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Background: Organophosphate (OP) pesticides have been associated with a

decline in semen quality, although there are still considerable arguments about

the magnitude of the association.

Objective: This study provides a systematic review and meta-analysis of the

impacts of OP pesticides on semen quality and male reproductive hormones.

Methods: This study was conducted according to the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA) protocols. Strategic search

was conducted using combined text words as search terms. The eligibility criteria

were developed based on Population, Exposure, Comparator, Outcome, and

Study designs (PECOS) framework. Relevant data were extracted, risk of bias was

evaluated by The Office of Health Assessment and Translation (OHAT) tool, and

certainty of evidence was assessed by the Grading of Recommendations

Assessment, Development and Evaluation (GRADE) Working Group guidelines.

Quantitative meta-analysis was performed by using Review Manager.

Results: A total of 766 male subjects (349 exposed to OP pesticides and 417

unexposed controls) were included in the meta-analysis. There was no

significant difference in the ejaculate volume, seminal fluid volume, sperm

multiple anomaly index, sperm, and leukocytes levels of the OP-exposed

subjects compared to the control. In addition, OP pesticides exposure did not

significantly affect serum concentrations of FSH, LH, and testosterone in subjects

who were exposed to OP pesticides compared to their unexposed counterparts.

However, we found a significant reduction in the sperm count, sperm

concentration, progressive sperm motility, total sperm motility, and normal

sperm morphology of OP pesticides-exposed subjects compared to the

unexposed subjects. However, after subtype and sensitivity analyses, exposure
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to OP pesticides did not reduce sperm count. Also, after sensitivity analysis, OP

pesticides exposure did not alter progressive sperm motility.

Conclusion: This study demonstrates that OP pesticides exposure reduced

sperm count, concentration, total and progressive motility, and normal sperm

morphology, possibly via a testosterone-independent mechanism.
KEYWORDS

endocrine disruptors, environmental toxicants, hormone imbalance, male infertility,
organophosphate, pesticides, sperm, testosterone
Introduction

An estimate of about one in six (approximately, 15%) couples

are affected by infertility globally, and about 50% of this is due to

male factor only and in combination with female factor (1–3). This

has been associated with the global decline in sperm quality (4, 5),

which occurs in concert with hormonal disruption (4). Testicular

pathologies (such as cryptorchidism, testicular torsion and

testicular cancer) (6–8), lifestyle factors, such as diets, smoking,

energy dyshomeostasis and metabolic disorders (9–11), viral

infections (12, 13), pharmaceuticals (14), and environmental

toxicants, such as plasticizers and pesticides (15, 16) have been

implicated in the pathogenesis of hormonal disruption and decline

in sperm quality.

Although several human and experimental studies have shown

that pesticides negatively alter normal physiological processes (17–

20), they also act as endocrine-disrupting chemicals, leading to

alterations in the normal hormonal milieu and reduced sperm

quality (21, 22). Organophosphates are widely used pesticides for

domestic and agricultural purposes (19, 20); however, they have

been linked with endocrine disruption and poor sperm quality. A

substant ia l body of evidence has demonstrated that

organophosphate (OP) pesticides exert adverse effects on male

reproductive hormones and sperm quality. However, most of

these studies are on animal models and data on humans are

limited with insufficient evidence to support this claim.

A cross-sectional study among Venezuelan farmer workers and

unexposed control revealed that exposure to OP pesticides was

negatively correlated with sperm concentration, morphology, and

viability, while circulating testosterone, luteinizing hormone (LH)

and follicle stimulating hormone (FSH) were not altered (23). In

another cross-sectional study among Peruvian pesticide sprayers,

observed a significantly lower ejaculate volume, sperm motility, and

normal morphology as well as serum LH and testosterone levels

among OP-exposed workers when compared with the control.

Padungtod et al. (24) documented that exposure to OP pesticides

among Chinese pesticide factory workers led to reduced sperm

concentration and motility. Recio-vega et al. (25) however observed

that OP pesticides exposure significantly reduced ejaculate volume

and sperm count, but not motility and viability, while Hossain et al.
02
(26) showed that OP pesticides exposure significantly reduced

sperm concentration, motility, viability, and normal morphology.

Unexpectedly, GhafouriKhosrowshahi et al. (27) reported that OP

pesticides markedly reduced sperm count and motility but

increased serum testosterone while ejaculate volume, semen pH

and normal sperm morphology were not significantly affected. This

is similar to the findings of Kamijima et al. (28) that observed a

marked increase in serum testosterone levels among OP pesticides

users. Fascinatingly, Multigner et al. (29) did not observe any

significant difference in sperm parameters and serum male

reproductive hormones in banana plantation workers that were

exposed to OP pesticides and the unexposed counterparts, although

they found significantly reduced testosterone levels in rats captured

in the banana plantations compared with the control rats.

