showed the

difference in viral RNA in T2D and T1D (Supplementary Figure

S1). Despite some heterogeneity in the numbers of infected cells,

donors with T1D were all positive for viral RNA+ cells in their

pancreases (100%), and their quantification showed sevenfold more

viral RNA+ cells in T1D than in controls of this cohort.

Enteroviral RNA+ cells were only very rarely seen in islets (one

single cell in two control donors and in 4 T2D donors, respectively;

Figure 1D). The observation that enteroviral+ cells scattered

throughout the whole pancreas was verified by normalizing virus+

cells within (Figure 1D) or in the periphery of islets (Figure 1E) to

b-cell area and virus+ cells in the exocrine pancreas area to exocrine

area (Figure 1F), all of which were similar in controls and T2D

donors (Figures 1D–F).

Thereby, the islet periphery was defined as insulin- cells within

three layers next to insulin+ cells of the islets, in analogy to our
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previous study in T1D pancreases (51). In these three cell layers, we

found many enteroviral+ cells in T1D (51), but only few in

T2D (Figure 1E).

Lymphocytes expressing viral RNA (virus+/CD45+ co-positive)

were rare and had similar frequency in controls and T2D

(Figure 1G). Interestingly, many CD45+ lymphocytes were found

in close proximity to a virus+ cell in the exocrine area, suggesting an

active immune process where virus+ cells were recognized by

immune cells (Figure 1I). However, as this study is limited to the

use of fixed tissue, we were unable to verify such active process.

With the normalization of viruses to their cellular location and

the quantification of CD45+ lymphocytes and insulin+ b cells in the

pancreas we confirmed and verified the increase in lymphocytes and

the reduction in b-cell area in T2D in this well characterized nPOD

cohort (Figure 1H), in line with previous elegant studies (6, 7, 55–

57). While there was heterogeneity among islets as well as among

donor pancreases, b-cell area/exocrine area (previously also called

b-cell volume) was reduced by 49% in the pancreases of donors with

T2D, compared to controls (Figure 3), in line with results obtained

from the Mayo clinic’s cohort (7). The number of CD45+immune

cells localized in islets was twofold increase in T2D donors

compared to controls without diabetes, analogously to previous

observations in isolated islets (55) and in pancreas sections (57).

With an average of 0.3 ± 0.03 CD45+ cells per islet, islet lymphocytic

infiltration in all donor pancreases of this study (including the

donor with the exceptional high number of viruses; Figure 2) was

much lower than the defined threshold of 15 CD45+ cells/islet for

T1D (58, 59), which confirms classification to T2D of cases

analyzed in this study, despite the higher number of inner-islet-

CD45+ cells in T2D, compared to nondiabetic controls.

We found no correlation of enteroviruses with the mean

number of islets, nor with b-cell area, nor with age of the donor

(Supplementary Figure S2). Only the single donor with an

exceptionally high virus counts of 925 virus-expressing cells

throughout the pancreas had the lowest number of islets (mean of

80) in the observed pancreas sections (donor ID #6133; Figure 2;

Supplementary Figures S1, S2), together with a low b-cell area
(Supplementary Figure S2B). Most donors with a relatively high

virus count of >20 enterovirus expressing cells throughout the

pancreas section were in an age group >45 years (Supplementary

Figure S2C; dashed box). Only the youngest donor of the whole

cohort had a high virus count of 94.5, was already diagnosed with

T2D at the age of 15, is severely obese (BMI of 37), and presented

uncontrolled hyperglycaemia with an HbA1c of 10.7%. We

compared these results with those of younger control donors

from our previous analysis (51) (mean age of 21.5 years), and

they also showed the very low number of <20 enterovirus+ cells/

section (Supplementary Figure S1C).

