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Background: Metabolic reprogramming is involved in different stages of

tumorigenesis. There are six widely recognized tumor-associated metabolic

pathways, including cholesterol catabolism process, fatty acid metabolism,

glutamine metabolic process, glycolysis, one carbon metabolic process, and

pentose phosphate process. This study aimed to classify gastric cancer patients

into different metabolic bio-similar clusters.

Method: We analyzed six tumor-associated metabolic pathways and calculated

themetabolic pathway score through RNA-seq data using single sample gene set

enrichment analysis. The consensus clustering analysis was performed to classify

patients into different bio-similar clusters by multi-dimensional scaling. Kaplan–

Meier curves were presented between different metabolic bio-similar groups for

OS analysis.

Results: A training set of 370 patients from the Cancer Genome Atlas database

with primary gastric cancer was chosen. Patients were classified into four

metabolic bio-similar clusters, which were identified as metabolic non-

specificity, metabolic-active, cholesterol-silence, and metabolic-silence

clusters. Survival analysis showed that patients in metabolic-active cluster and

metabolic-silence cluster have significantly poor prognosis than other patients

(p=0.031). Patients in metabolic-active cluster and metabolic-silence cluster had

significantly higher intra-tumor heterogeneity than other patients (p=0.032).

Further analysis was performed in metabolic-active cluster and cholesterol-

silence cluster. Three cell-cycle-related pathways, including G2M checkpoints,

E2F targets, and MYC targets, were significantly upregulated in metabolic-active

cluster than in cholesterol-silence cluster. A validation set of 192 gastric cancer

patients from the Gene Expression Omnibus data portal verified that metabolic

bio-similar cluster can predict prognosis in gastric cancer.

Conclusion: Our study established a multi-dimension metabolic prognostic

model in gastric cancer, which may be feasible for predicting clinical outcome.

KEYWORDS

metabolic reprogramming, bio-similar cluster, gastric cancer, prognostic model, cell-
cycle-related pathway
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Background

Gastric cancer (GC) represents the fourth most common

malignant neoplasm and the second leading cause of cancer-

related death worldwide (1). Although surgery is considered as

the only curative method for GC, perioperative chemotherapy was

recommended due to the improvement of 5-year survival rate (2).

However, chemotherapy resistance occurs sooner or later in these

patients, with drug non-response and disease progression. Tumor-

associated metabolic reprogramming is involved in different stages

of tumorigenesis (3, 4). Tumor survival relies on metabolic

reprogramming (5). Chemotherapy has a comprehensive

relationship with tumor cell metabolism (6). Metabolic

reprogramming is the result of mutations in oncogenes and

tumor suppressor gene, leading to alterations of cell signaling

pathway, transcriptional pathways, and posttranslational

modifications (7). The conventional metabolic pathways involved

in tumor-associated metabolic reprogramming included cholesterol

catabolism process, fatty acid metabolism, glutamine metabolic

process, glycolysis, one carbon metabolic process, and pentose

phosphate process (3).

The tumor-associated metabolic reprogramming in gastric

cancer is similar to other tumor species. Patients with gastric

cancer have poor nutrition status and high incidence of cachexia

than other tumor species. The reduced intake of nutrient intake

might be an essential factor for metabolic reprogramming. Until

now, a number of studies have investigated the metabolic

reprogramming features in gastric cancer. First, the concentration

of glucose is considered relatively depleted in gastric cancer cells

than in healthy or non-malignant stomach cells (8, 9). Moreover,

the high lactic acid level in gastric cancer cells is the result of

sufficient oxygen and the activation of glycolysis. Second, the fatty

acid level is relatively high in gastric cancer cells than in benign

cells, resulting from the high activation of adipocyte lipolysis (10).

The high-level fatty acid metabolism is considered as a contribution

to cancer cachexia (9). Third, glutamine level is greatly depleted in

gastric cancer cells, indicating the high activation of glutamine

metabolism (11). The cumulative evidence showed that glutamine

metabolism contributed to tricarboxylic acid cycle and nucleotide

metabolism to power the tumor cells (11). In addition, other

metabolism processes are also involved in gastric cancer (12).

