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Diabetes mellitus (DM) and its complications are important, worldwide public

health issues, exerting detrimental effects on human health and diminishing both

quality of life and lifespan. Pyroptosis, as a new form of programmed cell death,

plays a critical role in DM and its complications. Exercise has been shown to be an

effective treatment for improving insulin sensitivity or preventing DM. However, the

molecular mechanisms underlying the effects of exercise on pyroptosis-related

diseases remain elusive. In this review, we provided a comprehensive elucidation

of the molecular mechanisms underlying pyroptosis and the potential mechanism

of exercise in the treatment of DM and its complications through the modulation

of anti-pyroptosis-associated inflammasome pathways. Based on the existing

evidence, further investigation into the mechanisms by which exercise inhibits

pyroptosis through the regulation of inflammasome pathways holds promising

potential for expanding preventive and therapeutic strategies for DM and

facilitating the development of novel therapeutic interventions.
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1 Introduction

Diabetes mellitus (DM) is a chronic and progressive disease that is increasing in

frequency at an unprecedented rate. Approximately 537 million individuals worldwide are

afflicted by diabetes, with a projected prevalence of over 625 million by 2045 (1). Currently,

alterations in environment and lifestyle factors such as diet, being overweight and physical

inactivity contributed to the increasing number of the eventuality of DM and its associated

complications (2). DM and its complications, comprising cardiovascular disease,

neuropathy, nephropathy, and retinopathy, are widely recognized for their connection to

low-grade chronic inflammation (3–7). Thus, it is essential to understand the regulatory
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mechanisms of DM-induced organ damage, thereby alleviating the

considerable health and economic burden imposed by DM.

Pyroptosis is a form of programmed necrotic cell death, which

induces cell swelling and membrane rupture, releases cytosolic

contents, and provokes inflammatory reactions (8). An increasing

number of studies have confirmed that inflammasomes activate

inflammatory caspases, which promote the maturation of

proinflammatory molecules, notably IL-1b and IL-18, thereby

eliciting immune responses and instigating pyroptosis (9). In

recent years, there has been mounting evidence indicating the

substantial role of pyroptosis in the progression of diverse

ailments, including infectious diseases, nervous system-related

disorders, atherosclerosis, tumors, and several other diseases (10–

13). DM and its complications are also associated with pyroptosis,

and inhibition of that has been shown to be an attractive strategy for

delaying disease development (14–16).

Among the factors influencing DM, lifestyle exerts the most

pronounced impact on disease progression. Exercise as a valid

strategy in the non-pharmacological intervention of lifestyle,

holds the potential to alleviate the therapeutic burdens associated

with DM and its complications. Targeted anti-inflammatory

therapy has been proven for preventing and treating diabetes.

Recent studies have demonstrated that exercise could inhibit

pyroptosis and proinflammatory cytokines release (17, 18).

Moreover, aerobic exercise could ameliorate obesity-induced

inflammation and vascular dysfunction by suppressing NLR

family pyrin domain containing 3 (NLRP3) inflammasome,

concomitantly reducing the levels of caspase-1 and IL-1b (19, 20).

This review outlines the latest progress in the mechanisms

underlying pyroptosis, its pivotal role in DM, and related

metabolic diseases. We further discuss the potential impact of

exercise on regulating pyroptosis, aiming to novel therapeutic

strategies targeting the inflammasome for more effective

treatment of diabetes and its complications.
2 Pyroptosis and its mechanisms

2.1 The history of pyroptosis

For decades, apoptosis has been regarded as the predominant,

programmed pathway of cell death. Apoptosis is a death triggered

by pathological stimuli, which is typically the immunologically

silent form of cell death. It is characterized by cell shrinking,

chromatin condensation, nuclear fragmentation, and plasma

membrane blebbing (21). In 2000, Brennan and Cookson made a

noteworthy discovery that cell death occurs in macrophages after

infection with Salmonella differs noticeably from conventional

apoptosis (22). Although both apoptosis and pyroptosis are forms

of cell death, pyroptosis relies on caspase-1 activity. Plasma

membrane rupture, the release of cytosolic materials, and DNA

fragmentation are its defining features (23). Most importantly, pro-

inflammatory cytokines like interleukin‐1b (IL-1b), and IL-18

are rapidly released to the extracellular space and induce

inflammation (9).
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2.2 Mechanism of pyroptosis

Pyroptosis is a programmed cell death mechanism that is

important for the body’s innate immune defense against infection

and inflammation-induced tissue damage, which is mainly executed

by gasdermin D (GSDMD). Activated inflammatory caspases cleave

GSDMD to release its active fragment, the N-terminal domain of

GSDMD (GSDMD-NT), which aggregates on the cell membrane

and forms visible pores under electron microscopy, resulting in

rapid release of inflammatory cytokines such as IL-1b and IL-18,

and causes immune and inflammatory responses (24).

