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Aldosterone is one of the most essential hormones synthesized by the adrenal

gland because it regulates water and electrolyte balance. G protein–coupled

estrogen receptor (GPER) is a newly discovered aldosterone receptor, which is

proposed to mediate the non-genomic pathways of aldosterone while the

hormone simultaneously interacts with mineralocorticoid receptor. In contrast

to its cardio-protective role in postmenopausal women via its interaction with

estrogen, GPER seems to trigger vasoconstriction effects and can further induce

water and sodium retention in the presence of aldosterone, indicating two

entirely different binding sites and effects for estrogen and aldosterone.

Accumulating evidence also points to a role of aldosterone in mediating

hypertension and its risk factors via the interaction with GPER. Therefore, with

this review, we aimed to summarize the research on these interactions to help (1)

elucidate the role of GPER activated by aldosterone in the blood vessels, heart,

and kidney; (2) compare the non-genomic actions between aldosterone and

estrogen mediated by GPER; and (3) address the potential of GPER as a new

promising therapeutic target for aldosterone-induced hypertension.
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1 Introduction

Hypertension is considered one of the most common chronic diseases worldwide and is

associated with a high risk of various cardio-cerebral vascular diseases. It is estimated that

approximately 31% of adults worldwide have hypertension, and this proportion is

expected to substantially increase to 60% by 2025 (1). Hyperaldosteronism is one of

the most common mechanisms of secondary hypertension, which involves an increase
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in the secretion of aldosterone, because of its function in governing

volume and electrolyte homeostasis in the body. Mineralocorticoid

receptor (MR) antagonists, mainly spironolactone, have long been

used as traditional drugs to control blood pressure but have failed to

treat resistant, refractory, and renal hypertension. Therefore, there

is a need to enhance knowledge about the regulation mechanisms of

aldosterone to identify new therapeutic targets.

Aldosterone is a classic steroid hormone in the renin-

angiotensin-aldosterone system (RAAS), which mediates various

physiological activities, playing a primary role in the maintenance

of water and electrolyte balance by activating MR. MR belongs to

nuclear receptor subfamily 3 with glucocorticoid receptor, and the

two receptors share the same structure, including the N-terminal

domain, DNA-binding domain, and C-terminal ligand-binding

domain (2). In general, MR moves from the cytoplasm to the

nucleus upon ligand binding to regulate the transcription of its

target genes and consequent protein expression. RAAS blockade is a

commonly used clinical strategy to alleviate cardiac insufficiency, to

inhibit cardiac remodeling, ameliorate proteinuria, and to decrease

blood pressure. However, in early 1981, Staessen et al. (3) found that

long-term angiotensin (Ang) II suppression with captopril in

patients with hypertension did not decrease the plasma

aldosterone concentration, which was in contrast to the

expectation; in fact, the opposite effect was found in that, despite

an initial decrease, the aldosterone plasma concentration increased

from 21 to 165 pg/mL after 1 year of captopril treatment. Since then,

there has been extensive research effort to better understand this

unexpected phenomenon, including exploring the effects of

treatment with the Ang II receptor inhibitor candesartan or

valsartan in patients with hypertension (4) and the combination

of the renin inhibitor aliskiren with valsartan in patients with

hypertension and proteinuria (5). However, all these studies

consistently supported the same conclusion that long-term

suppression with angiotensin-converting enzyme/Ang receptor

inhibitors could not effectively reduce the plasma aldosterone

concentration and conversely resulted in an increase in the level

of circulating aldosterone, which was subsequently defined as the

“aldosterone escape” or “aldosterone breakthrough” phenomenon.

These findings raised the possibility that other mechanisms are

likely involved in stimulating aldosterone secretion independent of

RAAS. Studies in the last decade suggest that an autocrine-paracrine

mechanism may be responsible for a large part of the aldosterone

breakthrough effect. Moreover, the classical receptor MR is only

involved in approximately 50% of the activities of aldosterone based

on studies employing spironolactone (6, 7), indicating that other

aldosterone receptors exist in the cell membrane.