Although the mechanism of each metabolic process in tumors

has been deeply investigated, it is still not possible to generalize a

metabolic pathway as pro- or anti-tumor. Of course, the role of each

metabolic process is related to different tumor species. However, we

hold a view that it is one-sided to focus on the influence of a simple

metabolic process in tumor-associated metabolic reprogramming,

due to the comprehensive associations between different metabolic

processes. Therefore, this study tries to classify gastric cancer

patients according to the six conventional metabolic processes in

tumor-associated metabolic reprogramming and explore the

difference in overall survival, molecular mechanism, and tumor

microenvironment between the several metabolic subtypes.
Frontiers in Endocrinology 02
Methods

Patients and specimens

RNA-sequencing and matched clinicopathological data

(including histological grade, sex, stage, age, and survival data)

were retrieved from the Cancer Genome Atlas (TCGA) database,

the Cancer Genomics Browser of University of California Santa

Cruz (https://genomecancer.ucsc.edu/).
Metabolism score and consensus
clustering analysis

The feature gene panels of cholesterol catabolism process, fatty

acid metabolism, glutamine metabolic process, glycolysis, one

carbon metabolic process, and pentose phosphate process were

obtained from the molecular signature database (MsigDB). The

enrichment scores of the six metabolic processes of each patient

were analyzed by single sample gene set enrichment analysis

(ssGSEA). ssGSEA estimates the relative enrichment of the six

metabolic process gene sets in each sample by comparing the gene

expression data of each sample with a specific gene set, which was

downloaded from MsigDB.

The clustering method that we utilized in this research is called

consensus clustering analysis. It is an unsupervised clustering,

which use resampling method to extract data. For each sampling,

the number of clusters was specified. Then, the process calculates

the rationality of different cluster numbers using PAC method and

identify and produce the most reasonable clustering result. In our

research, the consensus clustering analysis was performed to classify

patients into several bio-similar groups by multi-dimensional

scaling, which classify samples into several subtypes according to

six metabolic processes enrichment scores, so as to detect new

disease subtypes with similar metabolic features.
Mutant allele tumor heterogeneity

Mutant allele tumor heterogeneity (MATH) algorithm is a

reliable and applicable method to measure intra-tumor

heterogeneity, which has been validated and reported in gastric

cancer (13). The calculation method of MATH was identified at the

Broad Institute of MIT and Harvard. The calculation method

includes three steps. First, each difference value of the mutant-

allele fraction (MAF) was obtained from the median difference

value. Second, the median absolute deviation (MAD) in R was

calculated as values scaled by a factor (1.4826) to make the expected

MAD of a sample from a normal distribution equals the standard

deviation. Third, MATH was figured up as MATH = 100 * MAD/

median. Maftools package in R was utilized to calculate MATH.

Maftools package includes clustering algorithm to improve the

accuracy of genomic pattern.
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Pathway enrichment analysis

Gene set enrichment analysis (GSEA) was used to analyze

signaling pathway enrichment among different metabolic bio-

similar groups (14). The GSEA analysis was performed according

to the following standards: 1) the nominal p-value is lower than

0.05; 2) the value of NES is 1 or more than 1; 3) false discovery rate

(FDR) q-value is lower than 0.25. Pathways that meet the above

three criteria were considered statistically significant. The gene sets

of signaling pathways were downloaded from MSigDB

database (14).
Immune pathway score

The 28 immune pathway activations of patients were analyzed

by single-sample gene set enrichment analysis (ssGSEA). The

activation of the immune pathways were identified by a feature

panel of genes overexpressed in each kind of immune cell (15, 16).

The 28 immune pathway scores include activated CD4 T cell,

activated CD8 T cell, central memory CD4 T cell, central memory

CD8 T cell, effector memory CD4 T cell, effector memory CD8 T

cell, type 1 T-helper cell, activated dendritic cell, natural killer cell,

regulatory T cell, type 2 T helper cell, macrophage, myeloid-derived

suppressor cells (MDSC), activated B cell, gamma delta cell,

immature B cell, T follicular helper cell, eosinophil, mast cell, and

monocyte. The differences in immune pathway activation among

the metabolic bio-similar groups were analyzed.
External dataset validation

RNA-seq and clinical data were retrieved from GEO database.

