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Morphologic alterations
of the fear circuitry: the
role of sex hormones and
oral contraceptives

Alexandra Brouillard1,2, Lisa-Marie Davignon1,2,
Anne-Marie Turcotte3 and Marie-France Marin1,2*

1Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada,
2Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada, 3Department
of Medicine, University of Montreal, Montreal, QC, Canada
Background: Endogenous sex hormones and oral contraceptives (OCs) have

been shown to influence key regions implicated in fear processing. While OC use

has been found to impact brain morphology, methodological challenges remain

to be addressed, such as avoiding selection bias between OC users and non-

users, as well as examining potential lasting effects of OC intake.

Objective: We investigated the current and lasting effects of OC use, as well as

the interplay between the current hormonal milieu and history of hormonal

contraception use on structural correlates of the fear circuitry. We also examined

the role of endogenous and exogenous sex hormones within this network.

Methods: We recruited healthy adults aged 23-35 who identified as women

currently using (n = 62) or having used (n = 37) solely combined OCs, women

who never used any hormonal contraceptives (n = 40), or men (n = 41). Salivary

endogenous sex hormones and current users’ salivary ethinyl estradiol (EE) were

assessed using liquid chromatography – tandem mass spectrometry. Using

structural magnetic resonance imaging, we extracted surface-based gray

matter volumes (GMVs) and cortical thickness (CT) for regions of interest of

the fear circuitry. Exploratory whole-brain analyses were conducted with

surface-based and voxel-based morphometry methods.

Results: Compared to men, all three groups of women exhibited a larger GMV of

the dorsal anterior cingulate cortex, while only current users showed a thinner

ventromedial prefrontal cortex. Irrespective of the menstrual cycle phase, never

users exhibited a thicker right anterior insular cortex than past users. While

associations with endogenous sex hormones remain unclear, we showed that EE

dosage in current users had a greater influence on brain anatomy compared to

salivary EE levels and progestin androgenicity, with lower doses being associated

with smaller cortical GMVs.

Discussion:Our results highlight a sex difference for the dorsal anterior cingulate

cortex GMV (a fear-promoting region), as well as a reduced CT of the

ventromedial prefrontal cortex (a fear-inhibiting region) specific to current OC
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use. Precisely, this finding was driven by lower EE doses. These findings may

represent structural vulnerabilities to anxiety and stress-related disorders. We

showed little evidence of durable anatomical effects, suggesting that OC intake

can (reversibly) affect fear-related brain morphology.
KEYWORDS

sex hormones, oral contraceptives, structural MRI, fear circuitry, gray matter volume,
cortical thickness
1 Introduction

Fear is a universal and adaptative emotion (1) but excessive fear

reactions can be deleterious to the psychological and social

functioning of individuals (2, 3). Dysfunctions resulting from

poor fear regulation characterize anxiety disorders and post-

traumatic stress disorder (PTSD) (4–6), where behavioral clinical

treatments rely on the concept of fear extinction (i.e., safety

learning, 4, 5, 7–11). As deficits in fear extinction have been

identified in these psychopathologies, impaired extinction may

promote the maintenance of anxiety symptoms (12–15).

Anxiety and stress-related disorders are more common in

women (3, 16) but our understanding of this elevated vulnerability

is limited. This knowledge gap is in part be due to the exclusion of

females and women in animal and human science. Indeed, anxiety

research has been oriented towards males and men (the so-called

‘male bias’ phenomenon). As of 2012, less than 2% of fear-related

publications were conducted on female brains (6). This bias remains

apparent in recent research where 65% of 2021 preclinical anxiety

models were studied in males only (17). From 2009 to 2019,

neuroscience and psychiatry publications showed a considerable

increase in the inclusion of both sexes, although the proportion of

male-only papers did not decrease. In fact, male-only manuscripts

are 9 times more common than female-only papers in neuroscience
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and psychiatry journals (18). Female underrepresentation is mainly

driven by the assumption that sex hormone fluctuations would lead

to increased variability in results, albeit this argument has not been

empirically supported (17, 19, 20).
1.1 Modulation of the fear circuitry
by sex hormones

Scientific attention allocated to topics concerning women

enabled researchers to connect endocrine activity to anxiety.

Indeed, paradigms using naturally-fluctuating hormones (e.g.,

estradiol [E2] and progesterone [P]) or synthetic hormones (e.g.,

oral contraceptives [OCs]) have revealed that sex hormones

modulate anxiety behaviors (for reviews see 16, 21, 22).

Endogenous sex hormones are the end result of the endocrine

cascade of the hypothalamic-pituitary-gonadal (HPG) axis and can

fluctuate according to the menstrual cycle. That said, used by more

than 150 million women worldwide (23), OCs act as a powerful

disruptor of the menstrual cycle. Combined OCs (COCs) are the

most common type and are made up of synthetic estrogen (e.g.,

ethinyl estradiol [EE]) with a progestin (e.g., levonogestrel). These

exogenous hormones bind to estrogen and P receptors in brain

regions involved in the HPG axis, thereby suppressing sex hormone

secretion via negative feedback (24–26). Additionally, EE induces

hepatic synthesis of the sex hormone binding globulin (SHBG),

reducing not only free (unbound) E2 and P levels but also free

testosterone (T) (27).

Notably, lowered endogenous E2 levels (either naturally

occurring during the early follicular phase of the menstrual cycle

or induced by OC use) is a key contributor to fear maintenance as

evidenced using fear conditioning and extinction protocols (28–30).

At the neural level, sex hormones are known to modulate the brain

network implicated in fear processes (28, 31–34). Major brain

regions of the fear circuitry include the amygdala, hippocampus,

hypothalamus, anterior insular cortex (AIC), dorsal anterior

cingulate cortex (dACC), rostral anterior cingulate cortex (rACC),

and ventromedial prefrontal cortex (vmPFC) (32, 35–40).

Particularly, the amygdala, hippocampus, and vmPFC express

high levels of sex hormone receptors and as such, provide insight

into how sex hormones exert their influence on fear (6, 28, 41, 42).

Fluctuations in sex hormones have been shown to influence

brain activity of the fear circuitry (for reviews see 28, 31, 32).
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Human neuroimaging studies have associated high E2 with

increased activations within this network (33, 43, 44), though

fewer studies have investigated the role of sex hormones on its

anatomy. The most consistent observation of the latter is the

trophic anatomical effects of E2 in the hippocampus (45–48).

Although less consistently reported, morphologic changes of fear-

related regions have been reported throughout the menstrual cycle

(e.g., changes in the dACC (49), AIC (50), and amygdala (51)). OC

use has also been associated with a reduction of the hippocampus

(52–54), amygdala (55), hypothalamus (56), and prefrontal cortical

thickness (57, 58). Additionally, ‘acute’ sex hormone concentrations

have been shown to correlate with brain structures (59). For

instance, fear-related brain regions have been associated with

salivary or serum E2 and T in various hormonal profiles (i.e., OC

users, naturally cycling [NC] women, men) (49, 53, 57). Given the

scarce literature on the topic and lack of replicability, these

associations call for further empirical support. Nevertheless, these

findings collectively support the involvement of endogenous and

exogenous sex hormones on key regions implicated in fear

processing and regulation, as well as their ability to engender

significant structural alterations within this network.
1.2 Challenges in studying
oral contraceptives

The impact of OCs on brain morphology has mainly been

studied by comparing current users to NC women (according to

specific phases of the menstrual cycle or not) and men (for reviews

see 59–61). One of the most important methodological limitations

in this type of design is the sample selection bias. Indeed, a ‘survivor

effect’ may linger in samples of current OC users, knowing that

women for whom the pill does not cause adverse effects are more

likely to continue using it (62). Discontinuation of OCs has also

been associated with psychiatric symptoms or disorders (63, 64),

neuroticism (65), and mood-related side effects (66). Thereby, NC

women that are previous OC users could constitute their own group

that is distinct from never and current users. However, a recent

investigation reported negligible differences between current, past,

and never users in sociodemographic variables and personality in a

matched Eastern European sample (67). Nonetheless, given that the

study of OCs is normally done using cross-sectional designs

between users and non-users, careful attention must be paid to

the choice of comparison groups.

The vast majority of research on OCs has focused on acute (i.e.,

‘here and now’, activational) effects underlying its use. Yet,

hormonal events have been shown to exert long-lasting neural

changes, as reported in the context of puberty (68, 69), pregnancy

(70–72), and menopausal hormonal therapy (73, 74). Regarding OC

use, a paucity of studies distinguishing current, past, and never users

suggests that OC intake could lead to long-term effects on

endogenous sex hormone concentrations (75), brain structures

(76, 77), cognition (78, 79), and anxiety symptoms (as

experienced during the COVID-19 pandemic, 80). It is still

unclear whether such lasting effects exist and if so, by which

mechanisms OCs exert their influence after cessation. Still, it
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appears obvious that the simple comparison of OC users and NC

women would generate its share of heterogeneity, as grouping NC

women would most likely comprise past and never users.