Despite several candidates, these additional receptors remained

somewhat of a mystery until the recent discovery of G protein–

coupled estrogen receptor (GPER) as a novel aldosterone receptor

that primarily mediates its non-genomic actions. Various lines of

evidence demonstrate that GPER induces aldosterone biosynthesis

(8) and rapid actions, which could help to explain the landmark

deviations from expectation emerging from the MR pharmacology

studies mentioned above (9). GPER was long considered an orphan

receptor before its natural ligand estrogen was discovered. Evidence

also indicates that aldosterone likely accelerates cancer growth and
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spread. Therefore, there has been active research on the use of

GPER as a potential therapeutic target for cancers, especially in

gynecological malignancies such as breast and endometrial cancers.

It is well demonstrated that GPER is required for the proliferation

and migration of breast cancer and renal cortical adenocarcinoma

cells, which involves the activity of sodium/hydrogen exchanger-1

(NHE-1) and different aldosterone concentrations (9, 10).

Therefore, GPER is emerging as a strong candidate to explain

aldosterone regulation and related diseases such as hypertension

and cancer. To help advance research in this field and its clinical

translation, this review systematically summarizes the mechanisms

and actions of GPER activated by aldosterone and elucidates the

primary events mediated by GPER following aldosterone exposure

(Figure 1). Finally, the challenges and prospects in developing

GPER as a promising therapeutic target for aldosterone-induced

hypertension treatment in the future are discussed, which can help

to address the limitations of current treatments.
2 Hypertension and aldosterone

Hypertension, including essential and secondary hypertension,

is a multifactorial disease associated with an increased risk of

various cardio-cerebral vascular diseases. Specific causes of

secondary hypertension include aortic coarctation, renal artery

stenosis, thyroid disorders, aldosteronism, obstructive sleep apnea,

pheochromocytoma, and Cushing syndrome (11). Drug treatment

is the first-line therapy for essential hypertension, whereas

etiological treatment is more suitable for secondary hypertension.

Angiotensin-converting enzyme inhibitors, angiotensin receptor

inhibitors, calcium channel blockers, beta receptor blockers, and

thiazides are widely used in the clinical treatment for essential

hypertension. The guidelines advocate combination drug

treatments and emphasize individualized therapy (12). The

treatment for secondary hypertension depends on the precise

pathogenesis, including inhibition of cortisol secretion in Cushing

syndrome, implantation of stents in renal artery stenosis, and other

etiological treatments. Moreover, the exciting discovery of a novel

vaccine offers a new and practical therapeutic approach to

hypertension (13, 14). However, resistant hypertension, the

“aldosterone breakthrough” phenomenon, and anti-hypertensive

drug intolerance remain challenges in current treatment strategies.

Thus, there is an urgent need to identify new drug targets for the

treatment of hypertension.

Primary aldosteronism is a common cause of secondary

hypertension, which is characterized by hyperaldosteronemia,

inducing cardiorenal fibrosis, water and sodium retention,

hypokalemia, and vasoconstriction. Aldosterone is distinct from

other hormones such as glucocorticoids and androgens in that it

regulates electrolyte homeostasis and the extracellular fluid volume.

As a significant member of the RAAS, aldosterone is principally

synthesized from cholesterol in the zona glomerulosa and is secreted

mainly in response to Ang II stimulation, elevated serum potassium

levels, and increased adrenocorticotrophic hormone levels (15).

Long-term suppression of the RAAS is a widely applied treatment

strategy to alleviate high blood pressure but fails to decrease the
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aldosterone concentration to normal levels. The autocrine/paracrine

mechanism is responsible for part of this “aldosterone escape”

phenomenon. An increased mast cell population and upregulation

of the serotonin 5-Hydroxytryptamine (5-HT) signaling pathway

have been observed in aldosterone-producing adenomas (16).

