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In the more than 30 years since the purification and cloning of Hepatocyte

Nuclear Factor 4 (HNF4a), considerable insight into its role in liver function has

been gleaned from its target genes and mouse experiments. HNF4a plays a key

role in lipid and glucose metabolism and intersects with not just diabetes and

circadian rhythms but also with liver cancer, although much remains to be

elucidated about those interactions. Similarly, while we are beginning to

elucidate the role of the isoforms expressed from its two promoters, we know

little about the alternatively spliced variants in other portions of the protein and

their impact on the 1000-plus HNF4a target genes. This review will address how

HNF4a came to be called the master regulator of liver-specific gene expression

with a focus on its role in basic metabolism, the contributions of the various

isoforms and the intriguing intersection with the circadian clock.
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1 Introduction

Whether referred to as “the seat of the soul” as the ancient Babylonians believed, “the

seat of our darkest emotions” as Plato postulated, a term of endearment in Urdu, or the

literal translation of “courage” in the Zulu language, one thing is clear – almost every

culture past and present recognizes the importance and uniqueness of the liver. This review

will address key aspects of the transcription factor HNF4a which is considered to be the

master regulator of liver-specific gene expression, including the role of its two promoters

and the alternatively spliced isoforms they regulate. Furthermore, while mutations in the

human HNF4A gene and/or its target genes have been associated with several diseases,

including hemophilia (1), inflammatory bowel disease (IBD) (2) and various cancers,

including hepatocellular, colorectal, renal, and gastric carcinomas (3–5), this review will

focus on its role in carbohydrate and lipid metabolism in the liver.
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In 1996, HNF4A was identified as the gene mutated in Maturity

Onset Diabetes of the Young 1 (MODY1), an inherited form of type

2 diabetes that causes diabetes in patients in young adulthood (6).

Patients are born with hyperinsulinemia and increased body size,

but it is not until they are older that their pancreas fails to secrete

insulin in response to elevated blood glucose (7). These clinical

findings highlighted the role of HNF4a in glucose metabolism (and

insulin secretion) but many questions remain about the MODY1

mutations and the precise role of the different HNF4a isoforms in

basic metabolism (8–11).
2 Liver structure and
metabolic functions

The liver is the largest internal and main metabolic organ in the

body. It is critical for nearly all bodily functions as it provides energy

during periods of fasting/starvation, maintains homeostasis

between meals and stores excess lipids and carbohydrates

postprandially. Post-prandial nutrients and other chemical

compounds, including glucose, lipids, amino acids and

xenobiotics, make their way from the intestine directly to the liver

through the hepatic portal system. The liver absorbs, packages,

detoxifies, metabolizes and distributes these compounds to all the

other tissues via the circulatory system.

The liver is composed of several lobes consisting primarily of

hepatocytes, sinusoidal endothelial cells, stellate cells and Kupffer

cells. Hepatocytes, which carry out the metabolic functions of the

liver, are the predominant cell type in the liver (~70% by cell

number) – this relative homogeneity, as well as the sheer size and

accessibility of the liver, made it the ideal organ for early studies on

tissue-specific gene expression (12).

Due to large metabolic demands of the body and the essential

functions of the liver, the tissue is extremely well vascularized and

uses 25% of the cardiac output although it makes up only about

2.5% of the total body weight (13, 14). Nonetheless, oxygen is not

maintained at a constant pressure throughout the tissue; it differs
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based on the proximity to the portal triad, which includes the portal

vein, hepatic artery, and bile duct. While it is assumed that all

hepatocytes are capable of the same functions, the liver is able to

compartmentalize and focus certain functions via this oxygen

gradient. Each lobe of the liver consists of three zones with zone

one receiving the most oxygen and having the highest respiratory

enzyme activity, including beta-oxidation and gluconeogenesis.

Closest to the central vein, zone three is the least oxygenated and

carries out glycolysis, lipogenesis, and ketogenesis (15) (Figure 1). It

has been proposed that all zones play a role in liver homeostasis and

regeneration (16, 17). Finally, the liver, which synthesizes bile from

bilirubin, bile salts, and cholesterol to aid in fat digestion, surrounds

the gallbladder, the site of bile storage.

The liver maintains glucose homeostasis between meals via

release of stored glycogen and gluconeogenesis. The liver can

initiate de novo glucose synthesis from lactate, pyruvate,

oxaloacetate and/or glucogenic amino acids. Once produced, new

glucose is transported through the blood to supply the brain, the

muscles, and other organs with energy.

