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Unraveling the associations
and causalities between
glucose metabolism and
multiple sleep traits

Minhan Yi1,2,3†, Quanming Fei1,3,4†, Ziliang Chen1,2,3†,
Wangcheng Zhao1,3,4, Kun Liu2, Shijie Jian2, Bin Liu1, Meng He1,
Xiaoli Su1 and Yuan Zhang1,3*

1Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China,
2School of Life Sciences, Central South University, Changsha, China, 3National Clinical Research
Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 4Xiangya
Medical School, Central South University, Changsha, China
Purpose: The aim of our study is to estimate the associations and causalities of

glucose metabolism traits of fasting blood glucose (FBG), fasting insulin (FINS),

glycosylated hemoglobin (HbA1c), and 2-h glucose post-challenge (2hGlu) with

sleep traits consisting of excessive daytime sleepiness (EDS), insomnia, and sleep

duration.

Methods: We employed standard quantitative analysis procedures to assess the

associations between sleep traits and glucose metabolism. Moreover, we acquired

published genome-wide association studies (GWAS) summary statistics for these

traits and conductedMendelian randomization (MR) analyses to estimate their causal

directions and effects. Inverse varianceweighting (IVW)was employed as the primary

approach, followed by sensitivity analyses.

Results: A total of 116 studies with over 840,000 participants were included in the

quantitative analysis. Our results revealed that participants with abnormal glucose

metabolism had higher risks for EDS (OR [95% CI] = 1.37 [1.10,1.69]), insomnia (OR

[95% CI] = 1.65 [1.24,2.20]), and both short and long sleep duration (OR [95% CI] =

1.35 [1.12,1.63]; OR [95% CI] = 1.38 [1.13,1.67] respectively). In addition, individuals

with these sleep traits exhibited alterations in several glycemic traits compared with

non-affected controls. In MR analysis, the primary analysis demonstrated causal

effects of 2hGlu on risks of EDS (OR [95%CI] = 1.022 [1.002,1.042]) and insomnia (OR

[95% CI] = 1.020[1.001,1.039]). Furthermore, FINS was associated with short sleep

duration (OR [95% CI] = 1.043 [1.018,1.068]), which reversely presented a causal

influence on HbA1c (b [95% CI] = 0.131 [0.022,0.239]). These results were confirmed

by sensitivity analysis.

Conclusion: Our results suggested mutual risk and causal associations between

the sleep traits and glycemic traits, shedding new light on clinical strategies for

preventing sleep disorders and regulating glucose metabolism. Future studies

targeting these associations may hold a promising prospect for public health.
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Introduction

Diabetes mellitus (DM), affecting over 350 million people

worldwide and bringing over 1,200 billion USD in economic

burden, is one of the leading causes of death (1, 2). DM can also

result in various outcomes that have a high degree of mortality and

morbidity, such as cardiovascular diseases, neuropathy,

nephropathy, retinopathy, diabetic foot ulcers, and many other

diseases (3). Glucose metabolism can be well reflected by traits of

fasting blood glucose (FBG), fasting insulin (FINS), glycosylated

hemoglobin (HbA1c), and 2-h glucose post-challenge (2hGlu). FBG

and FINS levels refer to glucose and insulin levels in the blood after

an overnight fast, which were respectively used to assess baseline

blood glucose level, and insulin production and insulin resistance

(4, 5). 2hGlu levels, usually treated as part of an oral glucose

tolerance test (OGTT), refer to the measurement of glucose levels

in the blood 2 h after consuming a standardized glucose load (6).

HbA1c levels measure the percentage of hemoglobin molecules that

have glucose attached to them, reflecting the average blood sugar

level over the previous 2 to 3 months (7). The relationship between

these glycemic traits can vary depending on the scenario of

abnormal glucose metabolism, such as diabetes, impaired fasting

glucose (IFG), impaired glucose tolerance (IGT), hyperinsulinemia,

and insulin resistance (IR). Since various glycemic traits signify

distinct irregularities in glucose metabolism, approaching research

from the standpoint of glycemic traits will yield more

comprehensive insights into unraveling the interrelated

pathogenic pathways involving glucose metabolism. Furthermore,

identifying modifiable risk factors is beneficial in reducing the

underdiagnosis and the occurrence of DM and related

complications, ultimately improving quality of life and reducing

healthcare costs.

Sleep constitutes approximately one-third of an individual’s life.

Excessive daytime sleepiness (EDS), insomnia, and extreme sleep

duration are highly prevalent sleep traits, demonstrating strong

representativeness across different aspects of sleep (8, 9). Previous

studies focused on associations between DM and sleep traits. Lin et al.

conducted a cohort study with a large sample size of 28,390 insomnia

patients and 57,413 controls, and they found that there were

significant higher cumulative incidence of type 2 diabetes mellitus

(T2DM) in the insomnia group than unaffected controls at 1, 5, and
Abbreviations: 2hGlu, 2-h glucose post-challenge; 95% CI, 95% confidence

intervals; ADA, American Diabetes Association; BMI, body mass index; DM,

diabetes mellitus; DSM, Diagnostic and Statistical Manual of Mental Disorders;

EDS, excessive daytime sleepiness; ESS, Epworth sleepiness scale; FBG, fasting

blood glucose; FINS, fasting insulin; GWAS, genome-wide association studies;