GSE15459 dataset was downloaded from the GEO (https://

www.ncbi.nlm.nih.gov/gds/) on the GPL570 platform. The

classification of patients by metabolic bio-similar features was

also performed.
Statistical analysis

Statistical methods were all analyzed using R version 3.5.1

(http://cran.r-project.org) and Stata statistical software, version

12.0 (StataCorp, College Station, TX). Patient baseline

characteristics were compared among the different metabolic bio-

similar groups via Wilcoxon rank-sum test, while multiple

comparisons were performed using Kruskal–Wallis test. The

association between patient characteristics and metabolic clusters

was analyzed using the Spearman test. Kaplan–Meier curves were

presented between different metabolic bio-similar groups for OS

analysis. Log-rank test was utilized to compare the overall survival

between different groups. Multivariate analysis of prognostic

predictors was carried out using a Cox proportional hazards

model. The differences in immune pathway activation among the

metabolic bio-similar groups were analyzed using Kruskal–Wallis
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test. The difference in MATH among the metabolic bio-similar

groups were analyzed usingWilcoxon rank sum test. A two-sided p-

value <0.05 was considered significant.
Results

Patient characteristics and metabolic
bio-similar clustering

A total of 370 GC patients with complete information from

TCGA database were enrolled in the study as training cohort. The

clinical and pathological characteristics are illustrated in Table 1.

The enrichment scores of the six metabolic processes of each sample

were analyzed by single sample gene set enrichment analysis

(ssGSEA). As we have calculated the enrichment score of the six

metabolic processes for each sample, then the consensus clustering

analysis, an unsupervised analysis, was performed to classify

patients into several bio-similar clusters according to six

metabolic processes enrichment scores, so as to detect new

clusters with similar metabolic features. In our study, four clusters

were identified. Figure 1 illustrated the six metabolic process

enrichment of each patient and the four clustering of the patients

according to metabolic process enrichment. Patients in different

clusters have prominent characteristics. In cluster 3, except for

cholesterol catabolism, all metabolism processes were activated. In

cluster 2, all metabolism processes were activated, and cholesterol

catabolism was activated only in cluster 2. In cluster 4, all

metabolism processes were in low expression levels. In cluster 1,

none of the metabolic processes are specifically activated or

silenced. Then, we named the four clusters according to

metabolic characteristics. Cluster 1 was named as metabolic non-

specificity cluster. Cluster 2 was named as metabolic-active cluster.

Cluster 3 was named as cholesterol-silence cluster. Cluster 4 was

named as metabolic-silence cluster.

There were no significant relationships between metabolic

subtypes and patient characteristics, including sex, age, stage, and

histological grade (Table 1).
Clinical outcome and metabolic
bio-similar clustering

Survival curves were estimated by Kaplan–Meier method and

analyzed by log-rank test to assess the survival difference between

the four metabolic subtypes. In the total of 370 patients, patients in

metabolic non-specificity cluster and cholesterol-silence cluster had

significantly longer OS than patients in metabolic-active cluster and

metabolic-silence cluster (p = 0.031, Figure 2A). The median OS in

the four metabolic subtypes were 57.4, 21.0, 55.4, and 28.7 months,

respectively. We identified metabolic non-specificity cluster and

cholesterol-silence cluster as good-prognosis group, while

metabolic-active cluster and metabolic-silence cluster were

identified as poor-prognosis group. Patients in good-prognosis

group had significantly longer OS than patients in good-prognosis
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group (p = 0.007, Figure 2B). The multivariate Cox proportional

hazards model showed that metabolic bio-similar clustering, which

was categorized as good- and poor-prognosis groups, was an

independent prognostic factor for OS (hazard ratio, 0.622; 95%

CI, 0.441–0.879; p = 0.007, Table 2), after adjusting for

clinicopathological characteristics, including age, sex, pathological

stage, and histological grade.
Metabolic bio-similar clustering and intra-
tumor heterogeneity

Intra-tumor heterogeneity was measured using mutant allele

tumor heterogeneity (MATH) algorithm. MATH score is

significantly associated with overall survival in gastric cancer

patients, of which the result has been published. The Wilcoxon
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rank sum test showed that patients in metabolic-active cluster and

metabolic-silence cluster had significantly higher MATH score than

those in metabolic non-specificity cluster and cholesterol-silence

cluster (Figure 2C, p = 0.032).
Metabolic characteristics in normal
stomach tissue