Gluconeogenesis is an energetically expensive process that is

heavily regulated by hormones, such as insulin and glucagon, as well

as by enzymes whose expression is regulated by various

transcription factors. Gluconeogenesis in the liver is also

dependent on the availability of oxaloacetate. If gluconeogenesis

continues for an extended period of time, oxaloacetate levels will be

depleted, and gluconeogenesis and the tricarboxylic acid (TCA)

cycle will shut down. This causes the liver to switch to metabolism

of fat to supply the body with energy. During starvation as well as

prolonged fasting, fatty acids are broken down to produce

acetyl-CoA.

During ketogenesis the liver converts acetyl-CoA into ketone

bodies such as b-hydroxybutyrate, which are secreted into the

bloodstream where they are transported to other organs as an

energy source. This process of hepatocyte-driven ketogenesis is

absolutely critical for the brain to continue to function during

periods of fasting/starvation: not only can the brain not carry out

gluconeogenesis, it also cannot utilize fat as an energy source.
FIGURE 1

Zonation in the liver lobule and associated metabolic pathways. The role of the different HNF4a isoforms in the different zones remains to be
determined.
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Indeed, during hypoglycemia, up to two-thirds of the energy needs

of the brain can be provided by ketone bodies produced in the liver.

Similar to gluconeogenesis, ketogenesis is also tightly controlled by

insulin, glucagon, and various transcription factors.

In addition to the gluconeogenic and ketogenic pathways, the

liver is the main site for fatty acid synthesis and distribution. The

liver also carries out de novo fatty acid synthesis from excess short

chain fatty acids, carbohydrates and/or proteins. The liver can store

the synthesized fat in lipid droplets, the excess of which causes non-

alcoholic fatty liver disease (NAFLD). Obesity and type 2 diabetes

are the most common risk factors that lead to NAFLD, which is

increasing in incidence in the United States and worldwide (18). It is

estimated that one-third of adults worldwide have fatty liver, and it

is not always associated with obesity or alcohol (19, 20). Non-

alcoholic steatohepatitis can also lead to cirrhosis and liver cancer

and ultimately liver failure.

A depiction of the intersection of these metabolic pathways is

shown in Figure 2. We now know that HNF4a is critical to all of

these metabolic processes. Loss of HNF4a expression is associated

with liver cirrhosis and reintroduction of HNF4a can reverse

cirrhosis (21), underscoring the essential nature of this

transcription factor to overall liver function.
3 Hepatocyte nuclear factors

The hepatocyte nuclear factors (HNFs) constitute a group of

transcription factors which control gene expression and

development in various tissues. While they were originally

identified in the liver (22–24), it was quickly found that they

exhibit differential gene expression patterns across several tissues

of the gastrointestinal system (25). HNF1 (POU HOMEO), HNF3
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(FOXO), HNF4 and HNF6 (WINGED HELIX), belong to different

transcription factor families. HNF4, the topic of this review and by

far the most abundant HNF in the liver, is a member of the nuclear

receptor superfamily (24) and regulator of HNF1A (26). In

mammals, HNF4 is encoded by two distinct genes – HNF4A and

HNF4G, located on human chromosomes 20 and 8, respectively

(27). Another variant, HNF4b is expressed in Xenopus laevis, where

it shares binding sites with HNF4a but is a less potent transactivator

(28). HNF4g has two splice variants – HNF4g1 is expressed in the

kidney, intestine, colon and pancreas whereas HNF4g2 is an

intestine-restricted isoform (29).
4 HNF4a forms combinatorial
heterodimers among itself
and with HNF4g

Despite extensive investigation into potential dimerization

between HNF4a and other nuclear receptors, particularly the

promiscuous retinoid X receptor RXR, no credible evidence of

heterodimer formation with other nuclear receptors has been

reported. Furthermore, amino acid residues in HNF4a have been

identified that would prevent such heterodimerization (30–32). The

exception is HNF4g which contains the same critical residues as

HNF4a and has been shown to heterodimerize with it (33). HNF4a
also forms transcriptionally active heterodimers among its twelve

isoforms generated by alternative promoter usage and splicing.