HbA1c, glycosylated hemoglobin; ICSD, International Classification of Sleep

Disorders; IFG, impaired fasting glucose; IGT, impaired glucose tolerance; IV,

instrumental variable; IR, insulin resistance; IQR, interquartile range; IVW,

inverse variance weighting; MR, Mendelian randomization; MVMR,

multivariable MR analysis; NHANES, National Health and Nutrition

Examination Survey; NOS, Newcastle–Ottawa Scale; OR, odds ratio; RAPS,

Robust Adjusted Profile Score; SD, standard deviation; SE, standard error;

SMD, standardized mean difference; T2DM, type 2 diabetes mellitus; WHO,

World Health Organization; WOS, Web of Science.
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10 years of follow-up (10). Shan Z and his colleague performed a

meta-analysis using only prospective studies, and their results showed

a U-shaped relationship between sleep duration and risk of T2DM,

with both short and long sleep duration associated with a significantly

increased risk of diabetes (11). Yusuf et al. performed a population-

based cross-sectional study using data from the 2015–2018 National

Health and Nutrition Examination Survey (NHANES). Their

findings indicated a significant association between DM and a

higher prevalence of EDS among American adults, which was

unaffected by demographic or sleep-related factors (12). Moreover,

several studies indicated a potential connection between sleep traits

and cardiometabolic phenotypes, which represented adverse

metabolic conditions (13, 14). While the understanding of the

relationship between specific glycemic traits and multiple sleep

traits is limited. In addition, there are disadvantages that cannot be

avoided. First, the sample sizes of published studies were too small,

which weakened the generalizability of the findings. Furthermore,

multiple confounding factors, such as physical activity and nutritional

status (15, 16), could interfere with interpreting results, creating bias

in relevant research. More importantly, these studies often

emphasized the presence or absence of association while failing to

pay enough attention to the causal relationships because of the

significant challenges presented in exploring causality solely

through observational studies. Nevertheless, clarifying the causality

between glycemic traits and sleep traits would be valuable for

investigating the underlying mechanisms and would aid in

implementing early preventive interventions for abnormal glucose

metabolism and various sleep traits. Therefore, it would be of great

value to apply powerful tools to clarify the relationship, causal

direction, and effect sizes between sleep traits and glycemic traits.

Meta-analysis, by expanding the sample sizes from multiple

centers, has the advantages of avoiding bias from a single study. In

addition, Mendelian randomization (MR) analysis is a popular

method to clarify the causal association between risk factors and

health outcomes in observational epidemiological research by using

available genetic variants as instrumental variables (IVs) (17). In

contrast to traditional observational studies, MR analysis confronts

less latent interference due to the naturalness and randomness of

genetic variants in inheritance to offspring. At the same time, MR

can avoid the disadvantages of randomized trials, such as their cost,

long duration, and infeasibility (18). To date, MR analysis has been

successfully applied to the causal research of sleep traits (19–24).

Although the publication of the latest genome-wide association

studies (GWAS) covering EDS (25), insomnia (26), sleep duration

(27), and glycemic traits (28) has provided the basis for the

achievability of MR analyses, comprehensive MR analyses on the

causality of sleep traits and glycemic traits have not been

performed previously.

The objective of our study is to assess the associations and

causal relationships between sleep traits and glycemic traits. We

have pictorially presented the article abstract in Figure 1. By

combining meta-analysis and MR together, we found an

interactive relationship and bidirectional causality between sleep

traits and glycemic traits, suggesting potential intervention

strategies to enhance the management of glucose metabolism and

improve sleep quality.
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Materials and methods

Quantitative analysis to evaluate the
associations

Search strategy
PubMed, Web of Science (WOS), Embase, and Cochrane

Library were searched on 7 March 2022, and updated on 20

September 2023 using the following terms: one sleep trait in turn

(daytime sleepiness, insomnia, and sleep duration) and glycemic
Frontiers in Endocrinology 03
traits (glycated hemoglobin OR glycosylated hemoglobin OR

HbA1c OR insulin OR glucose OR sugar OR glycemic), which

were then connected by “and”.

Selection criteria
The listed inclusion and exclusion criteria for each topic strictly

adhered to the PICOS principles, i.e., participants (P), intervention

(I), control (C), outcome (O), and study design (S).

The criteria to evaluate the impact of altered glucose

metabolism on the occurrence of sleep traits were as follows: (1)
FIGURE 1

Workflow to study association and causality between glycemic metabolism and sleep traits. Quantitative analysis and Mendelian randomization (MR)
analysis were combined to explore the association and causality between sleep traits and glycemic metabolism. OR, odds ratio; SMD, standardized
mean difference; EDS, excessive daytime sleepiness; FBG, fasting blood glucose; HbA1c, glycosylated hemoglobin; FINS, fasting insulin; 2hGlu, 2-h
glucose post-challenge; IV, instrumental variable; IVW, inverse variance weighting; RAPS, Robust Adjusted Profile Score; CHD, coronary heart
disease; T2DM, type 2 diabetes mellitus.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1227372
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yi et al. 10.3389/fendo.2023.1227372
P: Participants were reported with diabetes, prediabetes, and other

abnormal glucose metabolic conditions without restrictions of age,

gender, and other demographic characteristics. Abnormal glucose

metabolism was determined in accordance with any highly

recognized diagnostic criteria, such as guidelines from the

American Diabetes Association (ADA), World Health

Organization (WHO), and so on. (2) I: There was no intervention

involved. (3) C: People without abnormal glucose metabolic

conditions served as controls. (4) O: There were recorded events

of specific sleep trait in each group. (5) S: Studies provided available

data in case–control or cross-sectional configurations.

