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molecular docking, and
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Objective: To promote the development and therapeutic application of new

medications, it is crucial to conduct a thorough investigation into the

mechanism by which the traditional Chinese herb pair of Haizao-Kunbu (HK)

treats Graves’ disease (GD).

Materials and methods: Chemical ingredients of HK, putative target genes, and

GD-associated genes were retrieved from online public databases. Using

Cytoscape 3.9.1, a compound-gene target network was established to explore

the association between prosperous ingredients and targets. STRING, Gene

Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway analyses

visualized core targets and disease pathways. Additionally, we conducted a refined

analysis of the binding interactions between active ingredients and their respective

targets. To visualize these findings, we employed precise molecular docking

techniques. Furthermore, we carried out molecular dynamics simulations to gain

insights into the formation of more tightly bound complexes.

Results: We found that there were nine key active ingredients in HK, which

mainly acted on 21 targets. These targets primarily regulated several biological

processes such as cell population proliferation, protein phosphorylation, and

regulation of kinase activity, and acted on PI3K-AKT and MAPK pathways to treat

GD. Analysis of the molecular interaction simulation under computer technology

revealed that the key targets exhibited strong binding activity to active
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ingredients, and Fucosterol-AKT1 and Isofucosterol-AKT1 complexes were

highly stable in humans.

Conclusion: This study demonstrates that HK exerts therapeutic effects on GD in a

multi-component, multi-target, and multi-pathway manner by regulating cell

proliferation, differentiation, inflammation, and immunomodulatory-related

targets. This study provides a theoretical foundation for further investigation intoGD.
KEYWORDS

Haizao-Kunbu, Graves’ disease, network pharmacology, molecular docking, molecular
dynamic analysis statements and declarations
Introduction

Graves’Disease (GD) is an autoimmune illness characterized by an

enlarged and hyperactive thyroid gland (Graves’ hyperthyroidism),

ocular abnormalities (Graves’ orbitopathy), and regional dermopathy

(pretibial myxoedema). After two decades of Universal Salt Iodization

(USI), GD prevalence in China has gradually decreased, with the latest

epidemiological survey results at 0.53% (1). However, this implies that

about seven million people still have GD. The development of GD in

patients is initiated with a genetic predisposition, further influenced by

some environmental factors. The complex interplay manifests through

thyroid follicular cell proliferation and hypertrophy and abnormal

immune cell proliferation and differentiation, which is essentially the

imbalance of cell value-added apoptosis driving GD hyperthyroidism

occurrence. Meanwhile, recent studies have shown that elevated levels

of Th1 chemokines, such as CXCL10, are found in the serum of

patients with relapsed and newly diagnosed hyperthyroidism. Th1

immune response predominates in the immunopathogenesis of GD,

causing the emergence and persistence of autoimmune inflammation

in the thyroid gland. The onset and treatment of GD are also closely

related to cytokines such as TNF-a and IL-6 (2, 3).

Controlling hyperthyroidism by restoring standard thyroid

hormone concentrations is the principal objective of GD

treatment. Some therapeutic options for Graves’ hyperthyroidism

patients include Antithyroid Drugs (ATDs), radioiodine, and

surgery. However, these treatment options have some drawbacks.

Antithyroid medicines produce granulocyte count and liver enzyme

abnormalities, and recurrence occurs in > 50% of cases after

terminating ATDs (4). On the other hand, radioiodine or surgery

may trigger hypothyroidism, necessitating lifetime levothyroxine

implementation as well as clinical and laboratory supervision (5).

Furthermore, treating special populations of GD patients, such as

pregnant and lactating women or patients with malignant tumors, is

a difficulty that cannot be overlooked.

There are records of Yingbing (goiter, 瘿病) in Traditional

Chinese Medicine (TCM). The records are derived from a

Chinese medicine text, Zhu Bing Yuan Hou Lun, which focusses

on diagnosis and management of a class of diseases manifested as

goiter, and GD is one of them. According to Waike Zhengzong,

Yingbing is “not swelling of yin and yang, but stasis of blood,
02
turbidity, and phlegm in the five organs.” Consequently, doctors

mostly use Chinese medications that reduce hardness and disperse

stagnation for goiter treatment. From inception to the present time,

the herb pair Haizao-Kunbu (HK), first appearing in Zhou Hou Bei

Ji Fang, has been a common and effective combination therapy for

goiter. According to Shennong′s Classic of the Materia Medica,

Haizao (Sargassum) can “master goiter, tumor qi, and the nucleus

of the neck.” Additionally, Mingyi Bielu reported that Kunbu

(Laminaria japonica) could “treat twelve kinds of edema and

goiter tumor coalescing gas.” Some TCM formulas containing HK

for goiter treatment include the Sihai Shuyu pill from Yangyi

Daquan, the Haizao Yuhu decoction from Waike Zhengzong, and

the Huaying Micro pill from Rumen Shiqin . Previous

pharmacological research has demonstrated that besides reducing

autoimmune antibody levels in rats with thyroid disease (6–8),

Haizao has properties that can suppress cell proliferation and

apoptosis induction (9). Kunbu, on the other hand, has enormous

clinical benefits, including anti-cell proliferation, angiogenesis

inhibition, apoptosis blocking, anti-inflammatory, and antioxidant

properties (10, 11). Furthermore, Haizao and Kunbu are considered

natural medicines with minimal side effects, given their role in

protecting liver and kidney function (12, 13). However, the precise

mechanism of HK in GD treatment remains unclear. For the first

time, this study will elucidate the molecular mechanisms underlying

this well-known combination treatment for GD.