There are examples of both the homo- and heterodimers of

HNF4a regulating their own subset of target genes with varying

levels of transcriptional efficiency. Individual isoforms co-expressed

in cells revealed pairings such as HNF4a3+a8 and HNF4a2+a3,
FIGURE 2

Basic metabolic pathways in the liver and the transport to peripheral tissues. Hepatic HNF4a is known to regulate genes involved in all of these
processes. FAS, Fatty acid synthesis; VLDL, very low-density lipoprotein. Blue boxes indicate glucose metabolism intermediates, thought to be
regulated by the P1 isoforms; while yellow and green are the lipid metabolism intermediates, thought to be regulated by the P2 isoforms.
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which exhibit substantial differences in their transcriptional activity

relative to the corresponding homodimers. HNF4a3+a8 activates

expression of two of its targets, CYP7A1 and ALDOB, at much

higher levels than HNF4a3 or HNF4a8 alone. Similarly, HNF4a2
+a3 acts as a “loss of function” heterodimer which downregulates

the same target gene subset relative to HNF4a2 or HNF4a3
homodimers (34). These findings highlight the need for a more

comprehensive study of the transcriptional profile of the various

HNF4a isoforms as functions previously ascribed to HNF4a
homodimers could potentially also be attributed to heterodimers

of HNF4a/g or the HNF4a isoforms.
5 HNF4a is required for early
development of the liver and pancreas

HNF4a is first detected in the visceral endoderm at embryonic

day E4.5 in the mouse. Homozygous deletion of HNF4a in the

germline is lethal at E4.5, due to defects in the visceral endoderm

which prevent gastrulation (35, 36). Complementation of HNF4a-
deficient embryos with a tetraploid, embryo-derived, wild-type

visceral endoderm rescues this early developmental lethality and

the embryos gestate normally, underscoring the importance of

HNF4a for early development (37). Subsequently, HNF4a is

found in the liver bud from E8.5 onwards, showing early

commitment towards the hepatoblast lineage and a role in the

epithelial transformation of the developing liver (38, 39). Ablation

of HNF4a in murine fetal livers blocks hepatocyte differentiation

and proper formation of hepatic epithelium and sinusoidal

endothelium (37, 40). Accessory transcription factors HNF1b,
GATA-6, OC-1 and FOXA2 all coordinate with HNF4a to

modulate the varying stages of liver development (41).

During the course of pancreatic development, HNF4a
expression is detected in most epithelial cells of the pancreatic

bud from E9.5 while in the adult it is more restricted to islet cells

(42). By the onset of maturity, HNF4a is expressed primarily in the

liver, kidney and intestines although it still plays a role in the

pancreas, as evidenced by mutations in theHNF4A gene in MODY1

patients (6). It should be noted that there are differences in the

HNF4a isoforms expressed during development of the two organs,

with P1-derived HNF4a1-6 predominant in the liver, and P2-

derived HNF4a7-12 predominant in the early pancreas (34, 43, 44).
6 Molecular structure of HNF4a

As a member of the nuclear receptor superfamily of ligand-

dependent transcription factors (NR2A1), HNF4a is comprised of

five distinct structural domains. The ~200 amino acid ligand

binding domain (LBD) that defines the nuclear receptors contains

a hydrophobic pocket that binds ligands and facilitates the

transactivation of genes. Ligand binding induces conformational

changes in the LBD which allows it to interact with a signature

LXXLL motif in transcriptional co-activators (45) or a LXXXIXXX

(I/L) motif in transcriptional co-repressors (46). However, despite

being a nuclear receptor, HNF4a is constitutively active and does
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not require the binding of a ligand to mediate gene activation (47).

The LBD of HNF4a crystallizes as a canonical homodimer with

intermolecular salt bridges and hydrogen bonds contributing to the

stability of the interface (30, 31, 48–50).