To assess the level differences in glycemic traits between groups

with and without a specific sleep trait, the PICOS were as follows:

(1) P: Participants were confirmed with EDS or insomnia without

restrictions of age, gender, and other demographic characteristics.

EDS was diagnosed when participants obtained an Epworth

sleepiness scale (ESS) score of 10 or above. Insomnia was

diagnosed based on the Diagnostic and Statistical Manual of

Mental Disorders (DSM), the International Classification of Sleep

Disorders (ICSD), various standardized questionnaires, or other

reliable approaches. (2) I: There was no intervention involved. (3) C:

People without the corresponding sleep trait were selected as

controls. (4) O: There was an absolute level with the clear unit

form for each glycemic trait. (5) S: Studies provided available data in

case–control designs or others.

To compute the absolute concentrations of glycemic traits in

individuals with different sleep durations, the PICOS were as

follows: (1) P: Participants were classified as short (<7 h), normal

(7–9 h), or long sleep duration (>9 h) by self-reports or objective

measures without restrictions of age, gender, and other

demographic characteristics. (2) I and O: They are the same as

described above. (3) C: No control group was accounted for the

single-arm design. (5) S: Studies provided available data in

prospective or cross-sectional configurations.

Additionally, we set the exclusion criteria as follows: unoriginal

studies, duplicate publications, and studies focusing on non-human

subjects or with missing data.

Data extraction and quality assessments
Data collection was carried out separately by two researchers,

and controversies were settled by discussion when there were

divergences. Accordingly, basic information (first author, country

or region, and publication year), sample size and diagnosis detail of

participants, events of specific sleep traits, levels of glycemic traits,

etc. were extracted, and the Newcastle–Ottawa Scale (NOS) was

adopted to perform the quality evaluation of the included

literature (29).

Statistical analysis
Data analysis was operated in Review Manager 5.3 (The Nordic

Cochrane Centre, The Cochrane Collaboration, London, UK). For

dichotomous variables, pooled odds ratio (OR) and 95% confidence

intervals (95% CI) were calculated to assess the strength of the

association. For continuous variables, standardized mean
Frontiers in Endocrinology 04
differences (SMDs) and 95% CI were calculated to evaluate the

differences in levels of glycemic traits between compared groups. In

addition, single-arm meta-analysis was used to compute the

absolute levels and 95% CI of glycemic traits in individuals with

different sleep behaviors (short, normal, and long sleep duration) in

Stata/SE 15.1 for Mac (64-bit Intel) Revision 21 Nov 2017. The data

format of mean ± standard deviation (SD) was used for analysis, the

mean ± standard error (SE) was transformed using the formula SE =

SD/√N (N = number of individuals), while median and interquartile

range (IQR) were transformed using Wan et al.’s and Luo et al.’s

statistical methods in cooperation with the sample sizes, which have

proven to be more adaptive and stable (30, 31). Next, heterogeneity

for the articles included in the analysis was monitored by the I²

statistic. If I2 > 50%, the random effect model was implemented to

calculate the pooled data; otherwise, the fixed effect model was used.

Meanwhile, sensitivity analyses were performed, wherein each study

was sequentially removed, and the analysis was repeated to

determine if any individual study would reverse the statistical

significance of the results. Lastly, publication bias was checked

through funnel plots to enhance quality evaluation.
Mendelian randomization analyses to
estimate causality

Study design
A two-sample MR analysis was performed to assess the causal

relationship between sleep traits and FBG, HbA1c, FINS, and 2hGlu

levels, respectively. In detail, we first explored the causal effect of

each sleep trait on glucose metabolism traits, and then reversely, the

causal influences of glucose metabolism traits on sleep traits

were investigated.
GWAS datasets
The GWAS summary statistics for glycemic traits of FBG

(mmol/L), FINS (pmol/L), HbA1c (%), and 2hGlu (mmol/L)

levels were studied from 281,416 non-diabetic participants with

different ancestors, including European, Hispanic, East Asian,

South Asian, African-American, and sub-Saharan African

participants (28). After adjustment for body mass index (BMI),

99 novel loci and 143 previous loci were identified by single-

ancestry and trans-ancestry GWAS meta-analyses.

The datasets for sleep traits were all from the UK Biobank, a

prospective research program of over 500,000 residents in the UK

(32). The majority of participants were of European ancestry and

the sleep status of EDS (N = 452,071), insomnia (N = 453,379), and

sleep duration (N = 446,118) was from the self-reported

questionnaire. To determine EDS, participants were asked “How

likely are you to doze off or fall asleep during the daytime when you

don’t mean to” and then were divided into cases and controls

according to their different answers (25). For insomnia, the question

to identify was “Do you have trouble falling asleep at night or do

you wake up in the middle of the night?” (26), while sleep duration

was defined according to the question “About how many hours of
frontiersin.org
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sleep do you get in every 24 h? (including naps), with responses in

hour increments” (27). The cutoff for sleep duration was <7 h for

short sleepers, 7–9 h for normal sleepers, and ≥7 h for long sleepers.