The World Health Organization (WHO) and the International

Labour Organization (ILO) recommend a systematic review and

meta-analysis of studies with estimates of the effects of occupational

exposure with disease risk to estimate the burden of a particular

exposure. In a meta-analysis, Giulioni et al. (30) demonstrated a

significant reduction in ejaculate volume [Weighted mean difference

(WMD) −0.47ml, 95%CI −0.69 to −0.25; p < 0.0001), sperm count

(WMD-40.03, 95%CI −66.81 to −13,25; p = 0.003), concentration

(WMD-13.69 x106/mL, 95%CI −23, 27 to-4.12; p = 0.005) and

motility (WMD −5.70%, 95%CI −12.89 to 1.50; p = 0.12) in OP

pesticides-exposed workers. Although the negative association of

organophosphates with spermatogenesis is noteworthy, the findings

of Giulioni et al. (30) are with some shortcomings. First, some major

studies were missing; only six studies were included in their study.

This might have influenced their findings. In addition, Giulioni et al.

(30) did not conduct a subtype and sensitivity studies to determine

the source of heterogeneity. Moreso, the report of Giulioni and his

colleagues did not appraise individual study included, thus the

quality of evidence, publication bias, risk of bias, and certainty of

evidence are unknown.

In a nutshell, human data on semen quality and male

reproductive hormones in association with OP pesticides

exposure are limited and inconsistent. Hence, the aim of this

study was to analyze the association between OP pesticides

exposure, sperm quality and testosterone levels through a

systematic review and meta-analysis. Also, a comprehensive
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review of the associated mechanisms of OP pesticides-induced male

reproductive dysfunction was presented. This study provides an in-

depth understanding of the effect and associated mechanisms of OP

pesticides on male reproductive function. The research question

was structured according to PECOS statement (Population,

Exposure, Comparators, Outcomes, and Study design); “what is

the effect of OP pesticides exposure on human semen parameters

and testosterone?”.
Methods

Literature search

This systematic review and meta-analysis was conducted on

previously published articles that reported the impact of OP

pesticides on semen quality and serum testosterone levels

according to the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) protocols (31). We

conducted a systematic electronic search on CNKI, Cochrane

Library, EMBASE, Pubmed/Pubmed Central, Scopus, Science

Direct/Elsevier, and Web of Science database to identify

published studies from inception to October 2022. The language

and study type were not restricted. The search terms combined text

words. The search terms for OP pesticides were: ‘OP pesticides’,

‘organophosphate chemical’, ‘organophosphate’, ‘OP chemical’, an

‘OP’. The search terms for semen parameters were: ‘sperm’, ‘sperm

cell’, ‘spermatozoa’, ‘semen analysis’, ‘seminal fluid analysis’, ‘sperm

parameters ’ , ‘sperm variables ’ , ‘sperm count ’ , ‘sperm

concentration’, ‘sperm motility’, ‘sperm viability’, ‘sperm vitality’,

‘sperm morphology’, ‘semen volume’, ‘ejaculate volume’, ‘seminal

pH’, ‘seminal leukocyte’. The search terms for male reproductive

hormones were: ‘testosterone’, ‘luteinizing hormone’, ‘LH’, ‘follicle

stimulating hormone’, ‘FSH’, and ‘male reproductive hormone’. All

relevant articles and abstracts were retrieved. In addition, references

cited in relevant articles were manually retrieved. The search

strategy was pilot-tested and tested against benchmark papers.
Selection of studies and
validity assessment

The eligibility criteria for studies included in the meta-analysis

were developed based on PECOS framework denoting the

Population, Exposure, Comparator, Outcome, and Study designs

of interest as stated below.

Inclusion criteria:
Fron
i. Population: The population studied exclusively included

male adults in their reproductive age group.

ii. Exposure: Studies that investigated the effect of one or

more OP pesticides exposure, originating from domestic

use or occupational exposure, for at least six months.

iii. Comparator: The studies must compare the OP-exposed

individuals with normal age-matched unexposed male

subjects.
tiers in Endocrinology 03
iv. Outcomes: The association betweenOP pesticides exposure

and semen parameters as well as serum testosterone levels

is quantitatively reported. The mean and standard

deviation could also be calculated from the provided data.

v. Study design: The study design is either case-control,

cohort, cross-sectional or ecological. These studies must

be designed to adequately answer the research question

“what is the effect of OP pesticides exposure on human

semen parameters and testosterone?”.
Exclusion criteria:
i. Population: Studies on male animal models and in vitro

studies were not considered eligible

ii. Exposure: Studies on prenatal OP pesticide exposure

were excluded. Also, studies on adult male exposure to

pesticides other than OP pesticides were not included in

this study.