Generally, studies have homogenized their subset of OC users

by selecting COC users only (i.e., excluding progestin-only OC

users). If there has been a keen interest over time to refine

methodologies to the specific use of COCs, very few studies have

considered women’s lifetime history of hormonal contraceptives.

Yet, as previously stated, an increasing body of research points to

differential effects between current users, past users, and never users

(77, 78, 80–82). Knowing that women commonly try several types

of hormonal contraceptives in their lifetime, this factor may

introduce unwanted noise. Therefore, when examining current

and past COC users, rigorous methodological standards can be

achieved by considering the history of hormonal contraceptive use.

To our knowledge, only two studies have considered contraception

history and restricted their sample to women who had only used

OCs or COCs throughout their lifetime (76, 83).

Relatedly, COCs is a broad category composed of more than 30

formulations with varying doses and/or synthetic compound

compositions (24, 84). Doses of EE range from 10 to 50mg,
although COCs containing 35mg of EE or less are the most

commonly used. While EE is typically the estrogenic constituent

in COCs, progestins (and their dosage) are heterogenous and differ

according to their chemical structure and pharmacodynamics (85).

Androgenic activity is commonly used to classify progestins and as

such, can be classified as high (e.g., levonogestrel), low (e.g.,

norgestimate, desogestrel), or anti-androgenic (e.g., drospirenone,

cyproterone acetate) progestins (24, 86). Of note, androgenicity

effects have been examined on cognitive functions (87–91) and

neural correlates (79, 82, 83, 92). Anatomically, a larger volume of

the bilateral fusiform face area was found in anti-androgenic users

compared to androgenic users, while EE dose did not correlate with

this region (82). Furthermore, the effects of exogenous hormone

concentrations on brain structures have not been reported to date.

Synthetic compounds (e.g., EE) are not captured by traditional

immunoassays of circulating E2 in serum or saliva, meaning that

the current literature has only partly depicted the endocrine activity

of OC users (84).

Finally, many metrics to quantify brain morphology have

emerged over the years. While this represents a fundamental

strength for the field of neuroscience, it has also inevitably led to

heterogeneous findings. Structural imaging studies have used

different measures to assess brain tissues such as gray or white

matter volume, cortical thickness (CT), cortical surface area, and

folding/gyrification (61, 93, 94). Voxel-based morphometry (VBM)

has traditionally been the most popular method to quantify gray

matter volume (GMV), though it can also be measured using

surfaced-based morphometry (SBM; as the product of CT and

surface area for cortical GMV). However, it is well known that

changes in GMV are unspecific and can result in differing

interpretations (e.g., changes in CT, folding, or surface area of the

cortex) (61, 95). Interestingly, GMV is the most frequent metric

used to quantify OC changes in the brain (61) and only one group

has investigated the impact of OCs on other gray matter (GM)

phenotypes, namely CT (57, 58).
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Despite the growing interest in studying women’s health, much

remains to be discovered about the impact of sex hormones and

OCs on the brain, cognition, behavior, and mental health. In

psychoneuroendocrinology, there is a lack of consensus with

regard to the effects of sex hormones and OCs, mostly due to the

relatively small number of studies and heterogeneous

methodologies used (96–102). This study aimed to investigate the

current and potentially lasting effects of COC use, as well as the role

of endogenous and exogenous sex hormones on structural

correlates of the fear circuitry. We recruited women currently

using or having used solely COCs in their lifetime, women who

never used any hormonal contraceptives, and men. Using structural

magnetic resonance imaging (MRI), we extracted GMV and CT of

key regions of the fear circuitry. Comparing current users, past

users, never users, and men allowed us to examine whether COC

use was associated with acute (i.e., current users vs. never users =

past users) or long-term (i.e., current users = past users vs. never

users) morphologic alterations, as well as to detect sex differences.

Additionally, we conducted analyses to explore the associations

between endogenous sex hormones and brain morphology in past

users, never users, and men, as well as with EE (salivary levels and

prescribed doses) and androgenicity in current COC users.
2 Materials and methods

2.1 Participants and procedure

This study stems from a larger research project investigating the

neural, cognitive, and endocrine correlates of COC use, which

involved three laboratory sessions. Participants were all healthy

adults aged between 23 and 35 years old. This minimal age criterion

was set to limit brain variability due to late-adolescence maturation

(103, 104) without compromising recruitment feasibility (i.e.,

undergraduates were still allowed to apply). According to their

hormonal profile and COC history, participants were divided into

groups of men, never users, past users, and current users. Eligibility

was confirmed after a thorough phone screening, ensuring that

participants from all groups met the following inclusion/exclusion

criteria: French speakers, no past or current medical/psychological

diagnosis, no current or past pregnancy, no usage of medication

affecting the endocrine system (other than COCs), and no regular

usage of drugs and alcohol. Participants also completed an MRI

screening questionnaire for safety purposes (e.g., no metallic

implant, claustrophobia). For COC criteria, past COC users were

required to have used their COC and have stopped it for over a year

(Mduration = 6.74 years ± 3.21;Mcessation= 3.37 years ± 2.15). Current

COC users had to be using it for at least 3 months (M = 8.97 years ±

3.83). Regarding contraception history, past and current users must

not have used other types of hormonal contraceptives than COCs in

their lifetime (i.e., progestin-only pill, intra-uterine device, patch,

vaginal ring, injection, or implant). Never users must not have used

any hormonal contraceptives in their lifetime. As for NC women,

never users and past users were expected to have a regular
Frontiers in Endocrinology 04
menstrual cycle (M = 29.26 days ± 3.01; normal cycle length of

21-35 days, 105). As these women monitored their menstrual cycles,

laboratory sessions were scheduled during either the early follicular

phase (day 1-5 of the menstrual cycle, where day 1 corresponds to

the onset of menses) or the pre-ovulatory phase (1-4 days before

ovulation, where ovulation day was calculated as average cycle

length minus 14). One never user had a cycle length longer than

35 days and two women (one past user, one never user) were not

able to quantify their cycle length, they were therefore scheduled

during the early follicular phase. Given that E2 has been found to

have a marked influence on the fear circuitry (see section 1.1.), these

two cycle phases were selected due to their distinct E2

concentrations. This methodological detail allowed us to

investigate the role of cycle phases in NC women, as well as to

control for hormone levels within this group of women (i.e.,

equivalent distributions of cycle phases between both groups).

Data for the present manuscript were collected during the

second session of the larger study. Before entering the MRI

scanner, saliva samples were collected for later quantification of

sex hormone levels. In the MRI scanner, participants first

underwent a structural sequence before going through a task for

functional sequences. All sessions were scheduled between 8:15AM

and 7PM. This study was reviewed and approved by the research

ethics board of the Centre inteǵre ́universitaire de sante ́ et de services
sociaux de l’Est-de-l’Il̂e-de-Montreál. Individuals provided written

consent before participating in this study, had the right to terminate

the experiment at any time, and were offered monetary

compensation for their time. A total of 181 participants

completed the procedure for the present study.
2.2 Questionnaires

The following questionnaires were completed by participants to

evaluate potential confounds between our groups and on structural

outcomes. Importantly, these constructs have all been associated with

COC use and/or brain morphology (65, 106–111). Participants

completed the 1) Beck Depression Inventory-II (BDI), a 21-item

questionnaire assessing physiological and psychological symptoms

related to depression (range 0-63, 112, 113), 2) Brief Trauma

Questionnaire (BTQ), a 10-item questionnaire derived from the Brief

Trauma Interview (114) that evaluates previous exposure to stressful/

traumatic events (115), 3) Neuroticism scale from the NEO-Five Factor

Inventory-3, a 12-item scale measuring the tendency towards negative

affect and emotional instability (range 12-60, 116), 4) Santa Clara

Strength of Religions Faith Questionnaire (SCSRFQ), 10 questions

regarding religiosity (range 10-40, 117), and 5) trait form of the State

and Trait Anxiety Questionnaire (STAI-T), which measures anxiety as

a personality trait through 20 items (range 20-80, 118, 119). All

questionnaires (except the BDI) were answered online on Qualtrics

XM between the first and second sessions of the larger study. The BDI

was completed at the end of the third session and participants scoring ≥

14 (i.e., mild depression symptomatology) were offered

psychological resources.
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2.3 Sex hormone assessment

Salivary sex hormone concentrations were collected using the

passive drool method. A 2mL sample was provided in a salivette by

all participants and stored temporarily in a -20°C freezer at the MRI

facility. Within a period of 2 months, samples were transferred to a

-80°C freezer at our research center for long-term conservation.