We think it is necessary to analyzed the metabolic feature of

normal gastric tissues using the same method, in order to verify that

tumor do affect the metabolism of gastric cells. Then, we analyzed

35 normal gastric tissue from TCGA database (Figure 2D). None of

the metabolic processes were significantly activated or inhibited in

normal gastric tissue. There was no specific metabolic

characteristics in normal gastric tissues.
FIGURE 1

The cluster analysis according to patients’ metabolic characteristics in the training set.
TABLE 1 Association between baseline clinicopathologic characteristics and metabolic bio-similar subtypes.

characteristics Total metabolic
non-specificity

metabolic-
active

cholesterol-
silence

metabolic-
silence

P
value

Age 0.2944

≥65 197 49 52 53 43

<65 173 35 50 41 47

Sex 0.4582

Male 244 59 68 57 60

Female 126 25 34 37 30

Stage 0.2218

I 48 13 11 15 9

II 118 25 42 27 24

III 163 38 35 40 50

IV 29 5 10 10 4

Unknown 12 3 4 2 3

Grade 0.0515

G1 9 1 3 2 3

G2 132 32 42 41 17

G3 220 49 55 50 66

Unknown 9 2 2 1 4
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Gene set enrichment analysis

In metabolic-active cluster and cholesterol-silence cluster, the

patients’ outcome was different, while the metabolic characteristic

was in fact similar, except for cholesterol catabolism. Patients in

cholesterol-silence cluster had significantly longer OS, which was of

most concern in further analysis. The difference in signaling

pathways between different clusters was analyzed using GSEA.

Three cell-cycle-related pathways are significantly downregulated

in cholesterol-silence cluster than metabolic-active cluster, which

were G2M checkpoints, E2F targets, and MYC targets (Figure 2E).
Metabolic bio-similar clustering and
immune pathway activation

The 28 immune pathway activations of patients were analyzed by

ssGSEA. Patients in cholesterol-silence cluster had significantly

longer OS than patients in metabolic-active cluster and metabolic-

silence cluster. The Wilcoxon rank sum test showed that several anti-
TABLE 2 Multivariate Cox regression analysis of prognostic factors for
overall survival in the training cohort.

Characteristics Overall survival

Hazard ratio (95% CI) P value

Age < 65 0.530 (0.374 - 0.751) 0.000

Female gender 0.758 (0.528 - 1.921) 0.133

Stage I 1.134 (0.467 - 2.751) 0.781

Stage II 0.199 (0.093 - 0.429) 0.000

Stage III 0.297 (0.093 - 0.429) 0.000

Stage IV 0.199 (0.164 - 0.539) 0.000

Grade 1 1.444 (0.519 - 4.015) 0.482

Grade 2 0.489 (0.119 - 2.002) 0.319

Grade 3 0.612 (0.417 - 0.900) 0.013

Metabolic bio-similar group 0.622 (0.441 - 0.879) 0.007
B C

D E

F

A

FIGURE 2

The metabolic bio-similar clusters in the training set. (A) Kaplan–Meier plots of overall survival in gastric cancer according to different metabolic bio-
similar clusters. (B) Kaplan–Meier plots of overall survival in gastric cancer according to good- and poor-prognosis groups. (C) Difference in intra-
tumor heterogeneity between different metabolic bio-similar clusters. (D) Metabolic characteristics in normal gastric tissues. (E) Gene set enrichment
analysis between metabolic-active cluster and cholesterol-silence cluster. (F) The characteristics and heat map of the immune cell pathway
activation between metabolic-active cluster and cholesterol-silence cluster.
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tumor immune pathway activation was significantly higher in

cholesterol-silence cluster than in metabolic-active cluster,

including activated CD4 T cell, type17 T-helper cell, and several

pro-tumor immune pathway activations were significantly higher in

metabolic-active cluster than in cholesterol-silence cluster, including

macrophage, MDSC, and plasmacytoid dendritic cell (Figure 2F).
External cohort validation

We enrolled 192 gastric cancer patients with complete RNA-seq

and clinical information from GSE15459 dataset to establish

validation cohort. The 192 patients were classified into four

clusters according to metabolic bio-similar clustering in training

cohort. The enrichment of the six metabolic processes of the

patients and the four clusters are illustrated in Figure 3A. It is

obvious that the metabolic features of the four clusters were

consistent with that in the training cohort.