Consequently, the GSDMD-NT possesses the capability to induce

pyroptosis (9, 25). The body’s innate immune defense against

infection and tissue damage is largely dependent on the

pyroptosis process, and it has been extensively linked to various

inflammatory diseases when dysregulated. Hence, maintaining a

delicate balance between inflammatory injury and the healthy

immune response to pyroptosis becomes crucial. Several signaling

pathways have been described to participate in pyroptosis for now:

the caspase-1-dependent canonical pathway, the noncanonical

pathway involving caspase-4/5/11, and the newly discovered

caspase-3-dependent pathways (Figure 1).

2.2.1 The canonical pathway
The classical pathway of inflammasome activation involves the

recognition of danger-associated molecular patterns (DAMPs) or

pathogen-associated molecular patterns (PAMPs) by pattern

recognition receptors (PRRs), which active the inflammasome and

the induction of pyroptosis (26, 27). In this pathway, PRRs, including

toll-like receptors (TLRs) and NOD-like receptors (NLRs), detect the

presence of DAMPs or PAMPs. These molecular patterns can arise

from various sources, including cellular damage or invading

microorganisms. Upon recognition, PRRs initiate intracellular

signaling cascades, leading to the formation of multimolecular

complexes (28–31). These multimolecular complexes serve as a

platform for the assembly of the inflammasome, which is

composed of multiple proteins, including TLRs, NLRs, and AIMs-

like receptors (32–34).

A series of inflammasomes, including NLRP1, NLRP3, NLRC4,

NLRP6, and AIM2, have been identified later by researchers (35–

37). Once the inflammasome is assembled, procaspase-1 undergoes

autocleavage, resulting in the generation of active caspase-1 (38).

Caspase-1 is a key execution role in pyroptosis. On the one hand, it

cleaves GSDMD, leading to the release of GSDMD-NT, which

inserts into the cell membrane, forming nonselective pores with

inner diameters of 10-14 nm, leading to osmotic imbalances, cell

swelling, and pyroptosis. On the other hand, caspase-1 converts IL-

1b/IL-18 precursors into mature forms. These active IL-1b/IL‐18
molecules are subsequently released into the pyroptotic cell’s

membrane-bound oligomeric pores, amplifying the inflammatory

response (24, 39, 40).

2.2.2 The non-canonical pathway
In non-classical inflammasome signaling pathways, the activation

of procaspase-4/5/11 by lipopolysaccharide (LPS) plays a central role.
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Upon activation, procaspase-4/5/11 triggers pyroptosis-mediated cell

death (41). LPS can directly activate procaspase-4/5/11, which occurs

independently of the inflammasome complex. Once procaspase-4/5/

11 binds to LPS, it cleaves GSDMD into GSDMD-NT and leads to

pore formation on the cell membrane (42, 43). Moreover, it causes K+

to be effluxed, leading to NLRP3 inflammasome to assemble, and

eventually resulting in pyroptosis (25). Nevertheless, caspase-4/5/11

could not directly cleave pro-IL-1b/IL-18. In certain cells, it plays an

indirect role in mediating the maturation and secretion of IL-1b/IL-
18 by activating the NLRP3 inflammasome and subsequent caspase-1

activation. Notably, the activation of caspase-4/5/11 could activate the

channel Pannexin-1, which releases cellular ATP. Subsequently, this

events prompts the opening of the cytosolic channel P2X7,

culminating in potassium ion efflux, thereby triggering NLRP3-

mediated pyroptotic cell death (44, 45). The non-classical

inflammasome pathway involving procaspase-4/5/11 provides an

alternative mechanism for inducing pyroptosis and initiating

inflammatory responses. It highlights the diverse pathways and

players involved in regulating immune responses and maintaining

tissue homeostasis.
2.2.3 The additional caspase pathways
Recent research has demonstrated that caspase-3 is essential for