In TCM, there is a focus on adjusting the integrity of the human

body based on the balance-regulation theory. However, due to the

complex character of TCM, research on its pharmacological

mechanism is challenging. Network pharmacology highlights the

multi-directional signaling pathway modulation, leading to

enhanced therapeutic drug benefits and decreased toxic and

adverse effects, increasing the potential efficacy of new

pharmaceutical clinical trials, and lowering drug discovery costs.

Molecular docking, on the other hand, is a simulated testing

approach that models the geometry and interactions between

molecules and proteins, allowing for investigations of molecular

behavior at target protein binding sites (14). Finally, Molecular

Dynamics (MD) modeling is a sophisticated in silico tool for

exploring biological processes and molecular frameworks

underlying linkages among macromolecules and ligands (15).
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Here, we used network pharmacological analysis, molecular

docking, and MD simulation technology to create a “compound-

target-pathway” network. The HK chemical compounds were

collected and screened for Oral Bioavailability (OB) and Drug-

Likeness (DL). Subsequently, public databases were reviewed for

target and GD-related genes. To predict core compositions and

targets that probably participated in GD treatment, we created a

network associating medicinal ingredients with target genes in HK.

Additionally, Protein-Protein Interaction (PPI), Gene Ontology

(GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analyses were utilized to identify potential targets and pathways.

The molecular docking and MD modeling techniques provide a

foundation for further research on the HK molecular processes in

GD treatment. Figure 1 depicts the study design.
Methods

Screening of active compounds

Potential compounds in Sargassum and Laminaria japonica were

detected after searching the Traditional Chinese Medicine Systems

Pharmacology (TCMSP) Database (http://tcmspw.com/) (16) and

reassessing pertinent literature. The screening criteria included OB ≥
Frontiers in Endocrinology 03
30% and DL ≥ 0.18. The SwissADME online platform

(www.swissadme.ch) was used to screen all ingredients (17).
Prediction of targets for the HK herb pair

The TCMSP database and Swiss Target Prediction platform

(www.swisstargetprediction.ch) (18) were used to predict the gene

targets, and the corresponding Sargassum and Laminaria japonica

targets were collected. The PubChem Compound Identifier (CID)

number of each active ingredient was obtained from TCMSP, and

potential targets were updated via Swiss Target Prediction with

reference to the SMILE codes and 2D images of compounds

obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov) (19)

in SDF format. After officially annotating the potential targets on

the UniProt database (https://www.uniprot.org) (20), we eventually

built the “herb-compound-target” network using Cytoscape 3.9.1

software (21).
Acquisition of GD targets

To identify the target genes appertained to GD, we searched the

OMIM (https://www.omim.org) (22), GeneCards (https://
FIGURE 1

The overall workflow of the study.
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www.genecards.org) (23), Drugbank (https://go.drugbank.com)

(24), and Disgenet (https://www.disgenet.org) (25) databases

using “Graves’ disease” as the passphrase. The online Venn

mapping website (26) was eventually used to map the common

HK and GD targets (26). Obvolute proteins were then regarded as

immanent therapeutic targets for GD intervention.
Protein-protein interaction network
building and core target identification

After importing the common targets into STRING, we built a

PPI network to further explore the role of crucial targets. In our

investigation, we selected interactions with the highest confidence

score (≥ 0.900) for ‘Homo sapiens’, among which we focused on the

least demanding interrelation score. The unconnected nodes were

concealed and the connection network was illustrated using

Cytoscape 3.9.1. Additionally, the CytoNCA (Cytoscape software

add-in) (27) was installed to examine the topological characteristics

of the targets. The PPI network was used to identify key targets

based on Degree value (Degree), Closeness Centrality (CC), and

Betweenness Centrality (BC).
Gene ontology and Kyoto encyclopedia
of genes and genomes pathway
enrichment analyses

To further clarify the HK gene occupation and the role of

intrinsic signaling pathways in GD, Metascape (https://

metascape.org) (28) and David (https://david.ncifcrf.gov) (29)

were used to assess GO and KEGG pathways of 189 target genes.