Upon the time of analysis, samples were shipped with dry ice to

ZRT Laboratory (Beaverton, Oregon, USA), a lab specialized in

salivary assays of sex hormones using liquid chromatography –

tandem mass spectrometry (LC-MS/MS). Assays were run with an

AB Sciex Triple Quad 5500 system. Saliva was mixed with internal

standards, then extraction of steroids was performed by Cl 8

column chromatography. Steroids were eluted from the solid

phase extraction and dried under nitrogen. Derivatization was

carried out on dried samples (120), after which they were diluted

and injected for LC-MS/MS analysis with analytical separation

performed on an Agilent Poroshell 120 EC-C8 column and

ionization by atmospheric pression chemical ionization (121).

The lower limit of quantification (LLOQ) was 0.30 pg/mL for E2,

5 pg/mL for P, 3 pg/mL for T, and 0.40 pg/mL for EE. Given that we

had data on which participants were expected to truly have

circulating EE levels (i.e., COC users in the active phase of their

regimen), we used the lower limit of detection (LOD) of 0.11 pg/mL

for EE values below the LLOQ.
2.4 MRI data acquisition

Structural images were acquired on a Siemens Magnetom

Prisma 3T scan using a 64-channel coil. A T1-weighted Multi-

Echo Magne t i za t ion-Prepared Rap id Grad ien t -Echo

(MEMPRAGE) sequence was used to collect 176 high-resolution

images (TR = 2530ms, TE = 1.62ms, FOV = 176mm, flip angle = 7°,

voxel size = 1mm3). Visual inspection for motion artifacts was

performed on raw data for each participant based on a 4-point scale

protocol (122; https://github.com/CoBrALab/documentation/wiki/

Motion-Quality-Control-(QC)-Manual). This procedure resulted in

the exclusion of one participant (past COC user).
2.5 Surface-based morphometry

Raw anatomical images were processed using FreeSurfer (http://

surfer.nmr.mgh.harvard.edu). The recon-all pipeline of Freesurfer

6.0 was performed on CBRAIN, an online open-source software

(123) and allowed for the automatic generation of a 3D cortical

surface model. Segmentation of white matter (WM) and GM (pial)

surfaces was visually inspected for every participant. No major flaws

were detected by visual inspection (e.g., WM/pial surface

segmentation into the skull or ventricles).

We extracted both GMV and CT phenotypes for regions of

interest (ROI)-based analyses. The Destrieux atlas (124, 125) was

used for the parcellation of cortical ROIs. To select precise parcels of

the fear circuitry, we inspected the brain map for the term ‘fear’ on
Frontiers in Endocrinology 05
Neurosynth (neurosynth.org), an online platform for the automated

synthesis of functional MRI data. Using peak coordinates, we

identified which Destrieux’s labels overlapped with fear-related

clusters. The dACC was best delimited by the anterior part of the

middle cingulate gyrus and sulcus (aMCC, label#7), which was

further validated by Vogt et al. (126) as being involved in fear

expression. We defined the rACC as the anterior part of the

cingulate gyrus and sulcus (ACC, label #6). For the AIC, we

combined the short insular gyrus (label #18) and anterior

segment of the circular sulcus of the insula (label #47). Finally,

the vmPFC was defined as the sum of the straight gyrus (gyrus

rectus, label #31) and suborbital sulcus (label #70). At the

subcortical level, GMV of the amygdala and hippocampus were

obtained from FreeSurfer’s segmentation. The hypothalamus was

segmented using the automated tool of Billot et al. (127). GMV of

the whole structure was used. All ROIs were extracted by

hemisphere. Exploratory vertex-by-vertex whole-brain analyses

(WBA) were conducted for cortical GMV and CT using a

smoothing full-width half maximum (FWHM) kernel of 10mm

and 20mm, respectively.
2.6 Voxel-based morphometry

Additionally, we performed VBM as a secondary analytic

method. Data were analyzed using Matlab (R2018b, Mathworks

Inc.) and SPM12 (http://www.fil.ion.ucl.ac.uk/spm). Images were

reoriented along the anterior-posterior commissure line and the

anterior commissure was set as the coordinate origin. Images were

segmented into GM, WM, and cerebrospinal fluid (Ashburner and

Friston, 2005). The Diffeomorphic Anatomical Registration

Through Lie Algebra (DARTEL) algorithm was used for

estimating deformations and increasing the accuracy of between-

subjects alignment (Ashburner, 2007). Images were modulated and

spatially normalized to the Montreal Neurological Institute (MNI)

space. Normalized GM images were smoothed with a FWHM

kernel of 8 mm. GM voxels with a value < 0.2 were excluded

from statistical analyses. Global normalization was set at

proportional scaling to account for TIV.
2.7 Analytic approach

In the present study, we examined two phenotypes of the GM,

namely volume and thickness. As volume is an unspecific feature of the

GM (95), we also measured CT to refine the interpretation of the

results. Further, we used two volumetric methods to generate surface-

based and voxel-based GMV. Given the well-documented difficulty of

low reproducibility in MRI studies (128–130), this motivated our team

to conduct analyses not only in FreeSurfer but in SPM using VBM to

evaluate the robustness of analytical variability of GMV results. As

such, between-software convergence would strengthen confidence in

the obtained results (130). Moreover, given that FreeSurfer’s volumetric

WBA is restricted to the cortex, the use of SPM’s VBM allowed us to

examine cortical, subcortical, and cerebellar voxels.
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Regarding endocrine quantification, the use of LC-MS/MS

resulted in a considerable rate of levels falling under the LLOQ.

Left-censored undetected values were high for E2 (< 0.3 pg/mL:

110/180, 61.1%), P (< 5 pg/mL: 125/180, 69.4%), and moderate for

T (< 3 pg/mL: 51/180, 28.3%). This small proportion of detected

values was also reported with LC-MS/MS for salivary E2 (131).

Nonetheless, undetected values followed a coherent pattern with

nearly all of them being distributed in expected low hormonal

profiles. Frequencies of undetected E2 were distributed as follows:

57 COC users, 27 NC women in the early follicular phase, and 23

men (107/110, 97.27%). Given that the luteal phase of the menstrual

cycle was not targeted in NC women, all our participants were

recruited in a low state of P. This provides insight into the high

undetected P rate in every group (≥ 64.5%). For T, 39 COC users, 11

early follicular NC women, and 1 pre-ovulatory NC woman

accounted for the undetected values. For COC users in the active

phase of their regimen (n = 55), EE levels were below the LOD for 8

women (14.5%). Given that our missing values were not missing at

random (NMAR) and as recommended by Herbers et al. (132), we

addressed this issue with multiple imputation from a fitted

lognormal distribution using their same procedure implemented

in R with the fitdistrplus and EnvStats packages (133, 134; the code

used by Hebers et al. is accessible at https://osf.io/spgtv/). This

imputation method was found to be valid, despite the high

proportion of missingness in left-censored datasets (135). Using

the SPSS toolbox, we generated 10 datasets with simulated values

between 0.01 pg/mL and the LLOQ for each endogenous hormone

(e.g., 0.01-0.29 pg/mL for E2). The LOD was used as the upper

bound for EE. For statistics, we reported the mean value of each

metric (e.g., FM = average of the 10 Fs). Due to highly unbalanced

distributions and to be coherent with the imputation procedure

performed, we then log-transformed endocrine variables. Finally,

outliers were examined. Z-scores were derived for men, early

follicular NC women, pre-ovulatory NC women, and COC users

on log-transformed variables. Using a criterion of ≥ ± 3.29 (136,

137), we identified two outliers for E2 (COC users), one outlier for P

(COC user), two outliers for T (pre-ovulatory NC woman and

man), and one outlier for EE. All outliers were winsorized with

respect to groups, using the next highest value of each group (138)

on the imputed log-transformed variables. Additionally, we

removed endocrine values for one participant (man) due to an

invalid assessment (technical issue/low internal standard). For

descriptive purposes only, we winsorized imputed raw

(untransformed) values and reported endocrine concentrations in

pg/mL.

All ROI analyses were performed using SPSS 27 (IBM). We

conducted general linear models (GLMs) for each ROI with Group

(men, never users, past users, current users) as the between-subjects

factor and Hemisphere (left, right) as the within-subjects factor. We

controlled for age for both GMV and CT analyses, as well as for TIV

in GMV analyses (for a justification, see 139, 140). Given our

between-group design, we examined further potential confounders

thereafter. Covariates were selected from analyses performed on

various sociodemographic and psychological outcomes with a

threshold set at p <.10. First, study groups were compared using
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ANOVAs and chi-square tests for continuous and categorical

variables, respectively. Second, correlations were performed

between potential confounders and TIV/global CT. Using the

‘disjunctive cause criterion’ approach for covariate selection (141),

we selected variables that were either associated with the study

groups, brain morphology (TIV/global CT), or both. Thus, we

decided to initially run the minimally adjusted models (e.g., age

and TIV for GMV) and re-run the fully adjusted models for

additional confounders (e.g., ethnicity, relationship status,

religiosity). To investigate the interplay between current dynamics

of the menstrual cycle and history of COC use, we focused on both

groups of NC women (namely, never users and past users, as well as

the cycle phase they were in during data collection). Accordingly,

we performed Group (past users, never users) x Cycle phase (early

follicular, pre-ovulatory) GLMs. Similar to the previous model, we

implemented the same covariate selection plan.