Finally, 42 loci, 57 loci, and 78 loci were identified respectively for

EDS, insomnia, and sleep duration.

The GWAS datasets for glycemic traits and sleep traits we chose

have larger sample sizes compared with others, and they were all

obtained through rigorous methodology. However, the GWAS

dataset we chose has two limitations. One is that most of the

study population is of European ancestry, and the other is that sleep

traits were obtained through self-reports rather than

objective assessment.

Selection of genetic variants
In the selection of genetic variants, significant genome-wide

single-nucleotide polymorphisms (SNPs) were set as p < 5×10−8.

Moreover, criteria of distance = 10,000 kb and r2 = 0.001 were

enforced to guarantee that selected SNPs associated with sleep traits

or glycemic traits were correspondingly independent without

linkage disequilibrium. The included instrumental variables (IVs)

are presented in Supplementary eTables 1, 2, and their individual

and mean F-statistics values >10 indicate strong associations

between the IVs and each exposure (Supplementary eTables 1, 2;

Supplementary Tables 1, 2). In order to estimate the possible effect

of the genetic variants on the outcome through probable

confounding factors, known as horizontal pleiotropy, we also

performed PhenoScanner analysis to screen whether any selected

SNP was strongly associated with other traits at a threshold of 5 ×

10−8 (33, 34). The results of the related traits, effect size (b),
standard error (SE), p value, and sample size (n) for each

matched variant were extracted and shown in Supplementary

eTables 3, 4.
Statistical analysis
We used the inverse variance weighting (IVW) method (35),

with all variants assumed to be effective instrumental variables (IV),

as our main analysis of the bidirectional causal relationship between

sleep traits and glycemic traits. We calculated ORs converted by the

exponential b for binary outcomes. The threshold of statistical

significance was established as p-value <0.05.

To confirm the reliability of the results, a series of sensitivity

analyses was performed alongside. If the IVs violated the MR

assumptions, MR-Egger (36), weighted median (37), and MR-

Robust Adjusted Profile Score (RAPS) (38) were also performed

to effectively complement the potential situations. Moreover,

intercept values of MR-Egger analysis can reveal potential

pleiotropic effects, while Cochrane’s Q test was evaluated for

heterogeneity in our IVW and MR-Egger analyses. Furthermore,

we applied the RadialMR package to identify outliers (39), then

repeatedly conducted the above analytical procedure after removing

outliers for validation of positive results. In addition, we conducted

multivariable MR analysis (MVMR) (40) to estimate the causality of

genetically predicted exposure on outcome with adjustment for

potential confounders of T2DM (41) and coronary heart disease

(CHD) (42).
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Results

Association between sleep traits and
glucose metabolism from quantitative
analyses

We finally included a total of 116 publications with a sample

size of over 840,000. The inclusive and exclusive procedures for

retrieved publications are shown in Supplementary Figure 1. Out of

these, 26 articles were analyzed to track the occurrence of sleep

traits in people with abnormal glucose metabolism, and a further 90

publications were evaluated to highlight the level in differences of

glycemic traits between compared groups (Tables 1, 2;

Supplementary Tables 3, 4). Every included article was of high

quality with an NOS score equal to or more than 6.

The risks of sleep traits increase in abnormal
glucose metabolism population

For this section, the abnormal glucose metabolism for

participants in the analyses encompassed diabetes and impaired

fasting glucose. We observed that participants with abnormal

glucose metabolism had higher increases in the risks for four

sleep traits compared with the unaffected population, including

EDS (37%), insomnia (65%), and short (35%) and long (38%) sleep

duration (Table 1; Figure 2A; Supplementary Figure 2). Sensitivity

analysis confirmed the robustness of the results, and funnel plots

suggested no publication bias (Supplementary Figure 3).

EDS and insomnia influence levels of glycemic
traits differently

According to our analyses, participants suffered from higher

FBG (SMD = 0.16, 95% CI = [0.04,0.29]) and FINS (SMD = 0.61,

95% CI = [0.38,0.84]) levels in comparison with controls, while

insomnia participants suffered from higher 2hGlu (SMD = 0.32,

95% CI = [0.15,0.49]) levels. There was a lack of association between

FBG and HbA1c levels and insomnia (Figures 2B, C; Supplementary

Figure 4). Sensitivity analysis demonstrated that there were limited

articles that would contradict the above statistical findings. Funnel

plots suggested no publication bias in meta-analyses related to EDS

and insomnia (Supplementary Figure 5).

FINS and HbA1c show associations with sleep
duration

Next, long sleepers and short sleepers revealed significant and

mild higher levels of FINS compared to normal sleepers,

demonstrating a J-shape association between FINS levels and

sleep duration (Figure 3; Supplementary Figure 6). Furthermore,

HbA1c levels were higher in long sleepers than in normal sleepers,

who in turn had higher HbA1c levels than short sleepers, exhibiting

a tendency to increase roughly with prolonged sleep duration

(Figure 3; Supplementary Figure 7). However, we failed to find

apparent differences in FBG levels and 2hGlu levels among people

with different sleep durations (Figure 3; Supplementary Figures 8,

9). Funnel plots indicated no publication bias in all the single-arm

meta-analyses (Supplementary Figures 10–13).
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TABLE 1 Characteristics of included studies related to sleep traits risk in abnormal glucose metabolism and unaffected population.