the cleavage of activated gasdermin E (GSDME). Activation of

caspase-3 results in its targeting and cleavage of GSDME, leading to

the release of N-terminal and C-terminal fragments. GSDME-NT

has the ability to bind to the cell membrane and assemble into

oligomeric structures. Furthermore, it engenders the formation of

pores within the cell swelling, the efflux of cellular contents, and

inducing pyroptosis (46, 47). In a recent study, it was found that

gasdermin B (GSDMB), which is required for the cleavage of

GSDMD in non-canonical pyroptosis, directly interacts with the
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CARD domain of caspase-4 to increase caspase-4 activity (48). In

addition, it has been found that the capacity of GSDMB to create

membrane pores may be compromised when its N-terminal

domain is cleaved by caspase-3/6/7 (49).
3 Mechanisms involved in
pyroptosis and its impact on
diabetic complications

Pyroptosis plays a crucial role in innate immune defense against

microbial infection and tissue damage from excessive inflammation.

Substantial evidence supports the development and progression of

diabetes and its complications are strongly associated with

inflammasomes and activation of various pro-inflammatory.

Recent research has provided compelling evidence establishing a

link between pyroptosis in b-cells and the pathogenesis of DM (50).

Notably, the NLRP3 inflammasome, in particular, has been

implicated in b-cell pyroptosis and insulin resistance (51). Carlos

D et al. found that NLRP3 activation by mitochondrial DNA

(mDNA) results in triggering caspase-1-dependent IL-1b
production, thereby contributing to the development of type 1

diabetes mellitus (T1DM) (52). Moreover, thioredoxin-interacting

protein (TXNIP), a protein connected to insulin resistance,

interacted with NLRP3. TXNIP(-/-) mice and NLRP3(-/-) mice

showed improvements of glucose tolerance and insulin sensitivity

(53). The inhibition of TXNIP would be a potent pancreatic b cell

protective agent and is a candidate for the treatment of T2DM (54).

In addition, it is possible that chronic inflammation is related to the

activation of the AIM2 inflammasome by aberrant glucose

metabolism. Studies have shown that AIM2 expression and serum

cellular mtDNA levels increased in the monocytes of T2DM

patients, which might be involved in the inflammatory process in
FIGURE 1

The typical pathways of pyroptosis. In the canonical pathway, including danger-associated molecular patterns (DAMPs) or pathogen-associated
molecular patterns (PAMPs) activated, inflammasomes were identified and activated caspase-1, which cleaves gasdermin D (GSDMD) and activates
pro-IL-1b and pro-IL-18. The active IL-1b/IL‐18 is released to the oligomeric pores and the N-terminal fragment (GSDMD-NT) inserts into the cell
membrane amplifying the inflammatory response. LPS of gram-negative bacteria induces caspase-4/5/11 activation was the non-canonical pathway,
it leads to the cleavage of GSDMD and Pannexin-1. GSDMD-NT leads to pore formation on the cell membrane and the release of inflammatory
mediators and pyroptosis. The channels Pannexin-1 release cellular ATP and open channel P2X7 resulting in potassium ion efflux. In the other
inflammasome pathway, GSDME can be cleaved by caspase-3 and promote cell death.
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patients with T2DM (55, 56). Inflammatory signaling pathways

activated during pyroptosis further exacerbate insulin resistance.

Therefore, understanding the intricate relationship between

pyroptosis and insulin resistance provides valuable insights into

the underlying mechanisms of metabolic disorders. Targeting

pyroptosis and related inflammatory pathways may hold

therapeutic potential for alleviating insulin resistance and

improving metabolic health.
3.1 Diabetic nephropathy

Diabetic nephropathy (DN) is a prevalent complication of

diabetes and is associated with increased morbidity and mortality

(57). Accumulating evidence demonstrated that many critical

biological processes were involved in DN, including pyroptosis

and subsequent inflammation (58, 59). In a streptozotocin (STZ)-

induced DN rat model, ASC and caspase-1 levels were observed to

increase, along with hyperuricemia and hyperlipidemia with higher

proinflammatory factors levels (60). The implication of NLRP3

inflammasome activation in DN is noteworthy, as the

overexpression of NLRP3 inflammasome can lead to pyroptosis

(60, 61). Further research has documented that suppression of

NLRP3 inflammasome activation alleviates renal injury in DN. Li

Q et al. asserted that the mitigation of high glucose (HG)-induced

pyroptosis in Madin-Darby canine kidney (MDCK) cells can be

achieved by reducing the expression levels of NLRP3 and GSDMD

(62). Moreover, the inhibition of pyroptosis by mediating NLRP3

inflammasome pathways can alleviate podocyte pyroptosis (63–65).