Of note, within the T2D group, we have also tested donors that

had developed single T1D-associated antibodies against insulin

(mIAA; n = 10, mean age = 47; Supplementary Table S1), most

likely in response to subcutaneous insulin injection, as all T2D-

IAA+ donors had received insulin therapy before or during

hospitalization. Two donors were positive for glutamic acid

decarboxylase (GADA; n = 2; mean age = 53), which is an early

T1D-autoantibody and marker of T1D progression (60), but all
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FIGURE 1

No correlation of pancreatic enteroviral RNA in organ donors with T2D and controls without diabetes. Detection and quantification of viral RNA in
FFPE pancreases from control donors without diabetes (n = 15) and donors with T2D (n = 29). Data are presented as (A) mean number of all
enteroviral RNA+ cells throughout the whole pancreas section, (B) the mean number of low grade (low; one to nine single puncta/cell) or full-grade
(full; ≥10 single puncta/cell) infected cells. In the latter, viral RNA highly accumulated in the cell and therefore could no longer be counted as single
puncta. (C) All enteroviral mRNA+ cells were normalized to the whole pancreas area of the respective section. (D–F) Enteroviral mRNA+ cells within
islets (D) and within the periphery of three cells next to insulin containing islets (E) were normalized to islet area (insulin+ stained area in mm2), and
(F) viral mRNA+ cells in the exocrine area were normalized to the mm2 exocrine area of the respective section. (G) Quantification of enteroviral
RNA+/CD45 co-positive cells throughout the whole pancreas section and (H) of CD45+cells within insulin containing islets normalized to mm2 islet
area. Each individual point of the scatter graphs represents the mean of two technical replica from each donor pancreas, boxes are means ± SEM
from all donors. *P < 0.005 by Mann–Whitney non-parametric two-tailed test. (I) Representative microscopical pictures of enteroviral RNA in the
pancreas. Quadruple immunostainings of enteroviral RNA (red), insulin (green), DAPI (blue, all upper), and CD45 (brown, lower) in FFPE pancreases
from a control donor without diabetes (1) and three donors with T2D (2–4) and their localization within the exocrine pancreas (1–3) or within the
periphery of three cells next to insulin containing islets (4) and their proximity to CD45+ lymphocytes. Scale bars depict 10 µm. Magnifications show
enteroviral RNA+ cells.
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these donors fulfilled the classification of T2D, based on pancreas

morphology and c-peptide levels (59, 61). As we had previously

seen a significant correlation of T1D-associated autoantibody

positivity and enteroviral RNA in the pancreas in young donors
Frontiers in Endocrinology 06
(mean age of 20 years; maximum 26 years), we performed a sub-

analysis of this category (Supplementary Figure S3) but could not

find any significant difference in pancreatic viral RNA and their

localization within the pancreas, when compared to controls
FIGURE 2

Representative microscopical pictures of pancreas sections from an nPOD donor with T2D with specifically high-enteroviral RNA and comparison
with T1D. Quadruple immunostainings of enteroviral RNA (red), insulin (green), DAPI (blue, left (A, C, E, G) and CD45 (brown, middle (B, D, F, H) in an
FFPE pancreas from a donor with T2D scattered throughout the pancreas in proximity to single b cells (A, B), islets (C, D), or scattered within the
pancreas (E–H), in proximity to CD45+ lymphocytes or co-stained with CD45 (B, F, H). Magnifications (A′, C′, E′, F′) show enteroviral RNA+ cells with
low- and full-grade infections, where viral RNA highly accumulated in the cell. Representative pictures of the exocrine region from a donor with T1D
was included for comparison (I, J, I’) in larger magnification. Representative pictures of infected cells were taken in a way that most “puncta” could
been seen. Scale bars depict 10 µm.
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(Supplementary Figures S3A–D). In contrast to our previous study,

single AAb+ donors, which have developed T2D, did not show any

differences in the number of enteroviral RNA in the pancreas, while

young single and multiple AAb+ donors (mean age of 20 years)

without diabetes had a significantly increased enteroviral RNA in

the pancreas, compared to nondiabetic controls. Here, only older

donors (mean 48 years) with a single GADA- or IAA-AAb were

analyzed, who had not progressed to classical T1D or late onset

autoimmune diabetes in adults, their pancreases had many large

islets and very few lymphocytes in islets (mean of 0.1 CD45+cell/

islet) and normal C-peptide levels (mean = 4.3 nmol/L). The

increase in lymphocytes (Supplementary Figure S3E) and the

reduction in b-cell area (Supplementary Figure S3F) were again

confirmed in T2D, also when each of the two T2D groups with or

without T1D-associated Aabs were independently compared to the

control pancreases without diabetes.
Discussion

Altogether, in T2D, enteroviral RNA could be detected within

the pancreas but found at similar levels to nondiabetic controls.