Moreover, mast cell degranulation stimulates aldosterone synthesis

by releasing 5-HT and activating 5-HT4 receptors (16). In addition to

mast cells, chromaffin cells, nerve endings, endothelial cells, and

adipocytes regulate aldosterone production by releasing bioactive

signals, including neurotransmitters and neuropeptides (17). In

recent years, lipid secondary messengers such as phosphatidic acid,

diacylglycerol, and sphingolipid metabolites have been implicated in

the synthesis and secretion of aldosterone (15).

Unexpectedly, accumulating evidence is revealing that, in

addition to MR, aldosterone can bind to GPER to exert its non-

genomic actions (9, 18, 19). Furthermore, Ang II can influence

aldosterone synthesis through the interaction of Ang II receptor

type 1 with GPER (8), providing a mechanism to link GPER

overexpression with the elevation in aldosterone in patients with

aldosterone-producing adenomas. As a newly discovered receptor

responsible for the non-genomic actions of aldosterone, GPER has

attracted increasing attention in the context of hypertension owing

to its role in vascular reactivity and cardiorenal function.
3 GPER: a new receptor
for aldosterone

GPER, also known as GPR30, is a seven-transmembrane G

protein–coupled receptor (GPCR) that was first identified in breast

carcinoma cell lines (20). Similar to classical GPCRs, GPER comprises

an N-terminal extracellular domain, seven transmembrane helices

linked by three extracellular loops and three intracellular loops, and a

C-terminal intracellular domain (21). Mapped on chromosome 7p22,

GPER is widely distributed in various mammalian tissues, including
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the heart, lungs, liver, adrenal glands, intestines, ovaries, and brain,

regardless of sex or species (20, 22–24). GPER localizes to the

endoplasmic reticulum and plasma membrane (18, 25), thereby

signaling from intracellular locations, as observed for some GPCRs

(25). GPER can also function in the nucleus and can interact with

nuclear steroid receptors, including estrogen receptor a (ERa), ERb,
MR, vitamin D receptor, and glucocorticoid receptor (10, 26–28).

G1 was the first selective GPER agonist identified that activates

the receptor with high selectivity and affinity but has little or no

affinity for ERa and Erb (29). Furthermore, G15 and G36 have been

classified as selective GPER antagonists (30). Notably, the anti-

hypertensive drugs eplerenone and spironolactone were found to

partially inhibit G1-mediated extracellular signal–related kinase

(ERK) phosphorylation in GPER-expressing cells, suggesting that

both drugs act as partial antagonists of GPER (9).

Although originally identified as an orphan receptor (under the

name GPR30), a study in SK-BR-3 [SKBR3], a human breast

adenocarcinoma cell line, showed that breast cancer cells showed

that estrogen is the natural ligand of GPER; the cytomembranes of

cells lacking ERa and ERb expression but expressing GPER showed

high-affinity, limited capacity, displaceable, and specific binding to

estradiol-17b, and the binding was affected by an increase or

decrease in GPER expression with progesterone stimulation and

RNA interference, respectively (18). A subsequent study showed

that GPER can interact with aldosterone and mediate non-genomic

pathways in a manner distinct from the classic MR-mediated

activation mechanism. A recent study suggested that the GPER-

dependent effects of aldosterone likely occur by direct binding, with

a stronger binding potency of GPER to aldosterone than to

estrogen; however, the binding of GPER is the strongest to [3H]

2‐ME, a high-potency GPER-selective agonist in insect cells without

any of the intrinsic mammalian receptors for aldosterone (19).

In general, GPCRs initiate signaling through heterotrimeric G

proteins and G protein–independent pathways via G protein–

coupled receptor kinase (GRK)–mediated phosphorylation and
FIGURE 1

Genomic and non-genomic actions of aldosterone. MR mediates classic genomic signaling of aldosterone, which mainly associated with the
expression of Epithelial Sodium Channel (ENaC) and Na,K-ATPase, release of inflammatory factors, vascular growth, as well as renal and heart
fibrosis. Aldosterone also mediates non-genomic signaling through GPER activation, which is associated with activity of Sodium/Bicarbonate
Cotransporter (NBC), NCC, and NHE; vasocontrictor effect; and development of cancer cell.
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arrestin coupling (31). Accumulating evidence shows that GPER