As researchers continue to explore this field, the up-regulation of

Toll-like receptor 4 (TLR4) and GSDMD coincides with the tubular

injury observed in DN patients. In a high-glucose environment,

treatment with inhibitors can reverse highly expressed GSDMD-NT

while preventing the release of IL-1 (66). These investigations

highlighted the significance of pyroptosis and the associated

inflammatory response in driving the progression of DN.
3.2 Diabetic cardiomyopathy

Diabetic cardiomyopathy (DCM) is the most common

complication in patients with diabetes, featured by cardiac

hypertrophy and heart failure. Hyperglycemia, dyslipidemia,

insulin resistance, oxidative stress, and inflammation collectively

contribute to the pathogenesis of DCM (67). Notably, pyroptotic

cell death has been observed in all DCM patients and NLRP3

inflammasome activation occurred in heart tissue (68). In DCM

mice, the levels of NLRP3 and pyroptosis pathway-related proteins,

as well as IL-18 and IL-1b, exhibited marked increases (69).

Inhibiting NLRP3 inflammasome activation can ameliorate

cardiac inflammation, pyroptosis, fibrosis, and left ventricular

cardiac dysfunction (15, 70). Besides, AIM2, as a cytosolic DNA

sensor, mediates the development of DCM through the caspase 1/

GSDMD pathway. The silencing of the AIM2 gene alleviated
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cardiac dysfunction resulting from metabolic disorder and

ventricular remodeling (71). Non-coding RNAs (ncRNAs),

including miRNAs, lncRNAs, and circular RNAs, have also

emerged as significant players in the development of DCM. The

diabetes-induced circulation-associated circular RNA (DICAR) had

an inhibitory effect on DCM, knockdown of DICAR enhanced

DCM pyroptosis (14). A study shows that miR-30d expression

levels increased in cardiomyocyte. miR-30d might repress FOXO3a

expression and caspase recruitment domain (ARC) leading to

cardiomyocyte pyroptosis in DCM. Notably, knockdown of miR-

30d resulting in the downregulation of caspase-1, as well as the pro-

inflammatory cytokines IL-1b and IL-18 (72).
3.3 Diabetic retinopathy

Diabetic retinopathy (DR) is a prevalent microvascular

complication and represents one of the leading causes of

blindness in adults. Epidemiological studies have proved that the

prevalence and severity of DR increase with age and development of

diabetes (73). Growing evidence shows that inflammation plays an

important role in DR, inflammasomes like NLRP3 release large

amounts of inflammatory cytokines, which increase retinal vascular

permeability and exacerbate hypoxia, accelerating the progression

of DR (74, 75). Studies depict that peripheral blood mononuclear

cells and vitreous humor of patients with DR show higher

expression levels of caspase-1, ASC, and pro-inflammatory factors

compared with normal individuals (76, 77). Moreover, NLRP3

over-activation incites an inflammatory cascade leading to the

disruption of the retinal neurovascular unit’s structure and

function, ultimately resulting in vision impairment. Additionally,

it is noteworthy that the hyperglycemic state stimulates GSDMD-

mediated pyroptosis in DR (78). Overexpression of GSDMD-NT

induces inflammation and pyroptosis in human retinal progenitor

cells (HRPs). However, silencing the GSDMD gene effectively

prevents HRP pyroptosis by suppressing the NLRP3/caspase-1/

GSDMD signaling axis (79). Thus, further exploration of the

mechanism of inflammasomes is thought to provide novel

insights into the pathogenesis and clinical treatment of DR.
3.4 Other diabetic complications

More studies have found pyroptosis has also been associated

with other diabetic complications including neuropathy and non-

alcoholic fatty liver disease. Diabetic peripheral neuropathy (DPN)

is among the most common complications of DM, and its severity

increases over time with poor glycemic control (80). Sun Q et al.

reported that TXNIP/NLRP3 inflammasome proteins, including

caspase-1, and IL-1b expression levels were substantially

upregulated in the DPN rats (81). Excessive reactive oxygen

species (ROS) promotes inflammation and subsequently activates

the NLRP3 inflammasome, which induces pyroptosis in DPN.