The Bioinformatics platform (https://www.bioinformatics.com.cn)

was used to plot the bar and bubble charts with color gradients for

data analysis and visualization. The FDR error control technique

was used to establish whether biological processes differed

significantly. After correcting the p-value, a significance threshold

of p <0.05 was used.
The molecular docking process between
active ingredients and key targets

Here, we used computer-assisted technology to further confirm

the intensity of the interaction between the targets and the core

compound. Molecular forms of key protein targets and mol2 files of

the structures of ingredients were obtained from the Protein Data

Bank (PDB) (https://www.rcsb.org) (30) and TCMSP databases,

respectively. The PyMOL software was used to eliminate the initial

ligands and water molecules of proteins (31). The AutoDock 4.2

program (32) was used to phosphorylate and store the receptor in

the PDBQT file. AutoDock Vina (33) was utilized to dock and

determine a superior model. Using binding free energy, all

molecules and disease targets were ranked based on their

interaction strength after docking simulations. The docking was

considered valid when the binding free energy was < 5.0 kcal/mol.
Frontiers in Endocrinology 04
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Finally, each target’s highest binding energy component was

visualized using Discovery Studio 2019 Client, and GraphPad

Prism 8.0.2 (GraphPad, CA, USA) was used to draw the binding

energy heatmap.
Molecular dynamics simulation

Ligand-receptor docked complex MD simulation was

performed using GROMACS (version 2021.2) (34). Whereas the

ligand topology file was produced by the ACPYPE script using the

AMBER forefield, the protein topology file was created using the

AMBER99SB-ILDN force field. For MD simulation, TIP3 water

molecules were applied in a triclinic box, and periodic boundary

conditions were employed. The system was neutralized using NaCl

counter ions. Prior to MD simulation, the complex was reduced for

1000 steps and equilibrated by running NVT and NPT for 100 ps.

The MD simulation for each system was run for 100 ns under

periodic boundaries at 310 K and 1.0 bar of pressure. Finally, the

free binding energy of a simulated target-ligand complex was

computed using the gmx_mmpbsa tool from GROMACS.
Results

Screening of ingredients and selection of
gene targets

We selected 11 components by searching the literature and

online platforms and qualified nine ingredients through the

screening threshold. Table 1 details the active ingredients. We

identified 441 compound targets after deleting the duplicate and

unreviewed genes. The HK “Chemical composition-target” network

showing the connection between the nine components and 441

target genes was built using Cytoscape 3.9.1. The general

characteristic of the network analysis was estimated to be 452

nodes and 751 edges (Figure 2).
Frontiers in Endocrinology 05
GD targets searching

The OMIM, DrugBank, GeneCards, and Disgenet databases

yielded 570, 12, 2470, and 585 GD targets, respectively. After

collecting all the genes and removing duplicate data, 2,010 targets

remained for further research (Supplementary Table S1). Finally,

the Venn diagram displayed 189 genes as the herb pair’s implicit

aim for GD therapies (Figure 3).
PPI analysis

We imported 189 potential targets into STRING and obtained

165 potential targets through the screening threshold. Subsequently,

we created a PPI network (165 nodes and 771 edges) after importing

target genes into Cytoscape 3.9.1 software (Figure 3). Increasing

quantified values were associated with the improved significance of

the node. The key target topological analysis was based on Degree,

CC, and BC > one-fold of the median. We first sorted 21 key gene

targets using the Degree > 7, CC > 0.393, and BC > 0.003 criteria

and then sorted 19 key gene targets using the Degree > 12, CC >

0.433, and BC > 0.013 criteria (Supplementary Table S2).
GO terms and KEGG pathways

We completed GO and KEGG enrichment studies to further

demonstrate the proposed targets’ organic functions and

prospective mechanisms. The analyses involved 189 HK potential

target genes underlying GD. The results were obtained after analysis

of the GO and KEGG enrichment results analyzed by Metascape

and David databases (Figure 4). We discovered that the common

GO biological processes in the two databases were protein

phosphorylation (GO: 0006468) and positive cell migration

regulation (GO: 0030335), implying that phosphorylation and cell

migration may be significantly involved in GD treatment by HK.

Additionally, we discovered that protein homodimerization activity
FIGURE 2

The ‘Herb-Chemical composition-Target’ network. The pink ellipse represents the medicinal herb of HK; the pink eclipse indicates the key
components screened from HK. The blue round rectangle represents the key target points, and the edge connects the target to the active
ingredient. In the network, a higher degree value is represented by a greater number of links and larger nodes, indicating that the active ingredient
or target holds greater significance.
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(GO: 0042803), protein kinase binding (GO: 0019901), protein

kinase activity (GO: 0004672), kinase activity (GO: 0016301), and

protein serine/threonine kinase activity (GO: 0004674) were

simultaneous entries among the GO molecular functions. This

finding indicates that protein kinase activity was crucial

throughout the GD treatment process. Furthermore, terms such

as cytoplasm perinuclear region (GO: 0048471) and membrane raft

(GO: 0045121) were found to be crucial cellular components

depending on the cellular composition. Cell membranes and

cytoplasm are vital organelles that regulate cell signaling.

A KEGG pathway enrichment assessment was performed to

further investigate the possible functions of the targets (P<0.05).