To investigate the impact of endogenous sex hormones, we re-

ran previous Group x Hemisphere GLMs for each ROI with added

hormonal concentrations. Given that these specific analyses relied

on the continuous nature of hormonal data, we excluded variables

showing a proportion of imputation higher than 60%. This

procedure led to the exclusion of COC users in this set of

analyses and P levels for the three remaining groups (i.e., men,

never users, past users). Conceptually, this decision is supported by

the fact that COC users should be in an endogenous ‘shut-down’

state and that P variability was expected to be minimal across

participants (due to the nature of our study design). As such,

models were built to explore the effects of Group (3) x

Hemisphere (2) x E2 and Group (3) x Hemisphere (2) x T, all

while controlling for age (and TIV for GMV). In a second step,

significant results were re-examined by running a sensitivity

analysis with subcategorized hormonal data (e.g., ‘low levels’ =

undetected imputed values, ‘medium levels’ = detected but low

values, ‘high’ = detected and higher values). This was performed to

assess the robustness of the results obtained with multiple

imputations. No WBA was performed for this analysis subset

given that multiple imputation could not be implemented in

FreeSurfer and SPM.

In COC users, we explored the role of exogenous hormones as

assessed by salivary EE levels or EE prescribed dose (contained in each

pill, in mg) and androgenicity. As EE levels were accounted for, EE

models were restricted to women tested in the active phase of their

COC (n = 55). Among them, 48 used monophasic regimens, while

seven used triphasic regimens with a constant dose of EE across all

active pills. Given the few and unevenly distributed data points for EE

dose (as reported in Table 1), we grouped users into low (10-25mg) or
high (30-35mg) dosages. In our sample, no COC users used 50mg of EE.
For each ROI, EE GLMs were tested with Hemisphere (left, right) x EE

dose (low, high) and Hemisphere x EE levels as variables of interest,

where age and TIV (for GMV only) were used as covariates. Of note,

we did not investigate the impact of lifetime EE dose in current users or

previous EE dose within past users given that these calculations led to

insufficient sample sizes (i.e., 33/62 current users and 14/37 past users

having used the same dosage over lifetime use). As for progestin

androgenicity, we classified users into high (n = 27), low (n = 18), and
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anti-androgenic (n = 17) COCs categories (24) (see Table 1). The

influence of androgenicity was explored with Hemisphere (right, left) x

Androgenicity (anti, low, high) GLMs, while controlling for age and

TIV (for GMV only). Considering the small sample size, we first ran

separate models for EE and progestin androgenicity. However, EE

dosage and progestin androgenicity can vary within formulations and

potentially interact with each other. Indeed, the chi-square test showed

that a higher proportion of low EE doses were classified as high

androgenic COCs, while high EE doses were more likely to be classified

as low androgenic COCs (p = .004). Therefore, in a second step, we

adjusted for one or the other in their respective set of analyses.
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Although statistically underpowered, this allowed us to verify the

stability of our results when covarying out an important confounder.

For ROI-based analyses, significance levels were set at p <.05.

Trend-level results were defined as.05 ≤ p ≤.08. Bonferroni

corrections were applied to p-values in post hoc analyses. Based

on the novelty of the study, uncorrected results were presented for

multiple comparisons; however, adjustment for multiple

comparisons was applied for the seven GMV ROIs and four CT

ROIs using the False Discovery Rate (FDR) correction (142). For

exploratory volumetric and thickness WBA in FreeSurfer, the

Monte Carlo Null-Z Simulation was carried out to control for
TABLE 1 Sample characteristics for current users, past users, never users, and men.

Variable
Current users
(n = 62)

Past users
(n = 37)

Never users
(n = 40)

Men
(n = 41)

P-value

Potential confounders

TIV (L) 1.51 (0.12) 1.50 (0.09) 1.48 (0.11) 1.68 (0.12) <.001

Global CT (mm) 2.52 (0.07) 2.52 (0.06) 2.52 (0.07) 2.54 (0.07) .272

Age 26.31 (2.88) 27.57 (3.30) 26.13 (3.16) 26.27 (3.59) .169

Ethnicity

Caucasian 46 (74.2%) 29 (78.4%) 21 (52.5%) 27 (65.9%)
.059

Other 16 (25.8%) 8 (21.6%) 19 (47.5%) 14 (34.1%)

Mother tongue

French 47 (75.8%) 33 (89.2%) 27 (67.5%) 29 (72.5%)
.101

Other 15 (24.2%) 4 (10.8%) 13 (32.5%) 11 (27.5%)

Years of education 18.05 (2.03) 17.55 (2.20) 17.08 (2.04) 17.10 (2.32) .072

Body mass index 22.95 (2.90) 23.53 (3.50) 23.57 (4.61) 23.96 (3.73) .572

Relationship status

In a relationship 40 (65.6%) 16 (44.4%) 10 (26.3%) 12 (30.0%)
<.001

Single 21 (34.4%) 20 (55.6%) 28 (73.7%) 28 (70.0%)

Practicing physical activity

Yes 53 (85.5%) 26 (70.3%) 32 (80.0%) 34 (82.9%)
.306

No 9 (14.5%) 11 (29.7%) 8 (20.0%) 7 (17.1%)

Religiosity (SCSRFQ) 13.92 (7.18) 14.35 (7.33) 17.38 (9.37) 16.03 (8.37) .151

Neuroticism (NEO-FFI-3) 35.55 (8.79) 36.65 (8.52) 36.13 (8.23) 33.18 (9.34) .307

Trait anxiety (STAI-T) 40.89 (10.39) 39.08 (8.80) 40.55 (7.25) 39.40 (10.07) .756

Depressive symptoms (BDI) 8.15 (6.13) 7.83 (5.54) 8.95 (7.49) 7.74 (6.43) .841

Adverse events (BTQ) 1.10 (1.05) 1.24 (1.19) 1.30 (1.49) 0.95 (1.24) .580

Hormone levels

Estradiol (pg/mL) 0.19 (0.11) 0.56 (0.63) 0.46 (0.44) 0.26 (0.14) <.001

Progesterone (pg/mL) 5.65 (10.05) 4.60 (4.78) 4.56 (5.01) 5.26 (5.78) .837

Testosterone (pg/mL) 2.23 (1.21) 4.13 (1.99) 4.25 (2.41) 53.58 (20.98) <.001
fro
For TIV, CT, age, years of education, body mass index, religiosity, neuroticism, trait anxiety, depressive symptoms, and adverse events, data represent group means (SD). For ethnicity, mother
tongue, relationship status, and practicing physical activity, data represent group N (group %). Bold characters indicate covariates from potential confounders selected for fully adjusted models
based on a threshold set at p <.10 (hormone levels were not considered as covariates). For psychological measures (religiosity, neuroticism, trait anxiety, adverse events), mother tongue, and
endocrine concentrations, data for one man are missing. For the depressive symptom assessment, data are based on 61 current users, 36 past users, 38 never users, and 40 men./TIV, total
intracranial volume; CT, cortical thickness; SD, standard deviation.
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multiple comparisons (10 000 iterations, cluster-forming two-tailed

p <.05, cluster-wise p <.05). A Bonferroni correction was applied as

we tested both hemispheres. For VBM, we used a primary

uncorrected threshold of p <.001 with a cluster extent of k > 10

voxels and secondary cluster-level FDR-corrected threshold of q

<.05. Groups were compared using a F-test orthogonal contrast.

Effect sizes were reported as partial eta squared (hp2). Error bars in
figures denote ± standard error of the mean.
3 Results

3.1 Preliminary analyses

To account for potential diurnal variations in sex hormone

levels (143–145), we examined whether the timing of study sessions,

which ranged from 8:15AM to 7PM as a matter of feasibility,

influenced endocrine concentrations. Our analysis revealed no

significant influence of session timing (AM/PM) on hormone

levels within each group (p ≥.130). Groups were also equally

distributed for AM/PM testing (p = .190). To confirm hormonal

status, GLMs were conducted on groups based on their current

hormonal state. Levels of E2, P, and T were compared between men

(n = 40), early follicular NC women (n = 45), pre-ovulatory NC

women (n = 32), and COC users (n = 62). Analyses revealed a group

difference for E2 [FM(3, 175) = 34.80, pM <.001, hp2M = .369] and T

[FM(3, 175) = 213.98, pM <.001, hp
2
M = .784]. Games-Howell post hoc

tests showed higher E2 concentrations in pre-ovulatory NC women

compared to the three other groups (pMs <.001). Early follicular NC

women and men had similar E2 levels (pM = .898), which were both

comparable to COC users (pM = .267 and.117 respectively). For T,

men showed higher concentrations than the three groups of women

(pMs <.001). Pre-ovulatory NC women exhibited greater T levels

than early follicular NC women (pM = .033) and both NC groups

had more T levels than COC users (pMs ≤.006). Further, a Group (2)

x Cycle phase (2) GLMwas conducted between past users and never

users. For the three endogenous hormones, no differences were

found between the two groups nor for the interaction term (pMs

≥.185). For cycle phase, irrespective of groups, E2 and T were
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significant and followed the same pattern as in the first set of

hormonal analyses. Untransformed hormonal means are reported

in Table 1, while both sets of group analyses are summarized in

Figure 1. In sum, the salivary endocrine assessment revealed

expected variations in our study groups. Never and past users

were equivalent in terms of their hormonal profile.