Similar results were found in diabetes-associated non-alcoholic
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fatty liver disease (NAFLD) syndrome. NLRP3-mediated pyroptosis

exhibited an elevation in the livers of both ob/ob and diabetic mice,

and inhibiting NLRP3 in the liver protected against the progression

of NAFLD (82).
4 Exercise on improving diabetic
complications by targeting pyroptosis

4.1 Potential benefits of DM and its
complications through exercise

Exercise training emerges as a potent non-pharmacological

strategy for DM and its complications’ prevention and treatment.

Exercise is widely recognized as one of the most critical therapeutic

interventions, which can lead to weight loss and improve insulin

sensitivity and pancreatic beta cell function (83–85). Exercise not

only can improve lean body mass and lipid profile, but reduce renal

injury and microalbuminuria, and ameliorates renal function in DN

(86, 87). In DCM, exercise preserves endothelial function, improves

antioxidant defenses, ameliorates mitochondrial dysfunction, and

reduces cardiovascular mortality (88–90). Among NAFLD patients,

exercise alleviated diet-induced intrahepatic lipid content, hepatic

steatosis, content inflammation, and fibrosis (91–93). Moreover,

higher levels of physical activity were associated with a reduced

prevalence of abnormal retinal conditions (94). There is mounting

evidence that pyroptosis is involved in the pathogenesis of DM and

its complications. The experimental studies above have shown the

beneficial effects of exercise on diabetes and its complications.

However, it is unclear whether exercise slows down diabetes

progression, and improves physical ability by inhibiting pyroptosis.
4.2 The key inflammatory factors in
pyroptosis during exercise

Among these various types of inflammasomes, the NLRP3

inflammasome has been extensively studied in diverse

mammalian cells and is associated with a range of autoimmune

and inflammatory diseases. It is well known that reducing the

expression of NLRP3 is linked to reduced inflammation and

improved insulin sensitivity in DM patients (95). Exercise has

emerged as a significant anti-inflammatory intervention, as it

reduces the expression levels of inflammasome markers, including

NLRP3 and caspase-1. Research led by Javaid HMA et al. showed

that exercise suppresses NLRP3 inflammasome and promotes the

anti-inflammatory reaction activation by stimulating Meteorin-like

(METRNL) and the extracellular signal-regulated kinase (ERK) and

p38 mitogen-activated protein kinase (MAPK) pathway in the

obese mice induced by high-fat diet (HFD) (96).

Aerobic exercise represents an efficacious therapeutic approach

in the prevention of DCM and alleviating cardiac pyroptosis. The

NLRP3 inflammasome could be a key promoter in exercise-

mediated alleviation of DCM. In the HFD-induced obesity model,
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aerobic exercise effectively suppressed the activation of the NLRP3

inflammasome in the left ventricles, consequently reducing

expressions of NLRP3, ASC, pro-caspase-1, and IL-1b in the

myocardium (97). The expression levels of P2X7R, NLRP3,

and caspase-1 were significantly upregulated in the heart tissue of

HFD rats. Furthermore, the expressions of the NLRP3, caspase-

1and IL-1b induced by palmitic acid (PA) in H9c2 cells were

significantly decreased by the P2X7R inhibitor, thereby indicating

that aerobic exercise could promote cardiac remodeling by reducing

inflammation and reducing P2X7R expression in HFD rats (98).

ROS trigger the NLRP3 inflammasome activation and

contribute to nonalcoholic steatohepatitis (NASH) progression

(99). Exercise has been shown to effectively decrease hepatic lipid

content, inhibit inflammation and excessive production of ROS in

the liver (100). Notably, exercise-induced increasing adropin

expression was accompanied by decreased levels of ROS and

NLRP3 inflammasome, suggesting that adropin may be a key role

in the protection against NLRP3 inflammasome activation in

NASH mice (101). In addition, regular exercise has significant

potential to protect against diabetic kidney injury. Exercise

improved renal function, oxidative stress, inflammation, and

fibrosis in db/db mice. Aerobic exercise training decreased the

levels of Nox4, ROS, TNF-a, MCP-1, IL-6, and the expression of

NLRP3, ASC, caspase-1 p20, and IL-1b and IL-18. These results

demonstrate that aerobic exercise exerts a renoprotective effect by

inhibition of the Nox4/ROS/NF-kB/NLRP3 axis (102).