expressed in cardiac myocytes and fibroblasts can couple to both Gi

and Gs proteins to induce epidermal growth factor receptor or

insulin-like growth factor-1 receptor transactivation in different

tissues (32–34). Although it remains unclear whether aldosterone

couples with Gs or Gi when binding to GPER, it is possible that the

mechanism is identical to that of the non-genomic activation of

estrogen, in which Gs is activated upon binding to GPER, resulting

in the stimulation of adenylyl cyclase activity and increased Cyclic

Adenosine Monophosphate (cAMP) production in the plasma

membranes of SKBR3 and GPER-transfected cells (18, 35).

Furthermore, G protein–independent pathways are involved in

the non-genomic aldosterone pathway. GRK-2 and GRK-5 are

the most abundant cardiac GRKs that phosphorylate GPCRs and

non-GPCR substrates (36, 37). GRK2 was suggested to hinder the

effects of aldosterone by activating GPER, whereas GRK5 blocks the

cardiotoxic MR-dependent effects of aldosterone in the heart (38).

Notably, although GPER mediates the non-genomic actions of both

estrogen and aldosterone, the effects may differ entirely and could

also involve interactions with MR.
4 GPER as a main player in
non-genomic aldosterone pathways

MR primarily remains in the cytoplasm with chaperones and

scaffolding proteins when not bound to its ligands (39). The classic

genomic pathway of aldosterone involves binding to MR to cause its

nuclear translocation; subsequently, MR and glucocorticoid receptor

form homodimers or heterodimers that act as homodimers of

hormone response elements on chromosomes, ultimately regulating

gene transcription and protein expression (2). Coactivators and co-

repressors modulate the transcription of downstream effector

proteins (2). The main downstream physiological and pathological

effects of this pathway are associated with the expression of the

epithelial sodium channel and Na+/K+-ATPase, release of

inflammatory factors, vascular growth, and renal and heart fibrosis

(40–42) (Figure 1).

Non-genomic events of aldosterone were first identified in 1984,

when Moura and Worcel (43) discovered that the rapid aldosterone

effects on sodium and potassium excretion in the kidney (44) did

not seem to depend on the transcription of genomic information.

Since then, various other non-genomic aldosterone-mediated

signaling events have been identified, including elevation in

intracel lular Ca2+, inositol 1 ,4 ,5-tr isphosphate (IP3) ,

diacylglycerol, protein kinase C, phospholipase C, and cAMP

(39). On the basis of the initial studies, many of the non-genomic

actions of aldosterone appeared to be dependent on MR, such as

aldosterone-induced ERK1/2 mitogen-activated protein kinase

(MAPK) activation in M1 renal cortical collecting duct cells (45)

and vascular p38 MAPK and Nicotinamide Adenine Dinucleotide

Phosphate (NADPH) oxidase activation via cellular-rabbit

squamous cell carcinoma gene, (c-Src) (46). Spironolactone was

found to be ineffective in inducing the non-genomic events of
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aldosterone, suggesting that MR may not mediate the non-genomic

aldosterone pathways; however, the selective antagonists of MR

eplerenone and RU28318 did induce these pathways, indicating that

the role of MR in this process could not be ruled out completely

(45). Grossmann et al. (47) showed that aldosterone induced the

rapid and dose-dependent phosphorylation of ERK1/2 and c-Jun

NH2-terminal kinase 1/2 in human embryonic kidney cells

heterologously expressing MR, which was suppressed by

treatment with spironolactone or a MAPK inhibitor but not a

protein kinase C inhibitor. However, spironolactone did not inhibit

the aldosterone-induced increase in cytosolic Ca2+. The authors

thus suggested that there are three co-existing aldosterone signaling

pathways: (1) a genomic pathway via MR, (2) a non-genomic

pathway via MR, and (3) an MR-independent non-genomic

pathway (47).