Sample characteristics are presented in Table 1. As expected, men

had greater TIV than the three other groups of women (p <.001). No

differences were observed for global CT. Regarding sociodemographic

variables, men, never users, past users, and current COC users did not

differ on age, mother tongue, body mass index, and physical activity

practice (ps ≥ .101). However, relationship status was

disproportionately distributed across study groups (p <.001). Based

on Bonferroni-adjusted pairwise Z-tests, current users were

significantly more in relationships than the three other groups and

the proportion of individuals in a relationship was higher in both

current and past users than never users and men. Moreover, groups

tended to differ on ethnicity (p = .059), where never users were less of

Caucasian origin than expected. Although non-significant, a greater

proportion of past users were of Caucasian origin (78.4%) than never

users (52.5%) in our sample. Years of education were also marginally

different between the groups (p = .072), although post hocs did not yield

significant group differences (ps ≥.156). Concerning psychological

constructs, groups did not differ regarding religiosity, neuroticism,

trait anxiety, depressive symptoms, and exposure to adverse events (ps

≥.151). For endocrine-related variables (Table 2), no differences were

found for the age at menarche between the three groups of women (p =

.498), nor for cycle phase between past and never users (p = .524), and

reasons for COC use between current and past users (p = .329).

Correlations between TIV/global CT and potential confounders

across the whole sample are reported in Table 3. According to the

disjunctive cause criterion (141), fully adjusted models for GMV

included age (conceptually), TIV, ethnicity, years of education,

relationship status, and religiosity, whereas age, ethnicity, years of

education, relationship status, and practicing physical activity were

controlled for in fully adjusted CT models. When restricted to past

users and never users, fully adjusted models included age and TIV

(conceptually), mother tongue, body mass index, ethnicity, relationship

status, religiosity, and adverse events for GMV analyses and age,
A B C

FIGURE 1

Sex hormone profiles across study groups. (A) As expected, pre-ovulatory naturally-cycling (NC) women had higher estradiol concentrations
compared to the three other groups. Estradiol levels were similar for early follicular NC women, men, and combined oral contraceptive (COC) users.
(B) Groups did not differ in progesterone levels. (C) For testosterone, men showed higher concentrations than the three groups of women, pre-
ovulatory NC women exhibited greater levels than early follicular NC women, and both NC groups had more testosterone levels than COC users.
No differences were found between never users and past users across the three hormones.
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TABLE 2 Endocrine-related characteristics for current users, past users, and never users.

Variable Current users (n = 62) Past users (n = 37) Never users (n = 40) P-value

Age at menarche 12.61 (1.67) 12.43 (1.17) 12.86 (1.72) .498

Cycle phase

Early follicular 23 (62.2%) 22 (55.0%)
.524

Pre-ovulatory 14 (37.8%) 18 (45.0%)

Ethinyl estradiol (pg/mL) 3.96 (15.72)

Dose of ethinyl estradiol

10 mg
20 mg
25 mg
30 mg
35 mg

1 (1.6%)
29 (16.1%)
4 (2.2%)
20 (11.1%)
8 (4.4%)

Progestin androgenicity

High

Levonogestrel 27 (43.5%)

Low

Desogestrel
Norgestimate

Norethindrone acetate

13 (21.0%)
3 (4.84%)
2 (3.23%)

Anti

Drospirenone
Cyproterone acetate

12 (19.35%)
5 (8.06%)

Reason for COC use

Contraception
Therapeutic/medical reasons

Mixed reasons
Other

23 (37.1%)
14 (22.6%)
23 (37.1%)
2 (3.2%)

20 (54.1%)
6 (16.2%)
9 (24.3%)
2 (5.4%)

.329

Reason for stopping COCs

No need
Physical side effects

Psychological side effects
Fear of complications

Mixed reasons
Other

4 (10.8%)
6 (16.2%)
3 (8.1%)
8 (21.6)
9 (24.3%)
7 (18.9%)

Reason for not using COCs

No need
Fear of physical effects

Fear of psychological effects
Mixed reasons

Other

18 (45%)
4 (10.0%)
1 (2.5%)
12 (30.0%)
5 (12.5%)
F
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For age at menarche, data represent group means (SD). For menstrual cycle phase, reasons for COC use, reasons for stopping COC, and reasons for not using COC, data represent group N (group
%). For the analyses related to doses of ethinyl estradiol, sample size corresponds to 55 current users in the active phase of their regimen (one user of 10 mg, 23 users of 20 mg, four users of 25 mg,
20 users of 30 mg, and seven users of 35 mg)./COCs, combined oral contraceptives; SD, standard deviation.
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mother tongue, body mass index, ethnicity, relationship status, and

neuroticism for CT analyses (data not shown).
3.2 Main analyses

3.2.1 Are there acute or long-term
effects of COCs on structural correlates
of the fear circuitry?

To examine the acute or long-term effects of COC use, we

performed Group (4) x Hemisphere (2) GLMs. In ROI-based GMV

analyses controlling for age and TIV, a main effect of Group was

observed for the dACC [F(3,174) = 4.63, p = .004, hp
2 = .074, qFDR =

.027], with all three groups of women exhibiting a larger bilateral

volume than men (ps ≤.037; Figure 2A). In ROI-based CT analyses

controlling for age, groups also differed regarding vmPFC thickness

[F(3,175) = 3.71, p = .013, hp
2 = .060, qFDR = .051]. Current COC

users, but not past nor never users (ps ≥.229), had thinner bilateral

vmPFCs than men (p = .007; Figure 2B). Results remained the same

using fully adjusted models.

We found no significant clusters in volumetric and thickness

WBA. However, SPM’s VBM revealed several clusters surviving

multiple comparisons at the cluster level. Results are presented in

Table 4 and visually represented in Supplementary Figures 1–3.
3.2.2 Does the current hormonal milieu
interact with the history of contraception
use in NC women?

When looking at both groups of NC women, GMV analyses

revealed no effects of Group (past users, never users), Cycle phase
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(early follicular, pre-ovulatory), or Group x Cycle phase across all ROIs.

For CT, a Group xHemisphere interaction effect was found for the AIC

[F(1, 72) = 6.40, p = .014, hp2 = .082, qFDR = .054]. Irrespective of cycle

phase, never users tended to have a thicker right AIC compared to past

users (p = .057; Figure 3). This difference reached significance (p = .039)

with the fully adjusted model.

We found no significant clusters in volumetric and thicknessWBA.

Using VBM, WBA yielded no significant results, though we found a

trend for a cluster in the right orbital gyrus for the Group x Cycle phase

interaction term [F(1, 72) = 11.77, qFDR = .072, k = 606,MNIxyz = 24, 39,

-12]. This cluster fell at qFDR = 0.95 with the fully adjusted model.

3.2.3 Are endogenous estradiol and testosterone
linked to structural correlates of the fear
circuitry? Are those associations specific to men,
never users, or past COC users?

To evaluate the role of acute endogenous levels and their

potential interaction with our study groups, we conducted Group

(3) x Hemisphere (2) x Hormone (E2 or T) GLMs on our imputed

and log-transformed dataset. ROI-based GMV analyses revealed a

Group x E2 interaction [FM(2, 108) = 4.22, pM = .029 (.003 ≤ ps

≤.086), hp2M = .073, qFDR = .203] for the hippocampus. Post hocs

showed that bilateral hippocampal GMV correlated negatively with

E2 levels (BM = -124.33, bM = -.345, pM = .040, fraction missing info

= .185) in never users, specifically. A main effect of T was also

trending [FM(2, 108) = 4.61, pM = .052 (.007 ≤ ps ≤.145), hp2M = .041,

qFDR = .196], where T concentrations tended to positively correlate

with the GMV of the bilateral hippocampus in all participants (BM
= 48.58, bM = .181, pM = .067, fraction missing info = .078;

Figures 4A, B).
TABLE 3 Associations between total intracranial volume, global cortical thickness, and potential confounders across the whole sample.