The following 19 pathways appeared simultaneously in the top 20

critical pathways analyzed by the two databases: Cancer Pathways

(hsa05200), the PI3K-AKT Signaling Pathway (hsa04151), Lipid

and Atherosclerosis (hsa05417), Proteoglycans in Cancer

(hsa05205), Human Cytomegalovirus (HCMV) Infection

(hsa05163), Kaposi Sarcoma-associated Herpesvirus (KSHV)

Infection (hsa05167), Fluid Shear Stress and Atherosclerosis

(hsa05418), the AGE-RAGE Signaling Pathway in Diabetic

Complications (hsa04933), Human Papillomavirus (HPV)

Infection (hsa05165), Neurodegeneration-multiple Disease

Pathways (hsa05022), the MAPK Signaling Pathway (hsa04010),

Hepatitis B (hsa05161), Tuberculosis (hsa05152), Epstein-Barr

Virus (EBV) Infection (hsa05169), Chemical Carcinogenesis-

Reactive Oxygen Species (hsa05208), MicroRNAs in Cancer

(hsa05206), Focal Adhesion (hsa04510), Alzheimer’s Disease

(hsa05010), and Endocrine Resistance (hsa01522). Based on this
Frontiers in Endocrinology 06
outcome, we finally constructed a “KEGG pathway-gene target”

network (Figure 5). Detailed information is provided in

Supplementary Table S3.
Molecular docking verification

We used molecular docking to identify chemicals from the PPI

system based on GD-related targets. The relationships among

essential active chemicals and crucial targets were examined using

AutoDock4.2, Discovery Studio 2019 Client, and PyMOL software.

Molecular structures of significant targets were obtained from RCSB

PDB (Table 2). We did not find the PDB ID of FOS. Since the

docking of CAV1, JAK2, and ITGB3 receptors to compounds was

not successfully implemented in Autodock Vina, we redocked using

the Genetic Algorithm in AutoDock 4.2., and the docking analysis

yielded the binding scores (Figure 6). A lower value indicated a

greater binding capacity. We discovered that van der Waals forces,

hydrogen bonds, and aromatic stacking (Pi-Cation, Pi-Anion, Pi-

Sulfur, Pi-alkyl, and alkyl interactions) were involved in the

interactions between the active site residues of crucial targets and

potential active substances. All active compounds exhibited an

excellent binding affinity to specific core targets (only binding

energies < -5 kcal/mol were demonstrated). Fucosterol-AKT1,

Isofucosterol-AKT1, Isofucosterol-MAPK8, Fucosterol-MAPK8,

and Aurantiamide-AKT1 were the top five binding modes

(Figure 7). The Fucosterol-AKT1 complex was stabilized by 15

van der Waals forces and 5 Pi-alkyl and alkyl interactions with CYS
FIGURE 3

Venn plot, PPI network diagram, and screening topology of core targets of HK treatment for GD.
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77, CYS 60, TRP 80, LEU 264, and VAL 270, respectively

(Figure 7A). The Isofucosterol-AKT1 complex was stabilized by

one hydrogen bond (1H-bond) with residue ALA 58, and four Pi-

alkyl and alkyl interactions with LEU 210, TRP 80, LYS 268, and

VAL 270 (Figure 7B). On the other hand, the Isofucosterol-MAPK8

complex was stabilized by 1H-bond with residue ASP 112 and four

alkyl interactions with ILE 32, VAL 158, VAL 40, and LEU 168

(Figure 7C). Similarly, a 1H-bond with residue ASP 112 and six

alkyl interactions with ILE 32, MET 108, VAL 158, VAL 40, LEU

168, and ILE 86 stabilized the Fucosterol-MAPK8 complex

(Figure 7D). Finally, the Aurantiamide-AKT1 complex was
Frontiers in Endocrinology 07
stabilized by three Pi-cation and Pi-anion interactions with ARG

273, ARG 86, GLU 298, two H-bonds with residue GLU 85 and

GLU 17, one Pi-alkyl bond with ILE 84, and one Pi-sulfur bond with

CYS 310 (Figure 7E).
Molecular dynamics simulation of
structural stability and interaction energy

We selected and implemented the top two compound-target

dockings (Fucosterol-AKT1 and Isofucosterol-AKT1) for MD
B

C D

E F

G H

A

FIGURE 4

GO and KEGG analysis of HK in the treatment of GD. (A, C, E, G) Biological process, molecular function, cell component, and KEGG enrichment pathways
from Metascape database. (B, D, F, H) Biological process, molecular function, cell component, and KEGG enrichment pathways from David database.
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FIGURE 5

“Target gene-KEGG pathways” network: genes are indicated by the purple hexagon and pathways are presented as yellow V-shapes.
TABLE 2 Grid docking parameters in molecular docking.