Study ID Country
Case group Control group

Definition of case NOS
Events Total Events Total

Extensive daytime sleepiness, EDS as events

Mokhlesi 2019 (43) US 32 59 18 38 T2DM 7

Hein 2018 (44) Belgium 134 277 464 1,034 T2DM 8

Mirghani 2016 (45) KSA 12 178 0 100 T2DM 8

Bediwy 2016 (46) Egypt 17 45 5 31 FBG ≥ 100 mg/dL 7

Raman 2012 (47) India 102 1414 5 136 T2DM 8

Reutrakul 2011 (48) US 11 26 50 116 GDM 7

Skomro 2001 (49) Canada 32 58 18 48 T2DM 7

Insomnia as events

Vézina-Im 2021 (50) Canada 32 54 39 97 T1DM or T2DM 6

Zhang 2019 (51) China 68 337 578 4,741 T2DM 7

Ramos 2015 (52) US 60 612 42 401 T2DM 7

Nakanishi-Minami 2012 (53) Japan 11 74 6 32 T2DM 6

Zheng 2012 (54) China 113 225 239 773 IFG or IGT 8

Voinescu 2011 (55) Romania 32 97 16 102 T2DM 7

Vgontzas 2009 (56) US 41 414 93 1,327 T2DM 8

Short sleep duration (<7 h) as events

Jang 2023 (57) Korea 1,183 1,630 5,156 7,186 DM 8

Cui 2021 (58) China 174 550 207 550 T2DM 7

Lu 2021 (59) China 136 1,503 1,671 18,999 IFG 6

Liu 2020 (60) China 128 2,023 1,393 40,781 T2DM 8

Joo 2020 (61) Korea 150 525 394 1,639 IFG 8

Titova 2020 (62) Sweden 518 1,523 5,547 17,246 DM 7

Wang 2017 (63) China 22 919 228 11,587 GDM 8

Lou 2014 (64) China 145 634 1,839 14,511 IFG 7

Lou 2012 (65) China 234 954 3,009 15,939 T2DM 7

Chao 2011 (66) China 47 180 399 2,495 T2DM 6

Wang 2021 (67) China 17 196 3 304 GDM 6

Long sleep duration (>9 h) as events

Titova 2020 (62) Sweden 89 1,523 608 17,246 DM 7

Chojnacki 2018 (68) Canada 93 996 605 8,433 HbA1c ≥ 6.5% 6

Wang 2017 (63) China 542 919 6,339 11,587 GDM 8

Raman 2012 (47) India 23 1,414 1 136 T2DM 6
F
rontiers in Endocrinology
 06
 fro
DM, diabetes mellitus; T2DM, type 2 diabetes mellitus; FBG, fasting blood glucose; IFG, impaired fasting glucose; IGT, impaired glucose tolerance; GDM, gestational diabetes mellitus; HbA1c,
glycated hemoglobin; NOS, Newcastle–Ottawa Scale. Events: suffering from the corresponding sleep disturbance.
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TABLE 2 Characteristics of the included studies about glycemic traits levels in EDS and insomnia.

Study ID Country No. Cases/controls
Level
(Cases)

Level
(Controls)