TIV Global CT N

Coefficient P-value Coefficient P-value

Age -0.087 .248 -0.279 <.001 180

Ethnicity 0.112 .135 0.183 .014 180

Mother tongue (French/other) -0.006 .937 0.042 .574 179

Years of education -0.129 .085 -0.1 .183 180

Body mass index 0.031 .679 -0.112 .135 180

Relationship status (Relationship/Single) -0.139 .067 -0.058 .443 175

Practicing physical activity (Yes/No) 0.111 .139 0.143 .056 180

Religiosity (SCSRFQ) -0.148 .049 -0.029 .698 179

Neuroticism (NEO-PPI-3) -0.113 .132 -0.059 .433 179

Trait anxiety (STAI-T) -0.042 .577 -0.058 .442 179

Depressive symptoms (BDI) -0.087 .257 -0.003 .964 173

Adverse events (BTQ) -0.085 .255 -0.002 .979 179

Age of menarche 0.115 .182 -0.03 .728 137

Cycle phase (Follicular/Pre-ovulatory) 0.07 .545 -0.056 .626 77
frontiersi
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For the hypothalamus, we found a marginal interaction for Group

x E2 [FM(2, 108) = 2.98, pM = .079 (.016 ≤ ps ≤.233), hp2M = .053, qFDR =

.277]. GMV of the bilateral hypothalamus was inversely correlated to

E2 levels in never users (BM = -13.02, bM = -.429, pM = .014, fraction

missing info = .197). Also, we found a trend towards a main effect of T

[F(1, 108) = 4.09, pM = .056 (.015 ≤ ps ≤.151), hp2M = .037, qFDR = .196],

where T concentrations across all groups were positively associated
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with the bilateral hypothalamus (BM = 6.15, bM = .314, pM = .002,

fraction missing info = .128; Figures 4C, D).

For CT analyses, we found a marginal Group x Hemisphere x T

interaction [FM(2, 109) = 3.31, pM = .067 (.007 ≤ ps ≤.158), hp2M = .058,

qFDR = .268] for the rACC. When examining post hocs, the only

significant result pertained to men, where thickness of their left rACC

was inversely associated with T levels (BM = -.12, bM = -.421, pM = .006,
TABLE 4 Voxel-based morphometry clusters emerged between the four groups using a whole-brain approach, adjusted for age and scaled for total
intracranial volume.

Brain region
MNI

coordinates
x y z

k
voxels

Peak-
level

F-value

Cluster-
level
qFDR

Post hocs

Fully adjusted
model

cluster-level
qFDR

Right inferior occipital gyrus/pole 48 -80 -21 3509 24.19 <0.001
M > 3 groups of women

C > P#
<.001

Left dACC -4 9 40 12376 16.52 <0.001 3 groups of women > M <.001

Right postcentral gyrus 38 -21 40 2417 16.44 <0.001 3 groups of women > M <.001

Right cerebellum 6 -75 -24 2263 13.02 <0.001 P > 3 groups <.001

Right inferior frontal sulcus (dlPFC) 45 39 14 789 11.97 0.012 3 groups of women > M .298

Right thalamus 2 -14 4 1167 11.24 0.002 C > M# .058

Right caudal middle frontal gyrus 46 15 38 544 10.88 0.037 C = P > M .182

Left Opercular inferior frontal gyrus -46 14 26 1239 10.78 0.002 3 groups of women > M .009

Left cerebellum -42 -51 -44 1247 9.01 0.002 P > 3 groups .010

Right superior temporal sulcus 42 -45 4 1041 8.74 0.004 N = C > M .032

Left temporal pole/parahippocampal
gyrus

-22 9 -33 593 8.73 0.033 C = P# > M .767

Right orbital gyrus 20 28 -22 577 8.53 0.033 C > N = M .491

Left cuneus -2 -69 10 415 8.14 0.073 C > M (NS) .491
# represents post hoc comparisons that were trending towards significance./dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; M, Men; N, Never users; P, past users; C,
Current users; NS, non-significant.
A B

FIGURE 2

Group differences on the (A) bilateral dorsal anterior cingulate cortex (dACC) and (B) bilateral ventromedial prefrontal cortex (vmPFC) based on a
region-of-interest approach. **p <.01, *p <.05.
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fraction missing info = .021; Figure 4E). Of note, potential outliers were

visually acknowledged. Using a Cook’s distance >.5, we excluded two

influential data points and observed that the relationship survived in

trend (BM = -.089, bM = -.334, pM = .077, n = 38). No other comparison

was related to the left or right rACC thickness for T in never and

past users.

Sensitivity analyses for all post hocs are further presented in

Supplementary Figures 4–8.
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3.2.4 Are exogenous sex hormones linked to
structural correlates of the fear circuitry in
current COC users? Identifying the most
influential factor between salivary EE levels, EE
dosage, and progestin androgenicity

In COC users, we performed GLMs for each ROI with

Hemisphere (2), EE dose (2), and Salivary EE levels, as well as

Hemisphere x EE dose and Hemisphere x EE levels. For GMV,
A B

D EC

FIGURE 4

Associations between endogenous sex hormones and brain morphology. For the bilateral hippocampus, (A) estradiol was negatively correlated in never users
(pM = .040, fraction missing info = .185) and (B) testosterone tended to positively correlate in all participants (pM = .067, fraction missing info = .078). For the
bilateral hypothalamus, (C) estradiol was negatively correlated in never users (pM = .014, fraction missing info = .197) and (D) testosterone was positively
correlated in all participants (pM = .002, fraction missing info = .128). (E) For the left rostral anterior cingulate cortex (rACC), testosterone was negatively
correlated to the cortical thickness in men (pM = .006, fraction missing info = .021). For illustrative purposes, each scatter plot depicts the imputation dataset
being the most similar to the pooled p-value of the post hoc result. Error bars represent 95% confidence intervals.
FIGURE 3

Never users tended to show thicker right anterior insular cortex (AIC) than past users, after adjusting for age and menstrual cycle phase. This
difference became significant after adjusting for additional confounds. #p <.08.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1228504
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Brouillard et al. 10.3389/fendo.2023.1228504
Hemisphere x EE dose interactions were found in the AIC [FM(1, 50)

= 5.08, pM = .029 (.026 ≤ ps ≤.032), hp2M = .092, qFDR = .098], the

dACC [FM(1, 50) = 4.92, pM = .031 (.027 ≤ ps ≤.035), hp2M = .090,

qFDR = .098], and the vmPFC [FM(1, 50) = 4.21, pM = .046 (.042 ≤ ps

≤.051), hp
2
M = .078, qFDR = .098]. Post hocs showed that women

using COCs with a higher EE dose (30-35mg, n = 27) exhibited a

larger right AIC (pM = .020), left dACC (pM = .037) and left vmPFC

(pM = .033) than women using a lower dose of EE (10-25mg, n = 28;

Figures 5A–C). This interaction term was also trending in the rACC

[FM(1, 50) = 3.84, pM = .056 (.047 ≤ ps ≤.066), hp
2
M = .071, qFDR =

.098], although no post hocs emerged significant (pMs ≥.101). For

CT, a main effect of EE dose was trending in the vmPFC [FM(1, 51) =

3.46, pM = .069 (.056 ≤ ps ≤.084), hp
2
M = .064, qFDR = .276], with

30-35mg doses being marginally associated with thicker bilateral

vmPFC compared to 10-25mg doses (Figure 5D). Results were

similar when adjusting for androgenicity, where higher doses

were still associated with greater GMV (though statistical

significance was not met for all ROIs).

To better understand the directionality of the influence of EE dose,

we compared both groups of EE dose users to never users and men on

GMV of the right AIC, left dACC, left vmPFC, and CT of the bilateral

vmPFC. A main effect of Group was found for the right AIC [F(3, 137) =

2.98, p = .034, hp2 = .061], left dACC [F(3, 137) = 5.38, p = .002, hp2 =
.105], and bilateral vmPFC thickness [F(3, 138) = 4.03, p = .009, hp2 =
.080] (Figures 6A–C). Low EE dose users tended to have a smaller

GMV of the right AIC compared to men (p = .051). For the left dACC

GMV, a region previously shown to be larger in all groups of women

(section 3.2.1.), only never users and high EE dose users presented
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greater GMV than men (ps ≤.031), with low EE dose users being most

similar to men and having significantly less GMV than high EE dose

users (p = .037). For the CT of the bilateral vmPFC (where current use

of COCs was linked to vmPFC thinning compared to men; section

3.2.1.), this more in-depth investigation revealed that this difference was

specific to COC users taking low doses of EE (p = .006), with high EE

dose users being most similar to never users. Finally, albeit no group

effect was found for the left vmPFC (p = .434), GMV appeared to be

smaller in women using COCs with a lower dose compared to the three

other groups (Figure 6D).