iii. Comparator: Studies without unexposed healthy control

adult males were excluded.

iv. Outcome: Studies that did not report numerical

exposure variable and has higher risk of exposure

misclassification and residual confounding were not

included in this study. In addition, studies reporting

health outcome by self-diagnosis were excluded.

v. Study design: Studies that were not original studies (such

as case reports, review articles, commentaries, letters,

and editorials) were not considered eligible for inclusion.

vi. Conference abstract, thesis, preprint, or not peer

reviewed/grey literature, literature review and

systematic review articles were excluded.

vii. Retracted papers

viii. Studies that were not published in a peer-reviewed

scholarly journal.

ix. Studies not written and published in English.
Two reviewers (ATM and AAE) independently screened the

titles and abstracts of all the citations from the literature search.

Relevant studies that met with the eligibility criteria were retrieved.

The full text was analyzed if an equivocal decision was made on the

basis of the title and abstract, and the final decision of eligible

studies was made by reviewing the article. Disagreements were

resolved by consensus or a third reviewer (HMA or ARE).
Data extraction

The following details were extracted from each eligible study:
i. Authors’ names

ii. The year the study was published

iii. Study design

iv. Country

v. Type of OP pesticides

vi. Number of examined exposed and unexposed (control)

subjects

vii. Age of subjects
frontiersin.org
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viii. Duration of exposure to OP pesticides

ix. Outcomes/variables measured
Quality of evidence assessment

The quality of each study included in the meta-analysis was

assessed using the ErasmusAGE quality score for systematic reviews.
tiers in Endocrinology 04
The five domains assess included study design, study size, method of

measuring exposure, method of measuring outcome, and analysis

with adjustment. These domains were scores as: study design (0 =

cross-sectional study, 1 = longitudinal study, 2 = intervention study),

study size (0 = <50, 1 = 50 to 150, 2 = >150 participants), method of

measuring exposure (0 = not reported, 1 = moderate quality

exposure, 2 = good quality exposure), method of measuring

outcome (0 = no appropriate outcome reported, 1 = moderate
FIGURE 1

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow chart of the selection process for eligible studies. .
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outcome quality, 2 = adequate outcome quality), and analysis with

adjustments (0 = no adjustments, 1 = controlled for key confounders,

2 = additional adjustments for confounders) (32).
Risk of bias assessment

The risk of bias (RoB) assessment was done by three reviewers

(ATM, AAE, and HMA) for each study. Conflicts were resolved by
Frontiers in Endocrinology 05
the fourth reviewer (ARE). The Office of Health Assessment and

Translation (OHAT) tool was used to assess the RoB for each

included study. The six domains assess included selection bias,

confounding bias, attrition/exclusion bias, deletion bias, selective

reporting bias, and other bias. Each domain will be adjudged

definitely low risk of bias, probably low risk of bias, definitely

high risk of bias, or probably high risk of bias per study (33). Also,

we visually assessed the total publication bias using the funnel plot

generated by Review Manager (RevMan) software.
TABLE 1 Eligible studies included in the meta-analysis that reported the effects of organophosphate pesticides on semen quality and male
sex hormones.

References Study
design

Country Type of OP Examined population Age
(years)

Duration
of exposure
(years)

Outcomes/variables
measured

37 Cross-
sectional

China Ethyl parathion,
methamidophis

13 pesticide industry workers
and 16 unexposed control

19-50 vs
22-47

3 to 24 Sperm concentration, total
motility, and morphology

24 Cross-
sectional

China Ethyl parathion,
methamidophis,
methyl parathion

32 pesticide industry workers
and 43 unexposed control

31±9 vs
30±8

12±9 Ejaculate volume, sperm
count, concentration, total
motility, progressive motility,
and morphology

28 Cross-
sectional

Japan Fentothion,
dichlorvos,
chlorpyrifos,
chlorpyrifos-
methyl, diazinon,
propetanphis,

15 pesticide industry workers
and 16 unexposed control in
summer; 14 pesticide industry
workers and 15 unexposed
control in winter

33.8±7
vs 34.5
±7.5

0.5 to 25 Ejaculate volume, sperm
concentration, count,
viability, total motility,
progressive motility, and
morphology; FSH, LH, and
testosterone

Cross-
sectional

Peru Methamidophis 31 pesticide industry workers
and 80 unexposed control

29.7±7.1
vs 32.8
±7.6

– Ejaculate volume, seminal
fluid pH, concentration,
count, viability, total motility,
progressive motility,
morphology, leukocyte, LH,
FSH, testosterone