Targets PDB ID UniProt ID
Center grid box

X center Y center Z center

CAV1 7SC0 Q03135 0 0 0

MAPK14 1OVE Q16539 29.747 15.683 27.293

JAK2 4IVA O60674 0.161 -11.654 -8.084

PTPN11 3B7O Q06124 28.81 8.938 63.391

ITGB3 4G1M P05106 -36.16 46.505 55.032

PRKCD 3UFF Q05655 0 0 0

AKT1 4EJN Q01314 30.889 52.185 19.493

VEGFA 4QAF P15692 13.309 63.036 -0.942

ITGB1 7NXD P05556 130.433 182.225 111.984

ESR1 5AAV P03372 31.01 14.202 10.787

PIK3R1 3I5S P27986 0 0 0

MAPK1 2OJG P28482 -13.772 13.979 41.667

PTK2 1MP8 Q05397 36.299 -3.761 24.196

SRC 1O43 P12931 18.953 20.632 21.188

IL6 1ALU P05231 -7.7 -12.7 0

TP53 4AGP P04637 91.098 96.917 -46.275

STAT1 1YVL P42224 -30.304 -13.959 146.805

MAPK8 4QTD P45983 14.189 15.864 19.659

EGFR 5UG9 P00533 -8.371 17.712 -12.846

TNF 5UUI P01375 41.438 43.125 1.22

FOS – P01100 – – –
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simulations. After 100 ns of MD simulations, the dynamic

variations of the Fucosterol-AKT1 and Isofucosterol-AKT1

complexes were assessed. Subsequently, we computed the Root-

Mean-Square Deviation (RMSD) to understand the complexes’

molecular configurations and the system’s stability during

simulation. The RMSD curve represents the location deviations in

the protein. Fucosterol-AKT1 and Isofucosterol-AKT1 had average

RMSD values of 2.5 and 2.6 Å, respectively. The RMSD of the

Fucosterol-AKT1 complex was less than that of the Isofucosterol-

AKT1 complex between the 45-85 ns time interval, and the RMSD

curves relatively stabilized after 85 ns (Figure 8A). The Root-Mean-

Square Fluctuation (RMSF) graph shows the protein amino acid

residue variations. According to the findings, most simulations had

small alterations in amino acid structure. Furthermore, most of the

residues exhibited minor structural modifications. The RMSF

values of residue numbers 50-200 in AKT1 after Fucosterol

binding showed greater flexibility than the same regions in AKT1

after Isofucosterol binding (Figure 8B). The gyration (Rg) radius

curve represents the tightness of the protein’s general configuration.

The Fucosterol-AKT1 and the Isofucosterol-AKT1 complexes had

stable rotation radii, although the former folded with greater force

(Figure 8C). The binding free energy can be used to assess the

change in the binding pattern and stability of ligands and proteins.

Compared to the isofucosterol-AKT1 complex, which showed an

average interaction energy and energy fluctuation of 144.536 kcal/

mol and 17.43 kcal/mol, respectively, the fucosterol-AKT1 complex

had an average interaction energy and energy fluctuation of 141.412

kcal/mol and13.63 kcal/mol, respectively (Figure 8D). The number

of Hydrogen bonds (H-bonds) in a complex might reveal

information about its binding strength. The ligands and residues

of all five protein compartments created one or several hydrogen

bonding connections. During the 100 ns simulations, the

Fucosterol-AKT1 complex had a higher H-bond density and size

(Figures 8E, F).
Discussion

The GD etiology and pathogenesis in relation to heredity,

mental stimulation, environment, infection, and other factors

have not been fully elucidated. Severe GD cases might result in

life-threatening complications such as liver damage, heart failure,
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and thyroid storm. Besides being ineffective, current GD therapies

have also been linked with severe limitations, such as toxic

pharmacological side effects, permanent hypothyroidism, vocal

cord paralysis, and other destructive damages, that all cause

clinical challenges. There has been a growing demand for novel

strategies that utilize traditional approaches to treat GD. In this

regard, as a complement, traditional medicine has been shown to

generate synergistic results with minimal toxicity. Guided by TCM

theory, HK was the most common drug combination used to treat

GD. However, the molecular mechanisms of HK in GD treatment

have not been fully explored. Herein, we searched and selected QFP

compounds and targets from multiple databases and created a

“compound-gene target-disease” network. The CytoNCA software

was used to perform topological analysis to estimate key protein

targets involved in GD treatment and 15 essential targets including

AKT1, PIK3R1, MAPK1, MAPK8, MAPK14, VEGFA, EGFR, IL6,

TNF, TP53, JAK2, STAT1, ESR1, FOS, and CAV1 were identified.

Subsequently, we excluded a list of irrelevant pathways in the top 20

most enriched pathways to elucidate the pathogenesis of GD and

establish a prospective network model. The PI3K-AKT and MAPK

pathways were identified as the most prominent penetration points

in GD treatment. Furthermore, the fundamental biological

processes, molecular functions, and cellular components in GO

enrichment analysis helped illustrate the multi-dimensional and

multi-target therapeutic pathways. Finally, the computational and

validation molecular docking and MD simulation processes enabled

us to further discuss the biological function of HK in the GD

treatment from a micro-level perspective and to present a

theoretical framework for GD therapy with TCM.

In the TCM context, HK treats GD by softening firmness and

dispersing stagnation. However, Haizao and Kunbu, known as

iodine-rich Chinese medicine, have been controversial in GD

treatment due to their higher iodine content. Wild Laminaria

japonica (0.1-1.4 g) contains approximately 150 mg of iodine,

while the iodine concentration of wild Sargassum is 58-629 mg/g
(35). However, in China, HK refers to specially processed TCM

pieces. According to current research, the iodine content range of

Haizao and Kunbu pieces are 297.67-814.59 mg/g and 855.33-

5481.33 mg/g, respectively (36, 37). Consistent with an Italian

study, dried pieces had higher iodine content than fresh samples

(38), which can also be attributed to the different plant origins.