The LBD is connected to a highly conserved DNA binding

domain (DBD) by a hinge region which facilitates free rotation

between the two domains and contains the nuclear localization

signal (NLS) (51). The DBD, comprised of two cysteine-rich zinc

finger motifs, dimerizes on the DNA even in the absence of the LBD

(48, 52, 53). DNA binding induces a conformational change in the

LBD of HNF4a, revealing another dimerization interface and

leading to an increase in the overall stability of the HNF4-DNA

complex, a process essential for mediating its transcriptional

activity (52, 53). The DBD and the LBD are bordered by two

transactivation domains – AF-1 and AF-2, respectively. The 24

amino acids in the AF-1 act as a constitutive, autonomous

transactivator domain, with Tyr6, Tyr14, Phe19, Lys10, and Lys17

essential for AF-1 activity (54, 55). The AF-2 domain in the C-

terminal end of the LBD interacts with co-activators or other

transcription factors (56). Unlike AF-1, the activity of the AF-2

domain depends on ligand binding in the LBD in most nuclear

receptors, although evidently not HNF4a (47). Somewhat unique to

HNF4 is the presence of a large domain (F) at the C-terminus which

represses transactivation; it contains a proline-rich region that plays

a role in distinguishing between transcriptional co-activators and

co-repressors in a ligand-independent fashion (57, 58).

Additionally, a 10-amino acid insertion in the F domain

introduced by alternative splicing modulates the repressive

activity of the F domain (56). HNF4A is extensively modified

post-translationally, including through phosphorylation and

acetylation (59). These modifications are discussed in other

review articles in this Special Topics edition.

More than 100 mutations in HNF4A have been associated with

MODY1. The vast majority are in either the DBD or LBD with just a

couple in the N-terminal region and none in the F domain (10). The

first MODY1 mutation identified was Q268X in the middle of the

LBD (6, 60). Since this mutation truncates the protein before the salt

bridge that prevents heterodimerization with other nuclear

receptors, there was a possibility of a dominant negative effect of

this MODY1 mutation that could have impacted many other

nuclear receptor pathways. Fortuitously, the mutant HNF4a
protein was localized to the nuclear membrane and thus

inaccessible to other transcription factors (61). There are several

other nonsense mutations in MODY1 patients although the

majority of the MODY1 mutations are missense mutations (10)

raising the possibility of more subtle alterations in specific

HNF4a functions.
7 HNF4a: master regulator of liver-
specific gene expression

Since its initial identification, HNF4a has been implicated in

the regulation of hepatic lipid metabolism. Indeed, a liver-specific

response element in the human apolipoprotein CIII (APOC3) gene

was used to clone the first HNF4 cDNA from rat liver (24) while
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APOA1 and APOB (which encode protein components of HDL and

LDL, respectively) were early HNF4a target genes (62, 63).

Similarly, key genes involved in glucose metabolism, such as

PEPCK (PCK1) and L-pyruvate kinase (PKLR), were also early

targets of HNF4a (64, 65), even before MODY1 was associated with

the HNF4A gene (6).

Using classical promoter-bashing approaches, the number of

HNF4a binding sites in target gene promoters grew quickly. By the

time the first draft of the human genome was released in 2001, there

were more than 70 verified HNF4a binding sites in the literature.

Early computational and wet bench approaches doubled the number

of HNF4a binding motifs (66) while the advent of Chromatin

Immunoprecipitation (ChIP) followed by genomic sequencing

techniques (ChIP-chip, ChIPseq assays) identified hundreds more

potential HNF4a target genes in liver and pancreas (67, 68). Since a

ChIP signal is not necessarily due to direct binding to the genomic

DNA and since identification of the exact sequence to which a

transcription factor binds in a ChIP peak can be challenging,

protein binding microarrays (PBMs) were used to accelerate the

identification of HNF4a binding sites in vitro. Cross referencing of

those sites with expression profiling of HepG2 cells with or without

HNF4a led to the identification of 240 new direct HNF4a human

target genes, including new functional categories of genes not

typically associated with HNF4a, such as cell cycle, immune

function, apoptosis, stress response, and cancer-related genes (69).

It also earned HNF4a the title of master regulator of liver-specific

gene expression, which has persisted to this day (70).

The PBM technology led to the identification of more than

20,000 different DNA sequences to which HNF4a binds as well as a

binding motif unique to HNF4a (71, 72). This is important given

that many of the “orphan” nuclear receptors like HNF4, COUP-TF

and RXR share a common DNA binding motif consisting of a direct

repeat of AGGTCA half sites (AGGTCAxAGGTCA). Indeed,

competition for control of expression of liver-specific genes by

HNF4a and other nuclear receptors was noted early on (73). The

PBM studies also led to the identification of >60 unique, low affinity

HNF4a binding sites located in more than a million Alu sequences

which are unique to primate genomes; this raised the possibility of

sequestration of HNF4a protein by binding repetitive genomic

sequence as a novel mechanism by which to regulate HNF4a
function (74). Fortunately, HNF4a is one of the most abundant

transcription factors in the liver; the initial purification of HNF4a
required only a 5000 to 10,000-fold enrichment (24). On the RNA

level, HNF4a expression far surpasses that of all the other liver-

enriched transcription factors (HNF1, C/EBP, HNF3, HNF6), all

other nuclear receptors, and even TATA binding protein and RNA

polymerase (75). As it turns out, the moniker of “master regulator of

liver-specific gene expression” does indeed seem to be appropriate.
8 P1- vs. P2-HNF4a