29 Cross-
sectional

France Cadusaphos,
ethoprophos,
isazophos,
pyrimiphos-ethyl,
terbulos

42 banana plantation workers
and 45 unexposed control

34.8±6.3
vs 38.4
±7.6

– Ejaculate volume, seminal
fluid pH, sperm
concentration, count, total
motility, progressive motility,
morphology, multiple
anomaly index, viability,
FSH, LH, and testosterone

38 Cross-
sectional

Mexico Methylparathion,
metamidiphis,
endosulfan,
dimethoate,
diazinon

46 agriculture workers and 47
unexposed control

19-46 vs
18-47

– Ejaculate volume,
concentration, count, total
motility, progressive motility,
and viability

26 Cross-
sectional

Malaysia Malathion,
paraquat

62 rural farmers and 90
unexposed control

– – Ejaculate volume, seminal
fluid pH, sperm
concentration, motility,
morphology, leukocyte

23 Cross-
sectional

Venezuela Unspecified 64 agricultural workers and 35
unexposed control

18-52 vs
18-42

<2 to >5 Ejaculate volume, sperm,
seminal fluid pH,
concentration, count,
motility, morphology,
viability, multiple anomaly
index

27 Cross-
sectional

Iran Unspecified 30 rural farmers and 30
unexposed control

20-40 – Ejaculate volume, seminal
fluid pH, sperm count, total
motility, progressive motility,
morphology, FSH, LH, and
testosterone
OP, Organophosphate pesticides; * study that reported outcomes/variables in two seasons, summer and winter.
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Certainty of evidence assessment

The confidence in the body of evidence was rated using OHAT

approach for systematic review and evidence integration for

literature-based health assessment (34). This is based on the

Grading of Recommendations Assessment, Development and

Evaluation (GRADE) Working Group guidelines (35). Four

descriptors were used to indicate the level of confidence; high,

moderate, low, and very low (36).
Frontiers in Endocrinology 06
Meta-analysis

Quantitative meta-analysis was performed by using Review

Manager (RevMan) software (version 5.4.1; the Nordic Cochrane

Centre, the Cochrane Collaboration, 2012, Copenhagen, Denmark).

Available data were analyzed in a meta-analysis, comparisons

were made between the populations that were exposed to OP

pesticides and the control groups and referred to as “exposed”

and “unexposed”.
A

B

FIGURE 2

Forest plot (A) and publication bias funnel plot (B) of the effect of organophosphate pesticide exposure on ejaculate volume (mL).
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The standardized mean difference (SMD) of each reported

variable was pooled from the included studies, which was identified

with 95% confidence intervals (95% CIs). The P-value and I-square

statistic (I2) in the pooled analyses were used to determine the

heterogeneity of the studies, representing the percentage of total

variation across studies. The summary estimate was analyzed in a

random-effects model if the P-value was less than 0.1 or the I2-value

greater than 50%; otherwise, a fixed-effects model was used. Visual

symmetry of funnel plots was used to determine publication bias. The

asymmetry of the funnel plot suggests possible publication bias.

Subgroup and sensitivity analysis

To investigate possible sources of heterogeneity, we conducted

subgroup analyses, excluding studies with exposure to unspecified
Frontiers in Endocrinology 07
organophosphates (which included 23 and 27). Also, studies with

exposure to non-OP pesticides in addition to OP pesticides were

excluded (which included 25 and 26). In addition, the study with

participants older than 50 years (23) was excluded.

Sensitivity analyses were performed excluding the study with the

largest weight, studies with at least one domain with “definitely high

risk of bias” or “probably high risk of bias”, studies with low or very

low confidence of evidence, studies with quality of evidence ≤ 5.
Systematic review on mechanisms from
animal and human in vitro studies

A comprehensive review of animal and human in vitro studies

related to the effects and the associated mechanisms of OP
A

B

FIGURE 3

Forest plot (A) and publication bias funnel plot (B) of the effect of organophosphate pesticide exposure on seminal fluid pH.
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pesticides and sperm quality and testosterone levels was

also conducted.
Results

Study characteristics

Using the above-mentioned search strategy, 9 articles were

identified as eligible for this study (Figure 1). Two of the studies

were from China, and one each from Japan, Peru, France, Mexico,
Frontiers in Endocrinology 08
Malaysia, Venezuela, and Iran. Two of the studies did not specify

the types of OP pesticides used, while the remaining 7 did. The

characteristics of the selected studies are presented in Table 1. The

study consisted of a total of 766 male subjects (349 exposed to OP

pesticides and 417 unexposed controls).
Ejaculate volume

Eight studies assessed the impact of OP pesticides exposure on

ejaculate volume (324 in the exposed group and 317 in the unexposed
A

B

FIGURE 4

Forest plot (A) and publication bias funnel plot (B) of the effect of organophosphate pesticide exposure on sperm count (x 106).
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control group). Kamijina et al. (28) examined this in two seasons;