Indeed, studies using the MR antagonist spironolactone have

suggested that MR is only involved in approximately 50% of

aldosterone’s activities related to sodium-proton exchange and

various secondary messengers, including IP3 production in

different cells (6, 7). Christ et al. (48) demonstrated that

membrane receptors rather than MR were responsible for the

rapid, non-genomic in vitro effects of aldosterone on intracellular

electrolytes, cell volume, and the sodium-proton antiporter in

human mononuclear leukocytes. In 2011, the involvement of

GPER in rapid aldosterone activity was first confirmed, and the

significant pharmacological aspects of this action were compatible

with the landmark deviations from expectations in MR

pharmacology studies (9). The GPER-dependent effects of

aldosterone for ERK phosphorylation, mediation of apoptosis,

and myosin light-chain (MLC) phosphorylation have also been

reported (9).

Currently, the non-genomic aldosterone pathway is well

recognized and extensively studied worldwide. The interaction

between aldosterone/MR signaling and aldosterone/GPER signaling

was first described in vascular smooth muscle cells (VSMCs) by Gros

et al. (49), who later found that aldosterone-mediated ERK

phosphorylation was inhibited by both eplerenone and G15 in MR-

transduced cultured VMSCs or VMSCs transferred with the GPER

gene (9). In addition, Ashton et al. (50) examined the non-genomic

actions of aldosterone using pegylated aldosterone analog (Aldo-PEG)

and showed that activation of GPER alone is not sufficient to cause

deleterious effects on myocardial reperfusion injury; however, they

further showed that raising reactive oxygen species (ROS) levels may

enhance the MR-mediated actions of aldosterone during myocardial

reperfusion injury in the heart, elucidating the functional involvement

of GPER in rapid aldosterone/MR signaling. The authors concluded

that the non-genomic effects of aldosterone did not potentiate the

genomic signaling pathways. Further support for this cross-talk comes

from experiments showing that aldosterone led to enhanced maximal

phenylephrine-induced vasocontraction in mesenteric resistance

arteries, which could be reversed by G15, and aldosterone also

reduced acetylcholine-induced vasorelaxation in a manner dependent

on both MR and GPER (51). In general, the evidence accumulated to

date suggests that GPER is more important than MR in the non-
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genomic aldosterone pathway and that the cross-talk between these

receptor interactions further complicates the mechanisms underlying

aldosterone-induced events.
5 The mediating roles of
GPER activation and inhibition
in vasoconstriction

The progression of hypertension is associated with the

thickening of the vascular wall, increased responsiveness of the

vasculature, increased vascular capacitance, and vascular

endothelial dysfunction. GPER maps onto chromosome 7p22, a

region implicated in hypertension in humans (24), and some studies

suggest that deletion of GPER using gene-editing technology could

have beneficial effects in lowering blood pressure and improving

cardiac function (52, 53). Ogola et al. (54) also demonstrated that

deletion of Gper in mice significantly increased pulse pressure but

did not protect against hypertension given the lack of cardiac

hypertrophy, and there was no difference in systolic and diastolic

blood pressure using Gper-knockout and wild-type mice. In vivo

experiments have demonstrated similar results to studies based on

gene-editing technology. Upon estrogen or G1 stimulation, GPER

activation tends to show significant cardioprotective effects with

differences observed according to sex. Several research groups have

independently demonstrated the role of GPER in improving

cardiovascular function via endothelial nitric oxide synthase-

dependent vasodilation in arterial myography of healthy vessels in

postmenopausal women along with an excellent protective effect of

GPER in hypertension models (55, 56). Nevertheless, Maruyama

et al. (57) claimed that, in a healthy environment, estrogen activity

tends to be beneficial (e.g., vasodilation and ROS reduction),

whereas, in the context of diseases or risk factors such as

hypertension, estrogen may exert adverse effects. Their research

revealed that activation of GPER distributed in the rostral

ventrolateral medulla in Goldblatt hypertensive rats contributes to

sympathetic overactivation, which is associated with the accelerated

development of hypertension. The lack of a protective effect of

hormone replacement therapy against coronary heart disease in

clinical trials also supports the above speculation to some

degree (58).