This is in contrast to the established increased pancreatic

enterovirus expression in T1D-associated autoantibody-positive

individuals and in T1D, where viral infections contribute to

abnormalities in both the endocrine and exocrine pancreas (51).

Enteroviral RNA was detected and quantified by the highly

sensitive smFISH method, which had originally been developed to

visualize each mRNA molecule as a computationally identifiable

fluorescent spot by fluorescence microscopy (62). We had adapted

smFISH for enteroviral RNA screening in the pancreas and called

all positive spots “puncta” (51, 53). By using this method, Farack

et al. identified transcriptional heterogeneity of b cells in the

pancreas with some b cells containing much more insulin, which
Frontiers in Endocrinology 07
they called “extreme” b cells. In these cells, insulin mRNA could not

be distinguished as puncta anymore but as large-signal

accumulation (63). Similarly, viral RNA is seen as small

fluorescent spots within cells, which were separately counted for

each cell by moving the z-focus of the microscope through each

virus+ cell. Cells were defined as “single infected” with 1–10 puncta

or “fully infected” with ≥10 puncta. In the latter, viral RNA had

highly accumulated in the cell and could no longer exactly be

counted as single puncta. Therefore, we had developed such

threshold analysis of low and highly infected cells.

Comparison of our results with earlier studies which had

analysed coxsackieviruses in the T2D diabetes pancreas reveals

several important differences (1): the presence of virus in these

studies was limited to viral capsid VP1 staining, which has a much

lower sensitivity (53) and specificity (64) (2); VP1 had exclusively

been analysed within islets, where viruses are very rare and the

number and size of islets very heterogeneous; and (3) VP1 positivity

in islets of each donor had only been based on qualitative results,

and not on viral quantification, which excluded stringent

statistical analysis.

While viral+ cells within islets are a rare phenomenon, they were

seen more frequently in proximity to the islets, that is, within three

layers next to insulin+ b cells in T1D and, even in this analysis in

T2D, viral RNA+ cells were 35-fold more frequent in the islet

periphery than within islets and fivefold more than in the exocrine

pancreas (then normalized to the respective area as presented in

Figures 1D–F). Previous analyses suggest that such “peripheral

cells” (either within or near islet cells) are more associated with a

pathological phenotype than other islet cells. For example, using

large-scale electron microscopy images (“nanotomy”) of nPOD

human pancreas tissue, de Boer et al. identified morphologically

abnormal cells containing both endocrine and exocrine granules in

organ donors with T1D. These cells could neither been

characterized as endocrine nor as exocrine cells (65). Also, two

important studies show b-cell heterogeneity markers with their

expression reduced frequently at the islet periphery. Van der

Meulen et al. observed unusual immature “virgin” urocortin

(UCN)3-negative b cells at the islet periphery. While labeling

specific plastic cells, which undergo transdifferentiation, UCN3 is

one of the first b-cell genes, which is downregulated during b-cell
failure and, thus, also marks dysfunctional and dedifferentiated b-
cells (66, 67). Another heterogeneity gene, ST8Si1, is often seen lost

at the islet periphery, although such ST8Si1− b cells are highly

functional (68), and ST8Si1 expression is increased in T2D (68),

possibly as part of the sialic acid-mediated immune response (69).

As viral infections promote b-cell dysfunction and

dedifferentiation (70), several scenarios of the mechanisms of viral

RNA presence in a subpopulation of cells in close islet

neighborhood are possible; either infected cells have lost

endocrine hormone expression and dedifferentiated, their specific

phenotype makes them more vulnerable to viral infection or they

hide from the immune system and thus remain a long time in the

system. This may be a major path to diabetes pathology and

remains to be investigated.