Here, we studied processed Chinese herbal pieces. Chinese
FIGURE 6

Thermographic analysis of molecular docking binding energy.
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herbalpieces should be decocted before use, and studies have

shown that boiling in fresh water can reduce the seaweed iodine

content (35). Additionally, following gastrointestinal digestion, only

49-82% of seaweed iodine appears to be available for human

absorption (39). Despite its substantial iodine amounts, ingesting

considerable quantities of HK does not necessarily indicate a risk of

excessive iodine intake (40). There is a clinical belief that GD

hyperthyroidism patients should strictly limit iodine intake.

However, some new perspectives suggest that limiting iodine

intake might not benefit GD patients in areas with adequate or

excessive iodine intake (41). The considerable Chinese population

that participated in the USI program for two decades has reached an

iodine adequacy status, and the once-high hyperthyroidism

prevalence has consequently been reduced to relatively stable

levels (1). The latest study proves that the cumulative post-USI

hyperthyroidism incidence in different iodine trophic status areas in

China has not increased (42). Studies have also shown that limiting

dietary iodine intake does not improve ATD effectiveness in GD

treatment, nor does it increase the GD recurrence rate after ATD
Frontiers in Endocrinology 10
withdrawal, and even severe iodine intake restriction can negatively

affect GD (43–45). Furthermore, some GD patients who received an

acceptable excess of iodide during treatment experienced reduced

hyperthyroidism and thiourea-related side effects (46). Moreover,

this treatment did not affect the efficacy of radioactive iodine

therapy (47). Furthermore, potassium iodide has been shown to

be effective and safe in specific GD patients, such as pregnant and

breastfeeding women, and patients with malignant tumors, or those

undergoing radiation and chemotherapy (41, 48). An in vivo study

from Japan recently suggested that the chronic anti-thyroid action

of iodine in GD involves hormone secretion inhibition (49). In this

context, researchers believe that iodine-rich TCMs such as HK can

be rationally used in treating some GD patients, such as those who

are intolerant to ATD or refuse surgical treatment, and patients

with mild and moderate GD whose serum FT4 and Thyroid

Stimulating Hormone (TSH) Receptor (TSHR) autoantibody

(TRAb) levels are less than the upper limit of the detectable range

in a laboratory (50–52). In our previous study, we demonstrated

that an iodine-rich Chinese medicine formula could improve
B

C D

E

A

FIGURE 7

The 2D and 3D visualization plots of the top five compound–target dockings with the lowest values of docking scores. The (A) AKT1-Fucosterol, (B)
AKT1-Isofucosterol, (C) MAPK8-Isofucosterol, (D) MAPK8-Fucosterol, (E) AKT1-Aurantiamide complexes.
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thyroid function and morphology in hyperthyroid rats (53).

Furthermore, some previous clinical studies have proved that

iodine-rich TCM for treating GD has the rapid onset, minor

adverse reactions, and reduced serum TRAb advantages (54, 55).

Some researchers in China have recently been conducting large-

sample, multi-center, and strictly designed clinical studies on

iodine-rich TCM for GD treatment (Registration numbers:

ChiCTR2000032706, ChiCTR1900021572), and their findings

will provide additional insights and inspiration for our

subsequent research. Therefore, in future studies, we recommend

a reasonable and comprehensive evaluation of the efficacy and

safety of HK and further verification of its clinical effect in

GD patients.

Based on our predictions, most HK active ingredients can

influence biological processes, including proliferation, apoptosis,

and inflammation. Aurantimide is a critical active small-molecule

compound, and in vitro experiments have demonstrated that it

could act on the PI3K/AKT signaling pathway (56) and exert anti-

inflammatory effects via inhibiting the phosphorylation of the

MAPK pathway (57). Eckol, a novel natural phizolian derived

from marine brown algae, has been shown to downregulate

EGFR, p-EGFR, JAK2, and STAT3 expression in tumor cells,

indicating pro-apoptotic and anti-proliferative activities (58, 59).

Eicosapentaenoic Acid (EPA), a polyunsaturated omega-3 fatty

acid, has previously been reported to affect cell proliferation and

inflammatory responses by inhibiting the phosphorylation of AKT

(60, 61). Besides improving hormonal status in hyperthyroid rats,

including T3 and TSH levels, EPA can also reduce the levels of pro-

inflammatory cytokines, such as serum TNF-a (62). Fucosterol, an

algae-derived unique plant sterol with various medicinal properties,

has been predicted by studies to suppress the phosphorylation of

Phosphatidylinositol 3-kinase/protein Kinase B (PI3K/Akt)

signaling, reduce Mitogen-Activated Protein Kinase (MAPK)

expression, and reduce IL-6 and TNF-a overexpression (63–65),
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influencing cell proliferation, apoptosis, and inflammation. On the