Moreover, neuronal inflammation is mainly attributed to the

release of inflammasomes by NLRP3. A study found that diabetic

rats exhibit significantly higher expression of NLRP3 in the

prefrontal cortex, whereas aerobic exercise effectively restores

NLRP3 levels to a normal state. Aerobic exercise-induced

amelioration of diabetes-induced inflammation in the prefrontal

cortex by inhibiting FOXO1/NF-kB/NLRP3 inflammatory

signaling pathway (103). In diabetic mice, regular exercise reduces

inflammasome-associated pyroptosis signaling, which prevents

bone loss and improves osteogenesis. As a result of miR-150-5p’s

inhibition of FNDC5 protein expression and irisin levels in STZ-

induced diabetic mice models, skeletal loss and an inflammatory

response occurred. Meanwhile, exercise increased the expression of

FNDC5/Irisin in diabetic bones by inhibiting osteoblastic miR-150-

5p and the pyroptosis-associated proteins (NLRP3, caspase-1,

GSDMD). Together, exercise prevents diabetes-mediated skeletal

loss and reduces cortical mechanical strength by blocking the

pyroptosis pathway via decreased expression of miR-150 (104).
4.3 The clinical implications of exercise on
treat DM and its complications

Effectively managing chronic diseases can profoundly influence

an individual’s quality of life. The effect of exercise on treating

chronic conditions is of significant physiologic and clinical

importance (105). Our previous study has shown that weight-

bearing running training alleviates age-related muscle atrophy by
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inhibiting the expression of pyroptosis-related genes in adipose

tissue (106). Understanding the role of pyroptosis in chronic

diseases such as DM allows for prevention and personalized

treatment strategies. Evidence shows that 12 weeks of Tai Chi

intervention effectively alleviated glucose homeostasis and

inhibited the expression of the NLRP3 inflammatory signal

pathway in middle-aged and elderly pre-diabetic patients (107).

Moreover, the combined of Yijinjing and resistance training has

proven effective in inhibiting the robust NLRP3 inflammasome

activation, thereby alleviating insulin resistance and liver injury in

elderly pre-diabetes (108). Research has also shown that exercise

can exert an anti-inflammatory effect by reducing circulating levels

of inflammasome activation-related inflammatory cytokines IL-1b
and IL-18 in overweight/obese populations (109). Similarly, a

previous study has demonstrated that a 12-week strength and

endurance combined training significantly inhibited the activation

of the NLRP3 signaling pathway in obese children (110) (as shown

in Supplementary Table 1 and Figure 2). Pyroptosis-induced

inflammation is closely linked to insulin resistance and impaired

glucose metabolism. Exercise training targeting pyroptosis and

inflammation may lead to improving glycemic control.

Surprisingly, there has been scant research conducted on the

enhancement of insulin sensitivity through exercise-mediated

modulation of pyroptosis. More in-depth clinical studies can fully

elucidate the exact mechanisms for the efficacy of exercise in

regulating pyroptosis and alleviating insulin resistance.
5 Conclusion and prospects

Pyroptosis is one of the prominent forms of programmed

necrotic cell death. Current studies strongly show that pyroptosis

plays a vital role in the progression of various diseases, including

CNS disorders, immunological diseases, atherosclerosis, and cancer.

While recent studies have uncovered the molecular mechanism

underlying pyroptosis activation in diabetes remains elusive. Thus,
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finding new treatments and intervention mechanisms to target

inflammasomes and inhibit the pyroptosis signaling pathways is

necessary for DM and its complications’ treatment. In this review,

we concisely summarize the potential role of pyroptosis in diabetic

complications, elucidating the underlying pathophysiological

mechanisms. Additionally, we highlighted the important role of

the protective effect of exercise on DM and its complications by

blocking the pyroptosis-associated inflammasome pathway.

Exercise training could suppress NLRP3, caspase-1, NF-kB, ROS,
P2X7, IL-1b, and IL-18, the pyroptosis-associated inflammasome

pathway is primarily contributing to this effect. However, there are

still some problems that need to be solved. The underlying

mechanisms of the exercise on other inflammasomes and

pyroptosis pathways in DM and its complications remain limited

and have challenges to both experimental and clinical

investigations. Moreover, the distinct effects of various exercise

patterns on pyroptosis-associated mechanisms need further

elucidation. Thus, more in-depth in vitro and in vivo studies will

be necessary to explore the efficacy of exercise in regulating

pyroptosis-induced cell death and inflammasomes in DM

progression and may be providing valuable insights for the

treatments of DM and its complications.
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