summer and winter. There was no significant difference in the ejaculate

volume of the OP-exposed subjects compared to the control (SMD

-0.23 [95% CI: -0.55, 0.08]; p=0.1), with the presence of significant

inter-study heterogeneity (I2 = 72%; c2 p=0.0004) (Figure 2). There was
no significant publication bias.We also found out that OP exposure did

not significantly alter ejaculate volume after subtype and sensitivity

analyses were conducted (Figure 2).
Seminal fluid pH

Only five studies were included in the seminal fluid pH analysis,

with a total of 229 exposed subjects and 280 unaffected controls. The

analysis revealed that OP pesticide exposure had no effect on seminal
Frontiers in Endocrinology 09
fluid volume (SMD 0.35 [95% CI: -0.59, 1.28]; p=0.47), with

significant inter-study heterogeneity (I2 = 96%; c2 p0.00001). There

was evidence of publication bias. After performing subtype and

sensitivity analyses, we found that OP exposure had no impact on

seminal fluid pH (Figure 3).
Sperm count

The analysis included five studies that reported data on OP

pesticide exposure and sperm count. In a total population of 433

subjects, we found a significant reduction in sperm count of OP

pesticide-exposed subjects compared to unexposed subjects (SMD-

0.32 [95% CI: -0.52, -0.12] p=0.001), with no significant inter-study

heterogeneity (I2 = 29%; c2 p=0.23). There was no evidence of
A

B

FIGURE 5

Forest plot (A) and publication bias funnel plot (B) of the effect of organophosphate pesticide exposure on sperm concentration (x 106/mL).
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publication bias. However, exposure to OP pesticides did not

substantially decrease sperm count after subtype and sensitivity

analyses (Figure 4).
Sperm concentration

Kamijina et al. (28) investigated this in two seasons, summer

and winter, allowing them to analyze the results in 623 subjects (306

exposed subjects and 317 unaffected controls). The sperm

concentrations of OP pesticide-exposed subjects were significantly
Frontiers in Endocrinology 10
lower than controls (SMD -0.50 [95% CI: -0.82, -0.18] p=0.002),

with significant inter-study heterogeneity (I2 = 72%; c2 p=0.0004).

The publication bias was significant. Even after subtype and

sensitivity analyses, the observed significant reduction in sperm

concentration persisted (Figure 5).
Progressive sperm motility

The effect of OP pesticides on progressive sperm motility was

studied in six studies, with Kamijina et al. (28) reporting findings in
A

B

FIGURE 6

Forest plot (A) and publication bias funnel plot (B) of the effect of organophosphate pesticide exposure on progressive sperm motility (%).
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both the summer and winter seasons. There were a total of 810

subjects (242 exposed subjects and 568 unexposed controls). Subjects

exposed to OP pesticides had significantly lower progressive sperm

motility than those not exposed (SMD -0.52 [95% CI: -0.84, -0.20]

p=0.001). Inter-study heterogeneity was significant (I2 = 66%; c2
p=0.007). The Funnel plot was significantly asymmetrical, indicating

that publication bias was present. The observed significant reduction

in progressive sperm motility remained after sensitivity analysis, but
Frontiers in Endocrinology 11
it became comparable between the OP-exposed and unexposed

groups (Figure 6).

Total sperm motility

The total sperm motility analysis comprised nine studies with a

total of 734 participants (337 exposed and 397 controls). Kamijina et al.

(28) investigated this in the summer in addition to the winter. Total
A

B

FIGURE 7

Forest plot (A) and publication bias funnel plot (B) of the effect of organophosphate pesticide exposure on total sperm motility (%).
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sperm motility in OP pesticide-exposed individuals was significantly

lower than in controls (SMD -0.50 [95% CI: -0.80, -0.21] p=0.0008).

Inter-study heterogeneity was significant (I2 = 71%; c2 p=0.0003). The
asymmetry of the Funnel plot indicated significant publication bias.

The observed significant reduction in total sperm motility persisted

even after subtype and sensitivity analyses (Figure 7).

Sperm morphology

The sperm morphology analysis comprised eight studies with a

total of 641 men (291 exposed and 350 unexposed controls).

Kamijina et al. (28) examined winter and summer variations of
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this. The exposed subjects had significantly fewer sperm with

normal morphology (SMD -0.49 [95% CI: -0.93, 0.06] p=0.03)

than the unexposed subjects. Highly significant inter-study

heterogeneity was noted (I2 = 85%; c2 p= 0.00001). Asymmetry

in the funnel plot, which was discovered, is yet another indication of

publication bias. This sperm morphology result was not influenced

by subtype and sensitivity analyses (Figure 8).