other hand, quercetin is an excellent antioxidant that exerts sound

anti-inflammatory effects and has been reported to inhibit the PI3k/

Akt pathway by effectively binding to PIK3R1 (66, 67). Arachidonic

acid metabolites are differentially affected by thyroid hormone

status, and elevated levels of AA metabolites have been observed

in the serum of patients with hyperthyroidism (68). We speculated

that it is related to the Inhibitory effects of iodinated derivatives of

arachidonic acid on iodine metabolism. Although the mechanism of

the above active compounds in GD pathogenesis has not been fully

explained, we could predict the optimal mechanism between

compounds and target proteins by combining molecular docking

results. Furthermore, verifying their biological feeatures in GD

models is one of our future research directions.

The PPI network topology analysis revealed 21 core HK targets

for treating GD. These protein targets are primarily involved in cell

proliferation, apoptosis, and inflammatory processes in GD

pathogenesis. The Vascular Endothelial Growth Factor (VEGF)

family is required for the proliferation of blood vessels (69), and

GD patients have elevated serum VEGF levels (70). According to

research, iodide can decrease the expression of VEGFAs (VEGFs

involved in promoting angiogenesis) upregulated by TSH

(71). Besides eliminating vascular remodeling and inhibiting

hair follicle hypertrophy (72), blocking VEGFA inhibits

hyperthyroidism by increasing lymphatic flow in the Graves

thyroid gland (73), decreasing thyroid weight during goiter

development. Caveolin-1 (CAV1) is a member of the thyrosomal

polyprotein complex required for thyroid hormone synthesis and

thyroid cell homeostasis (74). Low CAV1 expression was observed

in fat cells of GD patients (75). Pro-Epidermal Growth Factor

(EGF) is an essential growth factor in thyroid tissue, and nuclear

EGFR expression is elevated in GD tissue samples, implying that the

EGFR-dependent modulation of thyroid cell proliferation under

physiological conditions may be associated with hyperthyroidism
B C

D E F

A

FIGURE 8

Results of molecular dynamics simulations. (A) The RMSD curves, (B) RMSF curves, (C) radius of rotation curves, (D) interaction energy curves, and
number of hydrogen bonds for the (E) Fucosterol-AKT1 and (F) Isofucosterol-AKT1 complexes during the 100 ns simulations.
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(76). The Tumor Protein p53 (TP53) gene is important for inducing

apoptosis or cell cycle interruption, and the succession of an

insufficiently effective TP53 gene substantially raises the risk of

developing GD. Given that the autoimmune thyroid illness may be

accompanied by DNA damage and apoptosis, the insufficiently

effective TP53 gene may initiate and sustain the autoimmune GD

process (77). Furthermore, some well-known cytokines (IL6 and

TNF-a) are an essential part of the autoimmune response in GD

patients, which can promote inflammatory cell proliferation and

infiltration into thyroid tissue and affect thyroid follicular cell

growth and differentiation. Furthermore, these cytokines have

been proven to be related to the recalcitrant nature of the disease

and the severity of clinical symptoms (78–82). Other genes have

also been found to be partially responsible for the regulated

proliferation and Thyroid Hormone (TH) levels in GD (83–85).

These gene targets imply that we can further investigate the

mechanism of HK in GD treatment in terms of cell proliferation,

apoptosis, and inflammatory processes.

Additionally, KEGG enrichment analysis demonstrated that the

PI3K-AKT and MAPK signaling pathways were involved in GD

onset. Furthermore, some of the BP and MF items examined by GO,

including protein phosphorylation, positive cell death regulation, cell

activation, kinase activity regulation, MAPK cascade regulation, cell

population proliferation, Transcription Factor (TF) binding, protein

serine/threonine kinase activity, cytokine receptor binding, and Cell

Adhesion Molecule (CAM) binding, revealed the significance of cell

proliferation, differentiation, protein phosphorylation, and protein

kinases in GD pathogenesis. Notably, GD patients have thicker,

hypertrophied follicular cells in their thyroid glands that produce

active thyroglobulin. The gland exhibits classic lymphocytic infiltrates

considered to be principally connected with TSHR autoantibody

secretion. Additionally, a histological examination showed occasional

apoptotic cells and partial follicular wreckage (86). The presence of

immune inflammation, cell proliferation, and apoptosis were all

essential components in the pathological mechanism of GD.
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Although studies have reported that GD patients have all three

types of TSHR autoantibodies, stimulating antibodies constitute the

distinguishing characteristic of Grave’s hyperthyroidism. When

stimulated, TSHR autoantibodies can induce complex signaling

cascades, mainly activating GΑs and inducing cAMP/PKA

pathways. The production of cAMP activates the cAMP Response

Element-Binding Protein (CREB) and protein kinase A, which are

directly or indirectly involved in inflammatory mediator generation,

thyroid hormone synthesis, and thyroid cell proliferation (4, 87). The

bioactive exertion of cAMP partially depends on the phosphorylation

of the MAPK and PI3K/AKT pathways (88). Additionally, the

binding of Β-arrestin attracted by TSHR to the receptor can

activate the MAPK pathway (89), inducing protein synthesis, cell

differentiation, and angiogenesis via hemodynamic effects (4, 90).