Expression of the HNF4A gene is driven by two highly

conserved promoters, denoted P1, which is closest to the gene

body, and P2, which is ~50 kb upstream. Together they drive the
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expression of twelve different HNF4a transcript variants referred to

as isoforms. P1 activation leads to expression of HNF4a1, HNF4a2,
HNF4a3, HNF4a4, HNF4a5 and HNF4a6; while P2 activation

leads to HNF4a7, HNF4a8, HNF4a9, HNF4a10, HNF4a11 and

HNF4a12 (Figure 3A). The tissue distribution of the twelve

isoforms has been characterized by PCR and can be divided into

well-established HNF4a-expressing tissues and other tissues that

have not been examined in detail for HNF4a expression or function

(Figure 3B) (34). The first exon of the P2 promoter (exon 1D), like

the rest of the HNF4A gene, is highly conserved across most

vertebrates (Figure 3C).

Early studies investigating HNF4a did not explore the role of

different isoforms and the majority of the studies in the adult liver

focused solely on the role of the predominant P1-HNF4a,
particularly HNF4a1, the first transcript cloned (24). Even

though the P2-isoform was discovered in 1998 in an

undifferentiated pluripotent embryonal carcinoma cell line (F9)

(76), it took several years before any functional differences were

observed in the P1 and P2 isoforms (77). More recently, the

scientific community has taken an interest in exploring the

differences between the HNF4a isoforms in all of the tissues

where they are endogenously expressed (34). The small

differences in protein size can sometimes be revealed using

Western blot analysis, and antibodies specific to P1- and P2-

HNF4a are commercially available (3, 78).

The most well characterized and most abundantly expressed

isoforms are HNF4a1/2 and HNF4a7/8, which differ in the N-

terminal AF-1 domain that interacts with co-activators (56, 58, 77,

79). The P1-HNF4a isoforms contain exon 1A while the P2

isoforms contain exon 1D. The difference between HNF4a1 and

HNF4a2 (and HNF4a7 and HNF4a8) is that the latter has the ten
amino acid insert in the F-domain which modulates the

transcriptional activity of HNF4a (58). The remaining domains –

DBD, LBD, and hinge region – are identical in all isoforms. (Since

the isoforms are very similar, though not identical, we chose the

comparison to fraternal twins in the title.)

Among the 54 non-diseased human tissues in the Genotype-

Tissue Expression (GTEx) Project, bulk RNAseq data shows that

HNF4a is selectively expressed in a few different tissues in the adult,

with the greatest expression in liver followed by large (colon) and

small intestines and then kidney and finally pancreas and stomach

(Figure 4C). Both P1- and P2-driven HNF4a isoforms are

expressed in the fetal liver, although after birth the expression of

P2-HNF4a decreases dramatically and the expression of P1-

HNF4a increases (80) (Figure 4B). Initially, it was thought that

P2-HNF4a was not expressed in the normal adult liver due to

repression of the P2-promoter by P1-HNF4a (80). However, we

and others have observed P2-HNF4a expression in the adult liver at

different times of the day as well as in response to fasting, high fat

diet and alcoholic fatty liver (75, 81–83). Furthermore, P2-HNF4a
expression often increases in liver cancer as P1-HNF4a expression

decreases (3, 84). These and other findings lead to the dogma that

P1-HNF4a acts as a tumor suppressor in the liver while P2-HNF4a
is at least permissive of proliferation, both of which were found to

be the case in colon cancer (78, 85).
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P1-HNF4a is the predominant form expressed in the proximal

tubules of the kidneys, though its precise role in that tissue remains

to be determined (Figure 4B); some have speculated that it could

play a role in gluconeogenesis in that tissue (86, 87). P2-HNF4a is
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the predominant form in the pancreas where it plays a role in