Independent of their diabetes state, it became apparent that

most donors with a higher number of virus+ cells in the pancreas
A B

FIGURE 3

Confirmed decreased b-cell area in T2D. (A) For b-cell area analysis,
the percentage of b cells were calculated by the ratio of mm2 insulin
area and mm2 of the whole pancreas area from each section
(previously also called b-cell volume). (B) The absolute number of
islets was counted in each section. Each individual point of the
scatter graphs represents the mean of two technical replica from
each donor pancreas, boxes are means ± SEM from all donors. *P <
0.05 by Mann–Whitney non-parametric two-tailed test.
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(>20) were from the age group 45+ years. With the age-dependent

reduction in the immune response (71), it is possible that

enteroviruses are not fully cleared in older individuals. Such

hypothesis is in line with the increased vulnerability to infectious

as well as metabolic diseases at an older age (71), and with a chronic

low-grade inflammation, together referred to as “inflamm-aging.”

An overall existence of a low grade persistent viral infection in the

pancreas may contribute to the progression of b-cell destruction and

T2D in vulnerable individuals over time. Enteroviral RNAs trigger

long-term pathology in the heart such as cardiac dysfunction and

cardiomyopathy (72), both part of the metabolic syndrome and T2D.

While acute viral infection requires viral clearance through the

immune system, viral RNAs remain persistently in few cells and

may cause pathology in genetically predisposed individuals. If not

primarily, it could trigger potentiation of inflammation. For example,

MafA, a crucial transcription factor for b-cell function is remarkably

decreased in T2D b cells and its reduction leads to critical changes in

the b-cell anti-viral response and susceptibility to enterovirus

infection (73). In response, levels of MafA and other b-cell
functional markers are further reduced by b-cell dysfunction and

inflammatory stress, which then leads to a vicious cycle with diabetes

progression eventually. These mechanistical pathways came from in-

vitro studies, in which virus effects could be studied directly.

Although we do not see differences in enteroviral RNA

disposition in the pancreas from nondiabetic donors and those

with T2D, the inflammatory process induced by infections during

life may contribute to b-cell failure through various mechanisms

and progression to T2D at an older age.
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SUPPLEMENTARY FIGURE 1

Comparison of results from this study with pancreases from organ donors with

T1D. Detection and quantification of viral RNA in FFPE pancreases from control

donors without diabetes (n = 15), and donors with T2D (n = 29) from of this study
and comparison with a previous study (51) of FFPE pancreases from donors with

T1D (n = 15). The dashed box shows the T2D donor with >900 enteroviral RNA+

cells. *P < 0.05 by Mann–Whitney non-parametric two-tailed test.

SUPPLEMENTARY FIGURE 2

No correlation of enteroviral+ cells with b-cell area and age. In each graph,

the number of all enteroviral RNA+ cells throughout the whole pancreas
section (see ) were correlated with (A) the number of islets, (B) b-cell area, and
(C) donor age. (A–C) All control (n = 15) and T2D (n = 29) organ donors of this
study were included together with previously analyzed control nondiabetic

organ donors from a younger cohort (C) n = 14; mean age of 21 years). The
Frontiers in Endocrinology 09
dashed boxes show donors with >20 enteroviral RNA+ cells. Each individual
point of the scatter graphs represents the mean of two technical replica from

each donor pancreas, boxes are means ± SEM from all donors.

SUPPLEMENTARY FIGURE 3

Subgroup analyses of donors with T2D and single Aab+ (from data in ). The
T2D cohort was divided into Aab− (n = 17) and single Aab+ (n = 12) cases and

subgroup analyses performed; each of the two subgroups was compared to
the nondiabetic control pancreases (n = 15). (A) Detection and quantification

of viral RNA in FFPE pancreases presented as (A) mean number of all

enteroviral RNA+ cells throughout the whole pancreas section. (B) All
enteroviral mRNA+ cells were normalized to the whole pancreas area of the

respective section. (C) Enteroviral mRNA+ cells within islets were normalized
to islet area (insulin+ stained area in mm2). (D) Quantification of enteroviral

RNA+/CD45 co-positive cells throughout the whole pancreas section and (E)
of CD45+ cells within insulin containing islets normalized to mm2 islet area.

(F) For b-cell area analysis, the percentage of b cells were calculated by the

ratio of mm2 insulin area and mm2 of the whole pancreas area from each
section (previously also called b-cell volume). Each individual point of the

scatter graphs represents the mean of two technical replica from each donor
pancreas, boxes are means ± SEM from all donors. *P < 0.05 by Mann–

Whitney non-parametric two-tailed test, in which either the Aab–T2D group
or the Aab+-T2D group was compared to the control group without diabetes.
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