Protein Kinase B (PKB), also known as AKT, is an intracellular

signaling pathway phosphorylated and activated on the plasma

membrane. Once activated, AKT regulates cell survival/apoptosis,

cell proliferation, and protein synthesis. Recent findings have

confirmed the involvement of the PI3K-AKT pathway in GD

pathogenesis (91–93). Phosphorylated AKT stimulates the

activation of TFs CREB and NF-kB, as well as inflammatory gene

expression (such as IL-6) (94). Previous research showed that the

cAMP/PKA pathway increased IL-6 production in thyroid cells via

processes influencing the stability of IL-6 mRNA, IL-6 gene

promoter, and c-Fos expression (95). Increased inflammatory

chemical levels further worsen thyroid follicular cell stimulation

and destruction, causing the secretion of more thyroid hormones

and amplifying the body’s inflammatory response (96). Moreover,

Janus Kinase (JAK)/Signal Transducer and Activator of

Transcription (STAT) and their downstream effectors are the

primary signaling cascades in TSHR activation. Our results and

previous findings suggest that JAK2 and STAT1 phosphorylation

may occur during GD treatment (97, 98). All the above-mentioned

cascades have relevance to cellular development, survival,

differentiation, cytokine and chemokine release, and apoptosis
FIGURE 9

The predicted effect of HK on key targets and cascades in the treatment of GD. cAMP, cyclic adenosine monophosphate; CREB, cAMP response
element-binding protein; EPAC, exchange protein activated by cAMP; MEK, mitogen-activated protein kinase kinase; mTOR, mammalian target of
rapamycin; NF-кB, nuclear factor-кB; PLC, phospholipase C; Raf, RAF proto-oncogene serine/threonine protein kinase; PKA, protein kinase A; PKC,
protein kinase C; S6K, ribosomal protein S6 kinase 1.
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induction (99), indicating that thyroid cell activation and

proliferation can be partially influenced via the regulation of

protein phosphorylation within these central signaling cascades by

HK (Figure 9).

MD simulation is an effective technique for examining

molecular mechanisms, especially in evaluating the binding

stability (100) and the selectivity of specific ligands for their target

proteins (101). In this study, we conducted MD simulations to gain

deeper insights into the stability of the protein-ligand complexes,

specifically focusing on the Fucosterol-AKT1 and Isofucosterol-

AKT1 complexes. We assessed the RMSD profiles of these

complexes, which exhibited consistent patterns with RMSD values

hovering around 0.27 nm. This pattern suggests that the system

reached equilibrium during the simulation. We extended the MD

simulation duration for these two complexes to generate a stable

RMSD profile. In addition to RMSD, we evaluated several other

factors, including RMSF, Rg, H-bonds, and binding free energy.

These assessments provided further insights into the dynamic

properties of the protein-ligand interactions. Overall, these results

suggest that during MD simulation, fucosterol-AKT1 and

isofucosterol-AKT1 complexes were stable and equilibrated.

Although network pharmacology, molecular docking, and

molecular dynamics simulation methods were implemented to

characterize the potential chemicals and targets of HK, there are

some several limitations that need to be acknowledged. First, to

accurately comprehend the behavior of chemical elements

functioning on disease targets, network pharmacology can be

utilized to predict the up-regulation and down-regulation of

targets. Second, in-vivo and in-vitvo experiments should be

conducted to accurately explore the therapeutic effects and

associated mechanisms of the potential compound and target

pairs. It is also necessary to identify the active ingredients with

therapeutic effects in HK through basic experiments. These will be

the focus of our future research.
Conclusion

GD is an autoimmune disease caused by genetic and

environmental factors. The multifaceted nature of GD calls for a

multifaceted approach to its treatment, often involving multiple

targets. There is a growing interest in innovative treatment strategies

that draw from the wisdom of traditional medicine and apply it to the

clinical management of GD. These strategies have demonstrated

favorable efficacy and safety profiles. Nine compounds including

Fucosterol, Isofucosterol, Aurantiamide, Eicosapentaenoic Acid,

quercetin and eckol of HK were combined to 21 core targets

including AKT1, PIK3R1, MAPK1, MAPK8, MAPK14, VEGFA,

EGFR, IL6, TNF, TP53, CAV1, JAK2, and STAT1, and by

participating in biological processes such as cell population

proliferation, protein phosphorylation, regulation of kinase activity

and protein serine/threonine kinase activity and PI3K-AKT, MAPK,

and other pathways play a crucial role in the treatment of GD.

Molecular docking and molecular dynamics simulation

demonstrated that the Fucosterol-AKT1 and Isofucosterol-AKT1
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complexes exhibited the highest binding energy, indicating that HK

contains key compounds and targets. While future research will

necessitate further biological experiments, including additional in

vitro and in vivo studies, our current findings suggest that HK holds

significant promise as an effective herbal remedy for treating GD.
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