insulin secretion from b-cells (42, 44, 88). P2-HNF4a is also the

predominant form in the stomach, though P1-HNF4a seems to be

found there as well; both isoforms apparently play a role in
A

B

C

FIGURE 3

HNF4a isoforms and conservation of Exon 1D. (A) Schematic showing the gene structure of human HNF4A and its 12 transcripts, generated by
alternative P1 and P2 promoters and alternative splicing in the N- and C-termini. (B) Relative mRNA expression of human HNF4a isoforms, data from 34.
(C) UCSG Genome Browser view (Multiz Alignment and Conservation track enabled) of Exon 1D adjacent to the P2 promoter of mouse Hnf4a gene
(mm10) showing conservation from dolphin to human with only a single amino acid differing in most species (Ala13). Even non-mammalian animals such
as chicken exhibits considerable conservation in Exon 1D. RNAseq reads from a7HMZ male mice confirm the location of Exon 1D (Figure 4 and 75).
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differentiation of the epithelial cells as well as the development of

gastric cancer (89). Both P1- and P2-driven HNF4a are expressed

throughout the small intestines and the colon although anecdotal

evidence suggests a relative increase in expression of P2-HNF4a as

the intestinal tract progresses from the duodenum to the colon. In

the distal colon, P1-HNF4a is expressed at the top of the colonic
Frontiers in Endocrinology 07
crypts in the differentiated portion, while P2-HNF4a is expressed in

the bottom half of the crypts in the proliferative compartment (78).

Expression of HNF4a in the intestines and colon is relevant given

that HNF4A is an IBD susceptibility gene (2) and P1-HNF4a (but

not P2-HNF4a) is a target of Src tyrosine kinase in human colon

cancer (90, 91).
A

B

C

FIGURE 4

HNF4a exon swap mice and expression of P1- and P2-HNF4a isoforms in different tissues. (A) Hnf4a locus in wildtype (WT) and exon swap mice
(a7HMZ and a1HMZ); HNF4A protein structure with isoform-specific antibodies noted (aP1, aP2, aP1/P2). DBD, DNA binding domain; LBD, ligand
binding domain. (B) Depiction of the HNF4a isoforms expressed in different tissues in WT, a1HMZ and a7HMZ mice. Stripes indicate both isoforms
are present. (C) Bulk tissue expression in adult humans (males and females) for HNF4A from The Genotype-Tissue Expression (GTEx) Project. Aside,
from liver, intestines and pancreas discussed in the text, expression of HNF4a in the various cell types of these different tissues has not been
exhaustively examined.
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9 Hnf4a exon swap mice

Since the whole-body HNF4a knockout is embryonic lethal and

a liver-specific knockout results in death at six weeks of age due to

dyslipidemia, high serum bile acid levels and ureagenesis defects

(35, 92, 93), an HNF4a exon swap mouse model was developed to

examine the effects of the HNF4a isoforms in vivo (94) (Figure 4A).

The model allows examination of a single group of HNF4a
isoforms, either P1- or P2-HNF4a, using physiological levels of

expression since the promoter regions are not altered. In a7HMZ

mice, exon 1A adjacent to the P1 promoter is replaced by exon 1D

which is normally adjacent to the P2 promoter, creating mice that

express only HNF4a protein with the N-terminal domain of P2-

HNF4a (e.g., HNF4a7, HNF4a8, etc.) in all HNF4a-expressing
tissues. In contrast, the reciprocal swap of exon 1D for exon 1A

generates mice that express only P1-HNF4a proteins in a1HMZ

mice. Both the a1HMZ and a7HMZ mice are fertile and viable,

unless they are subjected to various conditions of stress. The

a7HMZ mice have significantly lower levels of cholesterol,

triglycerides, and free-fatty acids compared to wildtype and

a1HMZ mice, but significantly higher levels of ketone bodies.

They also have fattier livers under conditions of fasting which

could be due to decreased expression of apolipoproteins that

export fat from the liver to the other tissues (94) (Figure 5A).

This initial characterization of the exon swap mice was the first

indication that the different HNF4a isoforms may play different

roles in basic metabolism. Subsequent studies by our group

confirmed that livers from a7HMZ male mice exhibit a metabolic

transcriptome, rather than one specific to liver cancer (75).