Looking at progestin androgenicity, Hemisphere (2) x

Androgenicity (3) GLMs revealed no significant effects related to

androgenicity. A marginal main effect of androgenicity was found

for the dACC GMV [F(2, 57) = 3.04, p = .056, hp2 = .096, qFDR =

.389] and dACC CT [F(2, 58) = 2.95, p = .060, hp2 = .092, qFDR =

.241]. Women taking low androgenic COCs (n = 18) tended to have

greater bilateral GMV than those taking high androgenic COCs (n

= 27; p = .055) and greater bilateral CT than those taking anti-

androgenic COCs (n = 17; p = .055; Figures 7A, B). Results

remained similar when adjusting for EE dosage. When further

comparing androgenicity groups to never users and men for the

bilateral dACC, groups significantly differed for the GMV [F(4, 136) =

5.73, p <.001, hp2 = .144], where men exhibited less GMV than

never users (p = .004; as previously shown above) but also than low

androgenic COC users (p <.001). Though no significant group effect

was found for the dACC CT (p = .086), low androgenic COC users

appeared to have a thicker bilateral dACC than all groups (ps ≥.082;

Figures 7C, D).
A B

DC

FIGURE 5

Effect of ethinyl estradiol (EE) doses on the gray matter volume of the (A) anterior insular cortex (AIC), (B) dorsal anterior cingulate cortex (dACC),
(C) ventromedial prefrontal cortex (vmPFC), and (D) the cortical thickness of the vmPFC. *p <.05, #p <.08.
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For EE models, no significant clusters emerged for all WBA

(volume, thickness, VBM). For androgenicity models, we found

significant clusters for CT of the right middle/superior frontal

cortex [cluster-wise p = .0085, MNIxyz = 21.9, 52.3, 25.6, max =

3.38, size (surface area) = 2976.14mm2, kvertices = 4928] and GMV of

the right caudal middle temporal gyrus [cluster-wise p = .023,

MNIxyz = 58.9, -54.4, 0.1, max = 3.17, size (surface area) =

946.08mm2, kvertices = 1875]. T-test post hocs showed that low

androgenic COC users had thicker cortex of the right frontal

cluster than anti-androgenic and high androgenic COC users,

while GMV of the right temporal cluster was larger in anti-

androgenic COC users than both low and high subgroups. Both

results survived when controlling for EE dose. VBM yielded no

significant clusters.
4 Discussion

This study examined the modulation of endogenous and

exogenous sex hormones on structural properties of key regions

implicated in fear expression and regulation. We used rigorous

methodology to decipher whether acute or long-term effects of

COCs were detectable and if we could document an influence

related to menstrual cycle phase, endogenous sex hormone

concentrations, and exogenous endocrine factors of COCs.
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Comparisons of current COC users, past COC users, never users,

and men were carried out on surface-based and voxel-based

morphometry, as well as with both region-of-interest and whole-

brain approaches.

Irrespective of their hormonal contraceptive history, we found

that women showed greater GMV than men in the dACC. This

ROI-based sex difference aligns with previous reports (146–149)

and was further replicated in this study with VBM, among other sex

differences found in the right occipital pole, right postcentral gyrus,

and left inferior frontal gyrus. These results suggest a predominant

role the organizational effects of sex steroids. Indeed, exposure to

sex hormones can confer permanent structural modelling of the

nervous system when occurring in a specific developmental window

(150). Given that COCs are often initiated during adolescence (111,

151–153) and that this developmental stage is considered to be a

rich (re-)organizational period (150, 154–156), we can assume that

GMV of certain regions like dACC are particularly sensitive to the

influence of sex hormones in an earlier developmental stage. This

may explain why later endocrine disruption such as via initiation of

COCs did not yield anatomical alteration. Naturally, other non-

hormonal factors may underlie this finding, such as gender (53).

Given that this result survived the adjustment for many socio-

cultural factors, we are inclined to lean towards a biological

explanation. That said, as we did not measure all relevant

gendered confounds, we are unable to support our claim with the
A B

DC

FIGURE 6

Comparison of current users either taking low or high doses of ethinyl estradiol (EE) with never users and men regarding the (A) right anterior insular
cortex (AIC) volume, (B) left dorsal anterior cingulate cortex (dACC) volume, (C) bilateral ventromedial prefrontal cortex (vmPFC) thickness, and (D)
left vmPFC volume. **p <.01, *p <.05, #p <.08. ns, non-significant.
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current data. Furthermore, we wish to acknowledge the complexity

of sex and gender science and the interaction between both

dimensions (157). Moreover, it is worth noting that many cluster-

corrected findings emerged from SPM’s VBM analysis, though not

from FreeSurfer’s surface-based volumetric WBA. Beyond the

discrepancy across software, this provides insight into VBM’s

sensitivity to sex-sensitive discoveries versus SBM.

The dACC is a region associated with fear expression and

appraisal (39, 158). It was found to be involved in the neural

signature of trait anxiety, where its volume was reported to be a

significant predictor (106). A larger GMV of the dACC was also

found to be a discriminant region between drug-naïve anxiety

patients compared to healthy controls (159). While the role of the

dACC in anxiety appears quite clear, it has also been associated with

positive emotion regulation constructs including the use of

cognitive reappraisal (160), the ability to identify and describing

one’s feelings (161), and effortful control (162, 163). These

conflicting results may stem from the broad role of dACC in

emotion processing and the fact that these complex mental states

are sustained by large networks rather than a single brain region.

They can also be reconciled with regard to paradoxical traditional

women-oriented stereotypes, where women are expected to carry

heavier household responsibilities, plan ahead, have emotional

intelligence, and care and worry about others (164–166).

Our results also showed a reduced CT of the vmPFC in current

COC users compared to men. This aligns with Petersen et al. (57,

58) who also showed a reduction of CT in prefrontal areas, although
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they found significant disparities between NC women and COC

users and did not have a group of men for comparison (57).

Previous studies have reported thicker vmPFC in men compared

to women (167, 168), however, this difference has not been

replicated enough to support a reliable sex difference (169–171).

Thus, a specific comparison of COC users and men may elucidate

the mixed results regarding a potential sex difference of the vmPFC

thickness. Moreover, the vmPFC is consensually viewed as a critical

node for fear regulation (13, 38, 39, 158). Thicker vmPFC has been

associated with greater fear extinction learning and recall (172, 173)

and lesser fear generalization (174), as well as resilience following

trauma exposure (175) and remission in treatment-naïve patients

with obsessive-compulsive disorder (176). Reduced vmPFC

thickness is thought to reflect top-down inhibition deficits,

particularly of amygdala reactivity (177, 178). Interestingly,

poorer extinction recall has been reported in COC users

compared to NC women in a high E2 state (30). COC users also

showed reduced responsiveness to exposure therapy compared to

NC women irrespective of their E2 levels (8, 179). In light of these

findings, our vmPFC result suggests that COCs may confer a risk

factor for extinction deficits during their current use but not after

their discontinuation. Indeed, it is well known that women are more

susceptible to suffering from fear-related psychopathologies than

men, including anxiety and stress-related disorders (3, 16). Given

our results that men have smaller dACC volume than women and

thicker vmPFC than COC users, these findings may represent

structural vulnerabilities to psychopathologies that predominantly
A B
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FIGURE 7

Effects of progestin androgenicity on the dorsal anterior cingulate cortex (dACC). Results are displayed for (A) gray matter volume and (B) cortex
thickness of the three androgenicity groups, as well as additional comparison with never users and past users for (C) gray matter volume and (D)
cortex thickness of this region. ***p <.001, **p <.01, #p <.08. ns, non-significant.
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affect women. Specifically, a larger dACC could represent a female

predisposition to fear promotion, whereas COC use could

exacerbate this vulnerability by potentially inducing a thinning of

a fear-inhibiting region such as the vmPFC. However, as tempting

as it may be to settle on this conclusion, caution must be exercised

when interpreting interrelations between brain morphology and

behavioral or psychological data. Despite the high reliability of

structural imaging (180), the validity of brain-behavior associations

has been criticized (181, 182).

Interestingly, no lasting effects of COC use were detected when

comparing the four groups. The sole difference pointing towards

such effects was in the right AIC, where never users had a greater

CT than past users when controlling for the ‘here and now’

influence of the menstrual cycle. The right AIC has been found to

be engaged in bodily-arousing anxiety-related processing such as

heartbeat awareness, sympathetic nervous system activities, and

unpredictable aversiveness (183–186). Knowing that its volume has

been negatively associated with reactivity to uncertain threat (187),

thinner CT in past users could possibly be interpreted as

deleterious. Most importantly, our overall findings support the

reversibility of the impact of COCs on brain morphology,

especially on vmPFC thickness. Yet, our conceptualization of the

past user group may not have been optimal for detecting long-term

effects. Indeed, as the literature provided little guidance, we used an

arbitrary (yet stringent) criterion of 12 months for a minimal

duration of use and time since discontinuation. Greater variability

for cessation duration (i.e., setting a criterion to a shorter elapsed

time) would have allowed a finer investigation of lasting effects.

Therefore, our results prompt future research to explore the

reversibility of COC use within the first year of discontinuation.