Sperm multiple anomaly index

The analysis of the sperm multiple anomaly index only included

two studies, totaling 106 subjects exposed to OP pesticides and 80
A

B

FIGURE 8

Forest plot (A) and publication bias funnel plot (B) of the effect of organophosphate pesticide exposure on normal sperm morphology (%).
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unexposed controls. When compared to the unexposed control, there

was no discernible difference between exposure to OP pesticides and

the sperm multiple anomaly index (SMD -0.01 [95% CI: -0.31, 0.28];

p=0.92). Additionally, there was no discernible inter-study

heterogeneity (I2 = 0%; c2 p =0.57). Confirming the absence of

publication bias, funnel plot symmetry was also discovered (Figure 9).
Sperm viability

Sperm viability was examined in five studies involving a total of

212 exposed participants and 238 controls. Kamijina et al. (28)

conducted an evaluation of this during the summer and the winter.

When compared to unexposed controls, exposure to OP pesticides

did not significantly affect sperm viability (SMD -0.23 [95% CI:

-0.56, 0.11]; p=0.19). Inter-study heterogeneity was significantly

evident in the analysis (I2 = 65%; c2 p =0.01). Furthermore, funnel

plot asymmetry was found, which is consistent with the presence of

publication bias. This observation in sperm viability did not change

after subtype and sensitivity analyses (Figure 10).
Leukocyte level

Only two studies with a total of 263 subjects (93 exposed and 170

unexposed controls) were included in the analysis of sperm leukocytes.

Increased, but marginal, leukocyte levels were observed in OP
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pesticides-exposed subjects compared to the unexposed controls

(SMD 0.98 [95% CI: 0.02, 1.95] p=0.05). Significant inter-study

heterogeneity was observed (I2 = 91%; c2 p=0.0006). The observed

symmetry of the Funnel plot denoted no publication bias (Figure 11).
Serum FSH

The effect of OP pesticide exposure on serum FSH was studied

in four studies, with Kamijina et al. (28) reporting results in both the

summer and winter seasons. There were 318 subjects in total (132

exposed subjects and 186 unexposed controls). OP pesticides

exposure did not significantly affect serum FSH concentrations in

subjects who were exposed to OP pesticides compared to their

unexposed counterparts (SMD -0.07 [95% CI: -0.30, 0.16] p=0.55).

There was no significant inter-study heterogeneity observed

(I2 = 8%; c2 p=0.38). The Funnel plot was asymmetrical denoting

the presence of publication bias. This observation in serum FSH did

not change after subtype and sensitivity analyses (Figure 12).
Serum LH

Kamijina et al. (28) evaluated this in two seasons, summer and

winter, allowing analysis of this outcome in a total of 318 subjects (132

exposed subjects and 186 unexposed controls). OP pesticides exposure

did not significantly alter circulating LH levels in OP pesticides-
A

B

FIGURE 9

Forest plot (A) and publication bias funnel plot (B) of the effect of organophosphate pesticide exposure on sperm multiple anomaly index.
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exposed subjects compared to the unexposed (SMD -0.24 [95% CI:

-0.90, 0.41] p=0.47), with the presence of significant inter-study

heterogeneity (I2 = 86%; c2 p< 0.00001). The Funnel plot was

asymmetrical, depicting publication bias. This observation in serum

LH did not change after subtype and sensitivity analyses (Figure 13).

Serum testosterone

The impact of OP pesticides on serum testosterone was examined

in four studies, with Kamijina et al. (28) reporting findings from both

the summer and winter seasons. In total, 318 subjects (132 exposed

and 186 unexposed controls) were used. The analysis revealed that

there was no significant difference in the circulating testosterone
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levels between the OP pesticides-exposed subjects and unexposed

controls (SMD 0.23 [95% CI: -0.46, 0.93] p=0.51). Significant inter-

study heterogeneity was observed (I2 = 88%; c2 p<0.00001). The

Funnel plot was asymmetrical denoting the presence of publication

bias. This observation in serum testosterone did not change after

subtype and sensitivity analyses (Figure 14).

Discussion

Key findings

This study reports a significant decline in sperm count,

concentration, progressive and total motility, and normal
A

B

FIGURE 10

Forest plot (A) and publication bias funnel plot (B) of the effect of organophosphate pesticide exposure on sperm viability (%).
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morphology in individuals who were exposed to OP pesticides

compared with unexposed controls. Although seminal fluid

leukocyte levels were higher in OP pesticides-exposed individuals

compared with unexposed controls using both studies that were

included in this study (26), this was not significant when the studies

were pooled together. In addition, it was observed that the circulating

levels of LH, FSH, and testosterone were comparable between the OP

pesticides-exposed and unexposed groups; this suggests that OP

pesticides-induced low semen quality is testosterone-independent.