In addition to HNF4a, there are other transcription factors in

the liver, especially nuclear receptors, that regulate genes involved

in basic metabolism. These include: the glucocorticoid receptor

(NR3C1, GR) which stimulates gluconeogenesis via interaction with

HNF4a on the PCK1 promoter and regulates the HNF4a promoter

(65, 96, 97); the peroxisome proliferator activated receptors (NR1C,

PPARs) which play critical roles in beta-oxidation of fatty acids and

ketogenesis and, like HNF4a, have fatty acids as their ligands (97,

98); and the farnesoid X receptor (FXR, NR1H4) which regulates
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bile acid production and co-occupies many genes with HNF4a in

the liver (99). The nature of these interactions on the molecular

level and the specificity, if any, with respect to the HNF4a isoforms

requires further investigation.
10 Mechanisms of HNF4A
promoter switching

While the P1 and P2 promoters that drive the expression of the

HNF4a isoforms have been dissected for relevant regulatory

elements (80, 100), a mechanism for a potential switch between

the promoters in the liver is less well defined. Emerging data suggest

that antisense transcripts and DNA methylation may be involved.

Antisense transcripts are a class of long, single-stranded non-coding

RNAs which have been shown to be widespread in mammalian

genomes and act as regulatory switches in gene expression circuits

(101). In humans, HNF4a‐AS1(NR_109949.1) is a 648 nucleotide,

antisense RNA located between the P1 and P2 promoters which

makes it ideal for playing a role in the regulation of promoter

switching; tellingly, it has also been implicated as a biomarker in

hepatocellular carcinoma (HCC) and Crohn’s disease (102, 103).

ChIP-seq data in mouse liver reveals P1‐HNF4a binding in the

vicinity of the HNF4a‐AS1 promoter while luciferase assays show

that P1- but not P2-HNF4a activates the HNF4a‐AS1 promoter

(104). Moreover, HNF4a‐AS1 is primarily transcribed in the liver,

kidney, and intestine where P1-HNF4a expression is predominant

and P2-HNF4a expression is low (104) (Figures 3B and 4B).

A recent study suggests that another noncoding RNA (H19)

and DNA methylation may also be involved in the re-expression of

P2-HNF4a in the adult liver (Da 83). H19 is one of several long

ncRNA that regulate insulin signaling and glucose/lipid metabolism

in various tissues (105). Da Li et al. found that fasting upregulates

the H19 ncRNA in the liver, which subsequently increases HNF4a,
PGC1a, PEPCK, and G6PC mRNA, and, unexpectedly, TET3

mRNA. TET3 is a DNA demethylase which increases expression

of Pck1, G6pc, and glucose production. Increases in H19 and TET3

mRNA have been observed in human livers of type-2 diabetes
A B

FIGURE 5

HNF4a isoform-specific targets in apolipoprotein locus in mouse chromosome 9. The region contains multiple HNF4a binding sites which have
been shown in vitro to regulate expression of multiple Apo genes, including one of the first HNF4a target genes – the Apoc3. RNAseq (A) and
ChIPseq (B) from biological replicates of livers from 3 adult male mice at ZT3.5 fed a standard vivarium chow diet – wildtype (WT) expresses only P1-
HNF4a and a7HMZ exon swap mice express only P2-HNF4a (75). (A) Average FPKM of RNAseq. * p-adj < 0.000001. (B) ChIPseq peaks visualized in
UCSC Genome Browser mm10; y-axes are identical in WT and a7HMZ tracks. Peaks unique to WT called by MACS2 are indicated: they could explain
the greater level of expression of Apoc3 and Apoa4 in WT livers, in addition to differential interactions between the HNF4a isoforms and other
transcription factors (95).
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patients, suggesting that this mechanism is likely conserved between

humans and mice (Da 83)

Importantly, conditions that increased Tet3 expression led to a

specific increase in P2-HNF4a but not P1-HNF4a expression. Mice

injected with P2-HNF4a specific shRNA adenoviral vector

decreased fasting glucose, fasting insulin, Pck1 and G6pc levels,

and pyruvate tolerance (pyruvate tolerance tests are specific to

gluconeogenic glucose production). Since TET3 is known to

demethylate DNA and activate transcription, the authors

speculate that it was demethylation of the P2-promoter that

resulted in increased expression of P2-HNF4a and showed TET3

binding to the P2 promoter in association with FOXA2. In short,

P2-HNF4a is increased in the livers of fasted mice, and leads to

hepatic gluconeogenesis via activation of gluconeogenic genes such

as Pck1 and G6pc in conjunction with co-activator PGC1a (Da 83).