In addition, pooling all past users together may have camouflaged

potential long-term effects. Given that adolescence is a sensitive

period for brain development and that OC use at this age has been

linked to a higher vulnerability to depression (111, 188–191), OC

parameters (e.g., duration of use and age of onset) may be other

relevant and possibly more sensitive factors for studying durable

effects (192). Of note, our team is currently investigating the effects

of these parameters.

For endogenous sex hormone concentrations, we observed

similar patterns for the hippocampus and hypothalamus, where

these two structures are highly susceptible to the influence of sex

hormones (193–195). However, the inverse relationships found for

E2 in never users were quite surprising and opposed the scientific

consensus on the trophic effects of E2 on the hippocampus (45–48).

Considering our unique methodological approach, our hormone-

brain associations should be interpreted cautiously and require

replication. Statistical significance varied considerably across

imputations, as observed by wide p-value ranges and the ‘fraction

missing information’ metric. The latter indicates the variance

proportion pertaining to the multiple imputation procedure.

Specifically, in our study, the variation of one dataset to another

amounted to nearly 20% and was the result of a high non-detection

rate using LC-MS/MS. Importantly, LC-MS/MS provides better

assay validity than immunoassay methods for salivary E2 and P

(especially for low ranges) and is on its way to becoming the gold

standard in endocrine measurement (196–199). Our study shows
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that for a normative adult population (i.e., without pathology,

naturally-circulating and low sex hormone levels), data from LC-

MS/MS are relevant and valid for categorization purposes (mean

comparisons). However, according to our study, the main drawback

of this method relates to statistics based on the continuous nature of

sex steroid levels. Knowing that saliva accounts for free (unbound)

steroids and represents less than 5% of total serum concentrations

(200, 201), we recommend the use of serum samples for future

studies conducting correlational analyses on steroid data obtained

via LC-MS/MS. Visibly, the future of LC-MS/MS is promising and

efforts in refining actual methods for studying sex steroids are

within reach. Improvement in detection rates would certainly allow

the scientific community to better grasp the influence of

endogenous sex hormones on the brain.

For exogenous steroids, we first determined that EE dose (rather

than circulating EE levels) modulated cortical fear-related ROIs in

COC users. This observation is fairly unsurprising, as we expect

brain tissues to adapt over a certain period of time (202). For

instance, we expect this adaptation with constant and chronic

exposure to EE dose, rather than with the rapid fluctuations

inherent to pharmacokinetics. Indeed, GMV of the right AIC, left

dACC, and left vmPFC were significantly larger in COC users using

higher doses of EE compared to lower doses. We were able to

contextualize the direction of this effect by comparing these groups

to men and never users, revealing the atrophic effects of a lower EE

dose rather than the trophic effect of a higher EE dose. This also

allowed us to refine the result regarding CT of the vmPFC in current

COC users, where thinning was driven by lower doses of EE.

Interestingly, the potency of EE is approximately two times

greater than that of E2 on the estrogen receptor alpha (ERa),
while mixed findings have been reported for the estrogen receptor

beta (ERb) (85, 203, 204). Both ERs have been detected in the cortex

(205, 206), with a larger proportion of ERa reported in the vmPFC

(28). Given that endogenous E2 is suppressed by any kind of COCs,

one could hypothesize that only low EE intake (i.e., 10-25mg) may

lead to underactivation of ERa (and potentially ERb to a lesser

degree) and therefore, prevent cortical trophic effects of estrogenic

activity (207, 208). Though we were unable to empirically explore

this option, the impact of EE dosage on brain volumes may follow a

curvilinear trajectory where higher EE doses (e.g., 50 mg) may

induce atrophic effects. Inverted-U relationships of E2 have been

reported on fear extinction (209) and hippocampal activity (210).

Despite its speculative nature, this hypothesis could be further

tested in animal models to deepen our understanding of basic

endocrinology knowledge. We however strongly advise against

testing this hypothesis in women considering the known risk of

much higher EE doses on safety and tolerability of COCs (26, 211).

Yet, based on our results, we propose that a hypoestrogenic state

may only occur when low endogenous E2 is combined with low EE

intake. Conversely, higher EE doses may provide adequate ERa
binding to simulate moderate-to-high estrogenic activity, similar to

NC women. Recent reviews in the field have highlighted the

importance of disentangling OC mechanisms with regard to their

endogenous (i.e., inhibition of the HPG axis) versus exogenous

actions (i.e., intake of synthetic molecules) (84, 85, 212, 213). While

this line of interpretation remains novel, our results provide insight
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into how COC users may be under a hypoestrogenic state when

using regimens containing lower EE doses.

In contrast, our investigation on progestin androgenicity did

not yield convincing effects on the fear circuitry. We reported a

possible inverted-U relationship in the dACC, where low

androgenic activity tended to show trophic influence over this

cortical region. This curvilinear relationship appears to be more

largely spread and stronger in the upper part of the frontal cortex, as

observed by the means of an exploratory WBA. However, even after

statistically controlling for EE dosage, these findings could still

potentially be confounded by higher EE doses in low androgenic

COC users. Due to the small sample size for these models, it is

difficult to clearly depict the impact of androgenicity on the fear

circuitry. To do so, it would be essential to conduct analyses on a

larger sample and to focus on the interaction between EE dose

and androgenicity.

We measured two phenotypes of the GM that have been

previously linked to OC use, namely GMV and CT (59–61). In

our study, some results pertaining to cortical ROIs were found for

GMV, CT, or both. On the one hand, effects specific to CT (e.g.,

thinner vmPFC in current users) or found for both phenotypes (e.g.,

marginal influence of androgenicity on the dACC) suggest changes

in cell restructuring among cortical layers. On the other hand,

effects in GMV but not in CT (e.g., sex difference in the dACC)

suggest that volumetric alterations are consequent to other

properties of the GM such as folding, surface area, or an interplay

between CT, folding and/or surface area. Further investigation of

various GM phenotypes could help singularize which aspect of GM

is particularly influenced by volumetric findings.

For the ROI approach, we opted for an uncorrected significance

threshold for the multiple ROIs, even though qFDRs were presented

for completeness. As multiple testing is an important issue in MRI

studies, it is typically handled using FDR or Bonferroni corrections.

Yet, when applied to ROIs as opposed to WBA, this procedure is

highly dependent on the number of ROIs and may give the false

impression of non-significant results (93). Given the strong a priori

rationale for ROIs defined in our study, we deemed that all

(uncorrected) results were relevant. By looking at effect sizes and

qFDRs, our findings clearly show that the results of medium-to-

large effect size did not survive the FDR adjustment of q <.05 for

ROIs of kGMV = 7 and kCT = 4. Despite filtering out results with the

smallest p-values, this highlights the weakness of a posteriori

corrections (i.e., inflation of false negative rate) for ROI-

based analyses.

Throughout the discussion, few limitations of the present study

were identified. Although the non-randomized cross-sectional

design was informative considering the novelty of this research, it

also warrants caution when making causal inferences. Moreover,

the inclusion of other menstrual cycle phases (e.g., luteal phase)

would have allowed for a more holistic portrait of NC women.

Relatedly, our study is characterized by low external validity due to

stringent sample criteria (e.g., no current or previous psychiatric/

physical diagnosis). Thus, even if we were able to rule out any

‘survivor effect’ among current users (by having a group of past

users), we had a very pure sample of individuals that may be distinct
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from other subgroups. Therefore, generalization of the results is

limited and could explain discrepancies with the literature.

In addition, we identified several future directions and

recommendations for the field. Above, we highlighted the

relevance of exploring the following avenues: the relative role of

sex and gender in terms of OC use and brain correlates, the lasting-

but-reversible OC effects in women having recently stopped using

OCs, and other OC parameters relevant to the discovery of long-

term effects including duration of use and age of onset. Exploration

of other structural properties and replication would also be of great

interest. Moreover, replicating this study with other imaging

methods (e.g., functional MRI) during a fear conditioning and

extinction task would certainly allow for a better understanding

of the current anatomical findings.

While our research does not have a direct clinical focus, it

nonetheless contributes to advancing our fundamental

understanding of the structural brain correlates of COC use. Our

aim is to stimulate applied research by providing valuable insights

and knowledge in the field of psychoneuroendocrinology. We first

recommend evaluating the dose-dependent EE effects on cortical

GM, then the clinical significance of our results, especially the

atrophic effect of low EE doses. While our data may encourage

prescribing COCs containing 30-35mg of EE for women presenting

emotion-dysregulation psychopathologies, future research should

prospectively investigate (in first-time COC users) the clinical effect

size of such atrophy on fear-related symptomatology.
5 Conclusion

As OC use is so widespread, it is important to better understand

its current and long-term effects on brain anatomy and emotional

regulation. Our study demonstrated that COC intake can affect

fear-related brain morphology, but that these effects can be

reversible over time. Studying the brain circuitry underlying fear

regulation and its modulation by endogenous and exogenous sex

hormones could deepen our understanding of the etiology and

maintenance of fear-related psychopathologies predominantly

affecting women such as anxiety disorders and post-traumatic

stress disorder.
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