Therefore, the data presented in this study provide a robust

indication and strengthens available evidence that OP pesticides

exposure lowers semen quality by reducing sperm count,

concentration, motility, and normal morphology.
Comparison to previous studies

The decline in sperm count observed in OP pesticides-exposed

men is consistent with the findings of Padungtod et al. (24) and

Recio-vega et al. (25), while our finding that OP pesticides-exposure

cause reduced sperm concentration is also in agreement with the

findings of Padungtod et al. (24) and Ghaouri-khosrowshahi et al.

(27). In addition, these findings agree with observational cross-

sectional studies that reported a negative association between OP
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pesticides and sperm count (22, 39–41). Sperm count is a measure

of spermatogenesis, while sperm concentration is the most

important parameter of testicular toxicity (42). Thus, based on

the results on sperm count and concentration presented here, our

data support the claim that OP pesticides impair spermatogenesis

and exert toxic effects on testicular cells, especially germ cells.

This forms an extension of the reports of Perez-Herrera et al.

(43) that cells at all stages of spermatogenesis are a target of OP

pesticides, and this effect may be mediated by paraoxonase

(PON1) polymorphism.

In addition, our findings that OP pesticides significantly reduce

sperm motility and normal sperm morphology align with some

previous reports (24, 28, 37, 26, 27). These findings also agree with

observational cross-sectional studies that documented a negative

association between OP pesticides and sperm motility (22, 39, 41,

44, 45) and normal morphology (22, 40, 44–47). Since sperm

function requires sperm motility, especially progressive motility

(42), and sperm morphology is an important predictor of exposure

to toxic substances and male factor infertility (48, 49). Our findings

that OP pesticides reduces sperm motility and normal morphology

confirm the spermo-toxic effect of OP, suggest that OP impairs sperm

function, and also implicate OP in the incident male factor infertility.

Although most of the human studies did not assess the likely

mechanisms of action of the effect of OP pesticides on semen
A

B

FIGURE 11

Forest plot (A) and publication bias funnel plot (B) of the effect of organophosphate pesticide exposure on leukocytes (x 106/mL).
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quality, GhafouriKhosrowshahi et al. (27) demonstrated that the

impact of OP pesticides on semen quality may be due to its ability

to increase nitric oxide, reduce total antioxidant capacity, and induce

lipid peroxidation in the serum and seminal fluid.

Previous studies using animal models revealed that dichlorvos

and diazinon, commonly used OP pesticides, exert spermotoxicity

such as broken spermatozoa and reduced sperm motility (50, 51) as

well as testicular toxicity (52). Suzuki et al. (53) demonstrated that OP

pesticides-induced testicular and sperm toxicity was mediated via

fatty acid amide hydrolase (FAAH), which plays key roles in

spermatogenesis and sperm motility acquirement. Inhibition or

downregulation of FAAH stimulates the cannabinoid signal,

resulting in apoptosis of testicular cells like the Sertoli and Leydig
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cells by depriving the developing germ cells nutrients and hormonal

signals needed for optimal development (54, 55). Exposure to

Fenitrithion, an OP pesticides, induces testicular and sperm toxicity

by inhibiting FAAH, although testicular AEA levels, which are

usually modulated by FAAH inhibition, were not altered (53).

Studies have reported the direct testicular toxic effects of

parathion, an OP pesticides, (56, 57), with an associated increase

in abnormal sperm morphology, reduced chromatin quality, and

increased apoptosis of germ cells. Parathion and its metabolite,

paraoxon, also inhibit spermatogonial proliferation (38).

The toxic effects of OP pesticides have been linked with

excessive generation of free radical (58; (59–61), which may alter

the normal physiological function of the blood-testis barrier (62)
A

B

FIGURE 12

Forest plot (A) and publication bias funnel plot (B) of the effect of organophosphate pesticide exposure on serum FSH (IU/L).
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producing covalent bonds with the occludens zone 2 (ZO2) (63)

with multiple effects. This leads to lipid peroxidation of the sperm

cell membrane, which is rich in polyunsaturated fatty acids (64),

which exposed the protein content to denaturation and increases

the susceptibility of the DNA in the nucleus to oxidative injury (65).