NOS

Excessive daytime sleepiness, EDS as case group

Fasting blood glucose, FBG

Li 2019 (15) China 33/24 5.28 ± 0.69 5.43 ± 0.72 6

Huang 2016# (69) China 119/56 5.45 ± 0.66 5.28 ± 0.60 7

Andaku 2015 (70) Brazil 27/308 96.6 ± 16.3 98.3 ± 23.7 7

Yu 2015 (71) Korea 14/11 92.71 ± 1.18 93.09 ± 9.58 8

Pulixi 2014 (72) Italy 13/39 99 ± 13 104 ± 29 6

Bonsignore 2012 (73) Italy 25/25 102.9 ± 16.9 94.1 ± 13.1 7

Nena 2012 (74) Greece 274/255 108.4 ± 15.2 105.8 ± 13.0 7

Barcelo 2008 (16) Spain 22/22 115 ± 19 103 ± 20 8

Fasting insulin, FINS

Li 2019 (15) China 33/24 15.83 ± 11.05 10.50 ± 4.95 6

Huang 2016# (69) China 119/56 97.36 ± 48.53 76.70 ± 29.95 7

Nena 2012 (74) Greece 25/25 19.7 ± 14.3 11.5 ± 5.6 7

Barcelo 2008 (16) Spain 22/22 15.2 ± 7.6 8.6 ± 4.8 8

Insomnia as case group

Fasting blood glucose, FBG

O 2023 (75) China 90/896 7.93 ± 2.53 7.40 ± 2.23 8

Zhang 2021 (76) China 94/178 4.73 ± 0.77 4.74 ± 1.19 8

Xu 2020 (77) China 30/18 5.2 ± 1.1 5.1 ± 1.2 8

Leblanc 2018 (78) US 16,714/33,729 102.4 ± 9.45 102.4 ± 9.70 6

Tschepp 2017 (79) Germany 17/15 97.6 ± 8.2 96.3 ± 10.3 8

Ham 2017 (80) Korea 106/307 97.07 ± 12.17 98.28 ± 18.66 7

Pyykkönen 2012 (81) Finland 163/395 5.6 ± 0.5 5.5 ± 0.5 8

Keckeis 2010 (82) Germany 21/33 98.8 ± 8.9 96.0 ± 8.0 7

Glycosylated hemoglobin, HbA1c

O 2023 (75) China 90/896 7.84 ± 1.66 7.40 ± 1.29 8

Leblanc 2018 (78) US 12,485/32,776 5.8 ± 0.26 5.9 ± 0.25 6

Tschepp 2017 (79) Germany 17/15 5.3 ± 0.3 5.3 ± 0.3 8

Keckeis 2010 (82) Germany 21/33 5.3 ± 0.3 5.2 ± 0.3 7

2-h glucose post-challenge, 2hGlu

Tschepp 2017 (79) Germany 17/15 100.5 ± 14.8 105.1 ± 28.7 8

Pyykkönen 2012 (81) Finland 163/395 5.7 ± 1.6 5.2 ± 1.4 8

Keckeis 2010 (82) Germany 21/33 120.2 ± 17.8 109.5 ± 23.5 7
F
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 frontie
Data are expressed as mean ± SD unless specifically labeled. *Data are expressed as means ± SE; #Data are expressed as median (interquartile). NO: Number; NOS: Newcastle–Ottawa Scale.
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Causalities exist between sleep traits and
glycemic traits by Mendelian
randomization

Elevated 2hGlu level has a probable causal effect
on higher EDS risk

When estimating the causality of altered levels of glycemic traits

on EDS by the primary method of IVW, a slight causal effect of

2hGlu levels on EDS was observed (OR = 1.022, 95% CI =

[1.002,1.042], p = 0.033), with each 1 unit change in 2hGlu levels

increasing 2.2% in EDS (Figure 4A). No pleiotropy in MR-Egger

analysis was found, but both IVW and MR-Egger showed the

presence of heterogeneity (Supplementary Table 5). Next, after

outliers were removed, the significant association of 2hGlu levels

on EDS was further confirmed in more detailed methods such as

IVW, weighted median, and MR RAPS (Supplementary Figure 14).

While the causality from EDS to glycemic traits was

null (Figure 4B).
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Increased 2hGlu level has a probable causal
effect on higher risk for insomnia

Next, we conducted similar analyses between four glycemic

traits and insomnia. By the IVW method, we observed the almost

causal effect of FBG levels (OR = 1.025, 95% CI = [1.000,1.051], p =

0.050) on insomnia and significant causal influence of 2hGlu level

on insomnia (OR = 1.020, 95% CI = [1.001,1.039], p = 0.040)

(Figure 5A). Moreover, the effects of FBG and 2hGlu levels on

insomnia were replicated by different complemented methods after

excluding outliers (Supplementary Figures 15A, B). No significant

associations were detected from insomnia to analyzed glycemic

traits (Figure 5B).

Higher FINS level is a probable causal factor for
increase in short sleep duration

While exploring the effects of glycemic traits on different sleep

duration variables, we found that FINS levels presented causal

associations with sleep duration and short sleep duration by IVW
A

B

C

FIGURE 2

Associations between sleep traits and glucose metabolism by meta-analysis. (A) OR (odds ratio) and 95% confidence interval (95% CI) were used to
assess the effects of abnormal glucose metabolism on the risk of EDS, insomnia, and short and long sleep duration. (B) Standardized mean
difference (SMD) and 95% CI were used to compare the level differences of glycemic traits (FBG and FINS) between participants with and without
EDS. (C) Standardized mean difference (SMD) and 95% CI were used to compare the level differences of glycemic traits (FBG, HbA1c, and 2hGlu)
between participants with and without insomnia. FBG levels associated with insomnia in Panel (C) (bottom) show the result after multiplying the
original value by 10. The statistically different results with p < 0.05 are shown in blue. EDS, excessive daytime sleepiness; dur, duration; NO, number;
P/C, patients/controls; FBG, fasting blood glucose; HbA1c, glycosylated hemoglobin; FINS, fasting insulin; 2hGlu, 2-h glucose post-challenge.
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(Figures 6A–C). Furthermore, in sensitivity analysis, the effect of

FINS on sleep duration was weak, as only the method of MR RAPS

was significant (Supplementary Figure 16A), but probable causality

of higher FINS on increases in short sleep duration was observed in

other more detailed methods, including weighted median and MR

RAPS (Supplementary Figure 16B).

More short sleep duration has a probable causal
effect on HbA1c levels

In exploring the effects of sleep duration, and short and long

sleep duration as causes for glycemic metabolism, we only observed

the causal influence of an increase in short sleep duration on HbA1c

levels using the IVWmethod (b = 0.131, 95% CI = [0.022,0.239], p =

0.018) (Figures 7A–C). The causal influence of short sleep duration

on HbA1c levels was also supported by weighted median and MR
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RAPS except for MR-Egger (Supplementary Figure 17). Thus, the

causal effect of short sleep duration on HbA1c levels was probable.