It is now well accepted that aldosterone directly affects the

vascular system by inducing oxidative stress, inflammation,

hypertrophic remodeling, fibrosis, and endothelial dysfunction. As

a newly discovered aldosterone receptor, GPER mediates multiple

vascular actions, similar to MR. GPER activation accelerates the

progression of apoptosis in VSMCs and vascular endothelial cells

(9, 59). In addition, Tang et al. (60) demonstrated that GPER could

mediate part of the endothelial inflammatory response induced by

aldosterone, suggesting GPER as an alternative target for treating

hyperaldosteronism considering the unsatisfactory effect of MR

antagonists on cardiovascular risks. Notably, GPER expression

diminished after culturing VSMCs, whereas vascular endothelial

cells maintained high GPER expression throughout culture. These

results were based on adenovirus-mediated GPER gene transfer into
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VSMCs. Moreover, aldosterone could stimulate smooth muscle–

specific MLC phosphorylation via a GPER-dependent mechanism

in both newly isolated aortic ring segments and cultured VSMCs.

This provided primary evidence that GPER could affect vascular

tone (9, 61) because MLC plays a central role in smooth muscle

contraction and is determined by the balance of activity between

MLC kinase and MLC phosphatase (62). Furthermore, GPER re-

expression enhanced aldosterone-mediated contractions in rat

aortic VSMCs (61). In addition to the aforementioned direct

effects, aldosterone has been shown to enhance the response of

vessels to vasoactive substances. Ferreira et al. (51) showed that

aldosterone increased the systolic response of mesenteric resistant

arteries to phenylephrine, which was prevented in the presence of

G15. Furthermore, pre-incubation with aldosterone (10 nmol/L)

enhanced the contractile effects of Ang II on human coronary artery

by activating GPER (59). The signaling pathways involved in these

effects include ERK phosphorylation, PI3K activation, and

transactivation of the tyrosine kinase receptor pathways (63).

Thus, it is not difficult to conclude that GPER may activate

multiple signaling pathways and have varied effects depending on

the cell type and stimulant. However, in contrast to estrogen or G1,

aldosterone is more likely to mediate vasoconstriction effects or

exert these effects synergistically with other vasoactive molecules.

Collectively, this evidence suggests that blocking GPER and MR can

attenuate the vascular injury triggered by aldosterone to a great

extent. Accordingly, we emphasize that GPER is a promising

therapeutic target specifically for aldosterone-induced

hypertension rather than for secondary hypertension.
6 Role of aldosterone-induced GPER
activation in cardio-renal injury

Inflammation, fibrosis, and apoptosis have been reported to be

strongly associated with aldosterone-induced events and contribute

to end-organ damage in cardiovascular and metabolic diseases.

Ep i t h e l i a l s od ium channe l and Sod ium-Po t a s s i um

Adenosinetriphos Phatase (Na,K-ATPase) are the main

downstream effector proteins of MR. Similar to MR, aldosterone

also exerts specific effects on podocyte injury and mesangial cell

proliferation in the kidney (64). A growing body of evidence

suggests that aldosterone regulates various ion channels, including

NaCl co-transporter and NHE-1, via GPER to cause water and

electrolyte imbalances, thereby deteriorating heart failure or

hypertension (65, 66). In addition, increased activity of the

sodium/bicarbonate cotransporter is associated with ROS

production and Protein Kinase B (AKT) stimulation in rat

cardiomyocytes (67). Connection tubule glomerular feedback is a

process that increases Na delivery to the connecting tubules,

dilating the afferent arteriole and leading to an increase in

glomerular filtration rate (68). Ren et al. (67) demonstrated that

aldosterone sensitizes the connection tubule glomerular feedback

response by acting on NHE-1, which may contribute to renal

damage by increasing afferent arteriole dilation and glomerular

capillary pressure (glomerular barotrauma). In the brain, it is
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increasingly appreciated that the nucleus tractus solitarius (NTS),

which represents the first central synapse of taste afferent fibers,

plays a vital role in controlling fluid and energy balance in response

to signals from the periphery and that lesions in this brain region

increase sodium intake (69). Qiao et al. (69) found that aldosterone

injection into the NTS induces prompt and significant sodium

intake, which is suppressed by G15. Furthermore, forskolin-

stimulated cAMP levels are elevated in aldosterone-treated cell

lines depending on GPER activation (70, 71). Thus, aldosterone

may not only influence various ion channels to control water and

electrolyte balance but also modulate NTS events associated with

changes in cAMP levels, relaying in the parbrachial nucleus before

projecting to the amygdala, thereby forming the main neural axis

controlling sodium appetite and taste.