Survival curves were also estimated by Kaplan–Meier method

and analyzed by log-rank test between the four metabolic subtypes.

In a total of 192 patients, patients in metabolic non-specificity

cluster and cluster 3 had significantly longer OS than patients in

cluster 2 and cluster 4 (p = 0.030, Figure 3B). The median OS in the

four metabolic subtypes were 99.4 months, 23.6 months, not

reached, and 31.2 months, respectively. We identified metabolic

non-specificity cluster and cholesterol-silence cluster as good-

prognosis group, while metabolic-active cluster and metabolic-

silence cluster were identified as poor-prognosis group. Patients

in good-prognosis group had significantly longer OS than patients

in good-prognosis group (p = 0.007, Figure 3C). The multivariate

Cox proportional hazards model showed that metabolic bio-similar
Frontiers in Endocrinology 06
clustering, which was categorized as good- and poor-prognosis

groups, was an independent prognostic factor for OS (hazard

ratio, 0.468; 95% CI, 0.291–0.559; p = 0.002, Table 3), after

adjusting for clinicopathological characteristics, including age, sex,

and pathological stage.
Discussion

Our analysis used the consensus clustering analysis of RNA-

sequencing data to classify gastric cancer patients according to six

conventional metabolic pathways involved in tumor-associated

metabolic reprogramming. Finally, patients were classified into four

metabolic bio-similar clusters. Survival analysis showed that patients

with all metabolic pathway activation or all metabolic pathway

silencing have significantly poor prognosis than the other patients.

Furthermore, an external cohort validated that the metabolic bio-

similar clustering can predict the prognosis of gastric cancer patients.

The aim of the research was to assess metabolic characteristics

according to multiple metabolic dimensions, rather than single

metabolic dimension. The growth of tumor cells requires the

metabolism of nutrients in the body for energy. Therefore, more

than one metabolism pathway must be involved in this process. In

previous research, the role of each metabolism pathway in tumors has

been thoroughly investigated. The same metabolic pathway may play

distinct roles as tumor suppressor or promotion in different kinds of

tumors. For example, a prospective large sample analysis revealed

that serum cholesterol level is positively associated with breast cancer,

colon cancer, and prostate cancer, while it is negatively associated

with liver cancer and lung cancer (17). Moreover, there are complex

interactions between different types of metabolic pathways in the
B C

A

FIGURE 3

The metabolic bio-similar clusters in the validation set. (A) The characteristics and heat map of the metabolic pathways. (B) Kaplan–Meier plots of
overall survival in gastric cancer according to different metabolic bio-similar clusters. (C) Kaplan–Meier plots of overall survival in gastric cancer
according to good- and poor-prognosis groups.
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same tumor species. Different metabolic pathways provide each other

with metabolites and energy. To our knowledge, our study is the first

one to explore metabolic clusters in gastric cancer and revealed out

four metabolic bio-similar clusters in gastric cancer.

In metabolic-active cluster and cholesterol-silence cluster, the

patients’ outcome was different, while the metabolic characteristic

was in fact similar, except for cholesterol catabolism. Patients in

cholesterol-silence cluster had significantly longer OS, which was of

most concern for further analysis. Cholesterol is an important

structure for cell surface, and rapid cell proliferation requires

more cholesterol synthesis. The GSEA analysis showed that three

cell-proliferation-related pathways, namely, G2M checkpoints, E2F

targets, and MYC targets, were significantly downregulated in

cholesterol-silence cluster. What G2M checkpoints, E2F targets,

and MYC targets have in common is that they all play a pivotal role

in cell cycle progression and cell division. The overexpression of

oncogenic G2/M checkpoint may lead to poor prognosis (18, 19).

The cyclin-dependent kinase (CDK)–retinoblastoma gene (RB)–

E2F axis plays an important role in cell cycle progression, which

controls genome replication and accurate cell division cycle (20). In

transformed cells, altered expression of E2F can increase E2F

activity and induce replicative stress and high rates of

proliferation (21). E2F expression and/or E2F targets elevated

expression have been related to poor prognosis in tumors (22,

23). Earliest research suggested that the function of c-Myc was to

promote cell proliferation. Later, it was uncovered that MYC target

genes could encode proteins that regulate cell cycle (24). Cancer

cells, as fast-proliferating cells, require high level of cholesterol

metabolism for membrane biogenesis (25, 26). We hypothesize that

downregulation of cholesterol may influence membrane synthesis,

resulting in inhibition of cell proliferation, which might be the

mechanism of better prognosis of cholesterol-silence cluster. For

metabolic-active cluster, it is obvious that tumor metabolism is the

most active in these patients, which might be a manifestation of

rapid tumor proliferation and lead to poor prognosis.