Results of MVMR to test the effect of potential
confounding factors

Furthermore, MVMR results showed that the causal effects of

2hGlu levels on EDS and insomnia were robust after adjustment for

CHD. In addition, the causality of 2hGlu levels on EDS instead of

insomnia remained after adjustment for T2DM. Furthermore, the

effect of FINS on short sleep duration was consistent when adjusting

for CHD but was eliminated upon adjustment for T2DM, although

the effect size showed the same direction as the original effect size

(Supplementary Table 6). Lastly, the causal association from short

sleep duration to HbA1c levels disappeared with CHD and T2DM

adjusted. Taken together, our MR results above indicated that
A

B

D

C

FIGURE 3

Associations between sleep duration and glucose metabolism by meta-analysis. (A) Effect size (ES) and 95% confidence interval (95% CI) were used
to assess the levels of FINS in short (<7 h), normal (7–9 h), and long sleep duration (>9 h). (B) ES and 95% CI were used to assess the levels of HbA1c
in short (<7 h), normal (7-9 h), and long sleep duration (>9 h). (C) ES and 95% CI were used to assess the levels of FBG in short (<7 h), normal (7–9 h),
and long sleep duration (>9 h). (D) ES and 95% CI were used to assess the levels of 2hGlu in short (<7 h), normal (7–9 h), and long sleep duration (>9
h). P, participants; FBG, fasting blood glucose; HbA1c, glycosylated hemoglobin; FINS, fasting insulin; 2hGlu, 2-h glucose post-challenge; NO,
number; sleep dur, sleep duration.
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minimal pleiotropic SNPs existed and supported the

observed causalities.
Discussion

The relationship between glucose metabolism and sleep has

been a widely debated and poorly understood topic. In this study,

we conducted a comprehensive meta-analysis and MR analysis to

explore the relationship between five sleep traits and four distinct

glycemic traits. Our analyses demonstrated that there are mutual

risk associations between glycemic traits and several sleep traits. We

also observed that probable causalities exist mainly from disturbed

glycemic traits to sleep disruption. These findings offer valuable

perspectives in the early recognition and prevention of glucose

disruption and the sleep problems, and emphasize the importance

of further research to elucidate the underlying mechanisms.

EDS and insomnia are two common sleep disorders; however,

their relationships with glucose metabolism remained unclear. In

our analyses, we found that individuals with abnormal glucose

metabolism are inclined to have sleepiness and insomnia, and

identified that the EDS and insomnia population tended to have

higher FBG and FINS levels, and higher 2hGlu levels, respectively.

These results were supported by several observation studies (12, 43,

83). Furthermore, our MR analyses expanded these findings by

demonstrating the probable causation of increasing 2hGlu levels on
Frontiers in Endocrinology 10
EDS and insomnia risk in the non-diabetic population. This is

complementary to previous analyses, which reported that no

significant causal effect of T2DM on insomnia was found (84), or

that insulin resistance does not contribute to the development of

insomnia (85). Some studies have improved our understanding of

pathophysiologic pathways that underpin the probable causality.

Hyperglycemia was found to enhance an increase in tryptophan,

which plays an essential role in promoting sleep by influencing the

serotonin synthesis in the central nervous system (86). This

evidence appears to be more plausible and suggests that

investigating the role of tryptophan as a rewarding aspect in the

causal pathway from elevated 2hGlu levels to EDS is warranted.

Moreover, several mechanistic studies have demonstrated that

increasing glucose levels can activate the RAF-MEK-ERK-NF-kB
pathway, resulting in inflammation and subsequently contributing

to the development of insomnia (87, 88). Nocturnal polyuria due to

osmotic diuresis and neuralgia due to peripheral neuropathy may

also be potential contributors to insomnia (89). Additionally, our

findings highlighted the potential health threat of extremely

increasing glucose levels or even the pre-diabetic stage of the

impairment of glucose tolerance to EDS and insomnia,

underscoring the importance of eliminating overeating and

managing postprandial glucose levels to alleviate sleep quality.

Furthermore, we found that there was a J-shaped relationship

between sleep duration and FINS levels, and a rising trend in

HbA1c levels from short to long sleep duration. The non-linear
A

B

FIGURE 4

Assessment of causal associations between glucose metabolism and EDS. (A) Causal effects of glycemic traits (FBG, FINS, HbA1c, and 2hGlu levels)
on EDS were estimated by the primary method of IVW. (B) Causal effects of EDS on FBG, FINS, HbA1c, and 2hGlu levels were estimated by the
primary method of IVW. The statistically different results with p < 0.05 are shown in blue. EDS, excessive daytime sleepiness; SNP, single-nucleotide
polymorphism; OR, odds ratios; b: regression coefficient; CI, confidence intervals; FBG, fasting blood glucose; FINS, fasting insulin; HbA1c,
glycosylated hemoglobin; 2hGlu, 2-h glucose post-challenge.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1227372
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yi et al. 10.3389/fendo.2023.1227372
associations were similar to other J/U-shaped associations between

sleep duration with blood pressure (90, 91), and between sleep

duration with cognitive impairment (92, 93). Furthermore, our

results from bidirectional MR analyses demonstrated potential

causal effects of FINS levels on short sleep duration, and short

sleep duration on HbA1c levels, suggesting a vicious cycle between

short sleep duration and glucose metabolism disruption. However,

no causation was revealed between long sleep duration and FINS

levels by our MR analysis. The potential mechanisms that connect

sleep duration and glucose metabolism may vary between short and

long sleep duration. Central insulin signaling in glucose metabolism

plays a crucial role in regulating sleep-related mechanisms and sleep

architecture, which makes it possible to promote short sleep

duration (94, 95). Additionally, short sleep duration may decrease

melatonin secretion (96) and trigger systematic inflammation (97,

98), potentially disrupting glycemic control through a variety of

pathways, including insulin resistance, reduced insulin sensitivity,

and impaired glucose tolerance (99). Moreover, short sleep duration

can lead to decreased leptin levels and increased growth hormone-

releasing peptide levels, which can result in an increase in hunger

and appetite, adding to the burden of glucose metabolic regulation

(100). Currently, the potential mechanisms that explain the

relationship between longer sleep duration and an increased risk

of diabetes are still largely speculative. Long sleep duration is

suggested to potentially be associated with several risk factors that

can disrupt glucose metabolism, such as fatigue, depression,
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obstructive sleep apnea, undiagnosed medical disease, low

socioeconomic status, low physical activity, and poor physical

health (101).