However, there is no direct evidence regarding whether

aldosterone increases the release of inflammatory factors or

promotes fibrogenesis in the heart and kidneys; thus, future

studies should focus on these aspects.
7 Discussion

Hypertension is a leading preventable risk factor for premature

death and disability worldwide, representing a significant global

health challenge because of its high prevalence in cardiovascular

disease and chronic kidney disease (1). Aldosterone in the RAAS is

one of the most critical hormones synthesized by the adrenal gland

because it regulates the water and electrolyte balance.

Overactivation of the RAAS plays a vital role in the onset and

progression of hypertension, mainly through water and sodium

retention along with cardio-renal injury triggered by aldosterone. In

the classic genomic pathway, aldosterone binds to MR to promote

gene transcription and protein expression. MR antagonists, mainly

spironolactone, have long been used as traditional drugs to control

blood pressure but fail to effectively treat resistant hypertension,

refractory hypertension, and renal hypertension. This so-called

“aldosterone escape” phenomenon necessitates finding other

pathways induced by aldosterone. GPER, a member of the GPCR

family, mediates the non-genomic signaling of estrogen and has

recently been identified as a new receptor of aldosterone. GPER has

been highlighted as a potential therapeutic target for salt-sensitive

hypertension in postmenopausal women because activation of

GPER could decrease blood pressure in an acute manner in male

Sprague–Dawley rats and in a chronic manner in estrogen-deficient

female mRen2 rats (55, 72). Gohar et al. (73) recommended GPER

as a pronatriuretic factor to control renal Na+ handling. However,

GPER did not alter blood pressure in intact female mRen2 rats,

indicating that GPER may only exert its role in the absence of the

endogenous ligand.

According to the National Center for Biotechnology

Information nucleotide database, there are three curated mRNA

variants of GPER, namely, NM_001505.2 (GPER-v2),

NM_001039966.1 (GPER-v3), and NM_001098201.1 (GPER-v4),

which share the same coding region and 3′ untranslated region but

differ in amino acid accounts, exon–intron organization, and 5′
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untranslated regions. In 2021, Pal et al. (74) discovered a new

GPER-v5 variant and advocated that more studies on GPER

variants are necessary to investigate their role and relevance in

physiological and pathological conditions. The GPER P16L variant

is a common hypofunctional genetic variant associated with

increased blood pressure in women (75). However, no studies

have revealed the potential benefits of GPER in men.

Different stimulants may have opposite effects owing to

different binding sites or downstream signaling, which is the case

for regulatory effects induced by aldosterone and estrogen levels.

Estrogen or G1 could trigger vasodilation in the mesenteric arteries

involving both endothelial nitric oxide and smooth muscle cAMP

signaling via GPER, whereas aldosterone exhibits the converse effect

(48, 76). In addition, multiple studies have shown that aldosterone

strengthens vasoconstriction and promotes water and sodium

retention by activating GPER, which is involved in ERK

phosphorylation, the PI3K pathway, and ROS production. The

activation of GPER is cardioprotective and decreases blood

pressure in the presence of estrogen or G1 stimulation, and these

effects are especially evident in postmenopausal women.

Nevertheless, aldosterone displays a stronger binding potency for

GPER than estrogen; thus, under conditions of primary

aldosteronism or hyperaldosteronemia-induced hypertension,

inhibiting the activity of GPER would have a better effect on

achieving blood pressure control and targeting organ injury. In

summary, this review highlights GPER as a potential therapeutic

target in aldosterone-induced hypertension, particularly in men and

premenopausal women.
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