In the nucleus, OP chemicals modify the levels of mRNA

encoding Nrf2 and OGG1, which are important in the antioxidant

buffering system and DNA repair (66–68). This may contribute, at

least in part, to the observed reduction in the total antioxidant

capacity of the seminal fluid in OP pesticides-exposed individuals

(27), resulting in germ cell damage and consequent low sperm

count and concentration. This may also promote ultrastructural
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abnormalities such as vacuolization, nuclear pyknosis, lipid droplets

(50, 51, 66, 69), and increased DNA fragmentation (70). These may

also explain the observed OP-induced sperm dysmotility and

reduced normal sperm morphology.
Limitations and strengths

This study has some limitations. First, it is likely, that the non-

inclusion of non-English publications in the present meta-analysis

and the scarcity of well-designed studies to be included might have

limited the pooled sample size. This may inadequately explore the
A

B

FIGURE 13

Forest plot (A) and publication bias funnel plot (B) of the effect of organophosphate pesticide exposure on serum LH (IU/L).
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impacts of OP pesticides on semen quality and testosterone levels.

In addition, the included studies are from a few countries, which

may not necessarily be a good global representative. Also, the

included studies did not report the exposure level of the studied

population, which may affect the study outcome. Furthermore, the

heterogeneity in the included studies resulted in the presence of

outliers in the present meta-analysis; however, we were able to

adjust for this with the statistical approach used. Nonetheless,

owing to the completeness of our search, the present study seems

to be the first robust study including all available case-control

human studies reporting data on OP pesticides and semen quality

and/or testosterone levels, avoiding many limitations of previous

related studies. The present study also provides an extensive review

of possible mechanisms using existing published data.
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Wider implications of our findings

OPs are pesticides, but also used as flame retardants and

plasticizers, hence exposure to OPs is a common and global

phenomenon. This rigorous and comprehensive meta-analysis

reveals that OP pesticides exposure causes a significant decline in

sperm count, concentration, total and progressive motility, and

normal sperm morphology, which is consistent with direct

suppressive and toxic effects of OP pesticides on spermatogenesis

and sperm cells respectively, potentially affecting male fertility.

However, testosterone levels remain unaltered despite a previous

report by that OP pesticides significantly reduced testosterone levels.

The observed decline in sperm quality has wider implications

beyond male fertility. Studies have linked low semen quality with
A

B

FIGURE 14

Forest plot (A) and publication bias funnel plot (B) of the effect of organophosphate pesticide exposure on serum testosterone (ng/mL).
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socio-economic challenges (3, 14) and overall morbidity and

mortality. Thus the observed decline in semen quality may exert

ripple effects across the male lifespan. Our findings should,

therefore drive a search for possible measures to prevent and

ameliorate the impacts of OP pesticides on male fertility.
Conclusion and future perspective

The present comprehensive meta-analysis clearly demonstrates

that exposure to OP pesticides causes reduced sperm count,

concentration, total and progressive motility, and normal sperm

morphology, possibly via a testosterone-independent mechanism

(Figure 15). These findings strengthen existing evidence in the

literature on the negative impacts of OP pesticides exposure on

semen quality. Well-designed large case-control studies evaluating

the effect and possible associated mechanisms of OP pesticides on

semen quality are needed to reach more definitive conclusions.

Also, possible measures that may prevent and/or ameliorate OP-

induced low semen quality should be researched.
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FIGURE 15

Graphical abstract illustrating the effect and mechanisms of action of OP on semen quality and male reproductive hormones.
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Munguıá B, Martıń-Tapia D, et al. The organophosphate pesticide methamidophos
opens the blood-testis barrier and covalently binds to ZO-2 in mice. . Toxicol Appl
Pharmacol (2018) 360:257–72. doi: 10.1016/j.taap.2018.10.003

64. Akhigbe R, Ajayi A. Testicular toxicity following chronic codeine administration
is via oxidative DNA damage and up-regulation of NO/TNF-a and caspase 3 activities.
PloS One (2020) 15(3):e0224052. doi: 10.1371/journal.pone.0224052

65. Ajayi AF, Akhigbe RE. Codeine-induced sperm DNA damage is mediated
predominantly by oxidative stress rather than apoptosis. Redox Rep (2020) 25(1):33–
40. doi: 10.1080/13510002.2020.1752003

66. Narayana K, Prashanthi N, Nayanatara A, Kumar SG, Kumar HHC, Bairy KL,
et al. A broad-spectrum organophosphate pesticide O,O-dimethyl O-4-nitrophenyl
phosphorothioate (methyl parathion) adversely affects the structure and function of
male accessory reproductive organs in the rat. Environ Toxicol Pharmacol (2006)
22:315–24. doi: 10.1016/j.etap.2006.05.001
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70. Sánchez-Peña LC, Reyes BE, López-Carrillo L, Recio R, Morán-Martıńez J,
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