As far as we know, our study is the first to involve both

associations and bidirectional causations between sleep traits and

glycemic traits, and shows the advantages of larger sample sizes,

fewer potential confounding factors, higher cost-effective ratios, etc.

We identified detailed potential causal pathways linking various

sleep traits (EDS, insomnia, and sleep duration) and glycemic traits

(FBG, FINS, 2hGlu, and HbA1c), addressing gaps in existing studies

and expanding the scope of relevant research. Notably, our

bidirectional analysis of glycemic traits and sleep traits revealed

the presence of a potential feedback loop. This feedback loop

establishes a dynamic and self-reinforcing relationship between

altered levels of glycemic traits and short sleep duration,

ultimately contributing to adverse outcomes. At the same time,

our bidirectional approach overcomes the interpretation challenges

associated with reverse causation in traditional observational

studies, mainly the inability to determine which is the exposure

and which is the outcome of two variables.

Moreover, our findings have significant clinical implications.

Firstly, we have revealed that alterations in specific glycemic traits

could cause adverse effects on sleep even in populations without

diabetes. Our findings highlight the significance of monitoring

alteration in glycemic traits before the development of diabetes and

propose the possibility of developing potential schemes for the early
A

B

FIGURE 5

Assessment of causal association between glucose metabolism and insomnia. (A) Causal effects of glycemic traits (FBG, FINS, HbA1c, and 2hGlu
levels) on insomnia were estimated by the primary method of IVW. (B) Causal effects of insomnia on FBG, FINS, HbA1c, and 2hGlu levels were
estimated by the primary method of IVW. The statistically different results with p < 0.05 are shown in blue. SNP, single-nucleotide polymorphism;
OR, odds ratios; b: regression coefficient; CI, confidence intervals; IVW, inverse variance weighting; FBG, fasting blood glucose; FINS, fasting insulin;
HbA1c, glycosylated hemoglobin; 2hGlu, 2-h glucose post-challenge.
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recognition of DM based on altered levels of glycemic traits. For

instance, considering the causal effect of short sleep duration onHbA1c

levels in non-diabetic populations as well as the ease of measuring sleep

duration, the development of appropriate clinical screening of sleep

behavior could prove advantageous in identifying populations with or

at risk of diabetes as early as possible. Secondly, our results suggest

potential clinical strategies to mitigate outcomes by modifying

exposures, as both glycemic traits and sleep traits are modifiable

factors. For example, considering the causality from FINS levels to

short sleep duration and the causality from short sleep duration to

HbA1c levels, regulating FINS levels would help to ensure adequate

sleep duration, and health education on avoiding short sleep duration

could improve long-term regulation of glucose metabolism, thereby

breaking the vicious cycle between altered levels of glycemic traits and

short sleep duration. A randomized controlled trial demonstrated that

educational intervention for patients with T2DM or impaired fasting

blood glucose effectively enhanced sleep quantity and quality while
Frontiers in Endocrinology 12
lowering FBG levels and HbA1c levels within a 3-month period,

confirming the clinical value of sleep education (102).

However, there are still several unavoidable limitations in our

study. First, some variables included a relatively small number of

publications in the meta-analysis, which may lead to an publication

bias. Second, the definitions of sleep traits in GWAS summary

statistics were based on self-reporting, which may be subject to

classification bias. Third, participants in the GWAS were mainly

recruited from groups of European ancestry, which limited the

applicability of our results to those with non-European ancestry.

Moreover, the objective monitoring methods of sleep traits and the

inclusion of a wider range of genetic backgrounds within the study

population should also be considered. Furthermore, conducting more

mechanistic studies involving biochemical pathways could help

elucidate the causal link between sleep traits and glucose metabolism.

In conclusion, our results suggest important and close

associations between abnormal glucose metabolism and multiple
A

B

C

FIGURE 6

Estimated causal effects of glucose metabolism on sleep duration. (A–C) Causal effects of glycemic traits (FBG, FINS, HbA1c, and 2hGlu levels) on
sleep duration (A), long sleep duration (B), and short sleep duration (C) were estimated by the primary method of IVW. SNP, single-nucleotide
polymorphism; b: regression coefficient; CI, confidence intervals; IVW, inverse variance weighting; FBG, fasting blood glucose; FINS, fasting insulin;
HbA1c, glycosylated hemoglobin; 2hGlu, 2-h glucose post-challenge.
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sleep traits. Additionally, we found probable causal associations

from higher 2hGlu levels to more EDS and insomnia, from elevated

FINS levels to short sleep duration, and from increasing short sleep

duration to higher HbA1c levels. In the future, studies are

encouraged to elucidate the underlying mechanisms and develop

strategies to improve sleep and prevent disruptions in glucose

metabolism and adverse outcomes.
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