Moreover, we also found that immune suppression played an

important role in survival difference between metabolic-active cluster

and cholesterol-silence cluster. We compared differences in immune

cell pathway activation between metabolic-active cluster and

cholesterol-silence cluster. The results showed that several pro-tumor

immune cells pathways were significantly activated in metabolic-active
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cluster and several anti-tumor immune cells pathways in cholesterol-

silence cluster. Several studies have reported that high cholesterol

expression in tumor cells is related to the loss of anti-tumor effects in

immune cells. High level of cholesterol can protect tumor cells from

immune surveillance (27). The high production of cholesterol from

tumor cells can promote the expression of suppressive immune

checkpoint in T cells (28).

There was no specific metabolic process activation or inhibition in

in metabolic non-specificity cluster. We calculated enrichment scores

of six metabolic processes in normal gastric tissue using the same

method. It was obvious that non-metabolic process was significantly

activated or inhibited in normal gastric tissue. The similarity of normal

gastric tissue and tumor tissue metabolic non-specificity cluster might

be an important reason why patients in metabolic non-specificity

cluster had better prognosis. Patients in metabolic-silence cluster had

significantly poor prognosis. In general, it is considered that low level

metabolism provides insufficient energy for tumor proliferation and

metastasis. However, our study found that patients with low level

metabolism had significant poor prognosis. In pancreatic cancer,

metabolic bio-similar cluster analysis also reported that patients in

metabolic quiescent cluster had relatively poor prognosis (29). We

suspect that these patients may not have enough nutrients to consume

due to their poor nutritional status. Poor nutritional status is related to

poor prognosis in gastric cancer, which might be the reason why

patients in metabolic-silence cluster had poor prognosis.

After analyzing the characteristics of different subtypes one by one,

let us sort them out again. First, patients in both metabolic-active and

metabolic-silence clusters have relatively poor prognosis. It indicated

that hyperactive metabolism promoted tumor proliferation, while

excessive inhibition of metabolism might result in inadequate energy

supply and poor prognosis. Second, patients in cholesterol-silence

cluster showed good prognosis. According to our further analysis, it

may be due to insufficient raw material cholesterol for cell membrane

synthesis. Lastly, patients in metabolic non-specificity cluster also

showed good prognosis, which might be due to the metabolic

similarity to normal gastric tissue. We hope that the metabolic

clusters provided by our study will provide insights into the design

of targeted therapies in the future.

The present research had several limitations. First, we chose six

of the most recognized metabolic pathways for our study. However,

there must be other metabolic pathways that contribute to tumor

progress, which might not have been uncovered yet or thought to be

less important in tumor metabolism. Second, in metabolic non-

specificity cluster, we failed to distinguish the metabolic

characteristics of these people, which requires further analysis.
Conclusion

Our study established a multi-dimension metabolic prognostic

model in gastric cancer. Patients were divided into four metabolic

bio-similar clusters, including metabolic non-specificity cluster,

metabolic-active cluster, cholesterol-silence cluster, and

metabolic-silence cluster. Patients in metabolic-active cluster and

metabolic-silence cluster had poorer prognosis. To conclude, multi-
TABLE 3 Multivariate Cox regression analysis of prognostic factors for
overall survival in the validation set.

Characteristics Overall survival

Hazard ratio (95% CI) P value

Age≥65 0.416 (0.557 - 1.273) 0.416

Female gender 0.890 (0.565 - 1.401) 0.616

Metabolic bio-similar group 0.468 (0.291 - 0.755) 0.002

Stage I 0.042 (0.014 - 0.122) 0.000

Stage II 0.097 (0.044 - 0.213) 0.000

Stage III 0.350 (0.219 - 0.559) 0.000
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dimension metabolic prognostic model is a feasible method to for

predict clinical outcome in gastric cancer.
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