While PGC1a was shown some time ago to be required for HNF4a
activation of Pck1 and G6pc in the fasted liver, a specific HNF4a
isoform was not identified at that time (106, 107). This new study

shows that PGC1a co-activates P2-HNF4a more effectively than

P1-HNF4a on these gluconeogenic genes (Da 83).
11 Role of HNF4a in circadian
rhythms and fasting

Daily fluctuations in physiological and behavioral processes rely

on an intrinsic molecular clock and response to environmental

changes (108). The intrinsic clock, or circadian rhythm, in

mammals allows tissues to perform their designated function at

specific times of the day and to anticipate changes from outside

sources, thereby synchronizing mammalian physiology to the 24-

hour solar day. Each tissue has its own peripheral clock, but they are

all synchronized by the central molecular clock in the

suprachiasmatic nucleus (SCN) in the brain. External cues that

affect circadian behaviors are called “zeitgebers”. While the light/

dark cycle is the most commonly studied zeitgeber, other zeitgebers

include melatonin release and uptake, body temperature

fluctuations, the feeding/fasting cycle and jet lag. Chronic jet lag

induces spontaneous HCC in wild-type mice via a mechanism

observed in obese humans involving nuclear receptor-controlled

cholesterol and bile acid metabolism as well as xenobiotic

metabolism pathways (109). Given the extensive role of HNF4a
in basic metabolism in the liver, as well as liver cancer (3, 4), it is not

surprising that HNF4a has been found to interact with proteins that

regulate the circadian clock and play an active role in the hepatic

circadian clock (84, 110, 111).

HNF4a represses the transcriptional activity of the essential

circadian regulator CLOCK : BMAL1 (110). ChIP-seq analysis

reveals co-occupancy of HNF4a and CLOCK : BMAL1 at many

metabolic genes involved in lipid, glucose, and amino acid

metabolism, creating a feedback loop in the liver-specific

peripheral clock and impacting the circadian regulation of

metabolic pathways. In short, HNF4a is essential for the

circadian rhythmicity of liver (and colonic cells) where it is

normally expressed and alters the intrinsic clock when it is

ectopically expressed. Interestingly, HNF4a appears to inhibit the
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CLOCK : BMAL1 complex by a mechanism independent of CRY1,

the canonical clock repressor. All of the HNF4A isoforms examined

(HNF4a1, HNF4a2 and HNF4a8) caused this inhibition and the

DBD, LBD and F domain were all required, suggesting that a

common protein structure among the isoforms is responsible for

the repression (110). In a follow up study, the authors show that

HNF4A and BMAL1 reciprocally regulate each other’s genome-

wide binding and that circadian rhythms are disturbed in Hnf4a

knockout liver cells. The epigenetic state and accessibility of the

liver genome dynamically changes throughout the day,

synchronized with chromatin occupancy of HNF4A and clustered

expression of circadian outputs (111).

The role of HNF4a in circadian regulation in liver cancer has

also been examined. P2-HNF4a, which is often upregulated in liver

cancer, is selectively induced in HCC, where it directly inhibits the

expression of BMAL1 and leads to the cytoplasmic expression of the

P1 isoform (84). Interestingly, induced expression of BMAL1 in

HNF4a-positive liver cancer cells impairs growth in culture and in

vivo. Manipulation of the circadian clock in HNF4a-positive HCC

could be a strategy to slow or reverse growth of human HCC.

Finally, a study from our group in this issue of Frontiers in

Endocrinology examines the effect of the P1- and P2-HNF4a
isoforms on liver gene expression using the Hnf4a exon swap

mice (75). We found that mice expressing only P2-HNF4a
(a7HMZ) have elevated levels of ketone bodies upon fasting but

do not survive a prolonged fast as well as mice expressing only P1-

HNF4a (a1HMZ) or wildtype (WT) mice. Endogenous P2-HNF4a
was expressed in the adult liver at ZT9 when levels of glucose are

normally low and ketone body levels are high, an effect that was

enhanced in CLOCK knockout mice. This is interesting when

compared to P1- HNF4a, which does not oscillate as dramatically

as the P2 isoform throughout the day, remaining at relatively stable

levels in both wildtype and CLOCK knockout mice (75). PBMs

revealed that P2-HNF4a and P1-HNF4a have essentially identical

DNA binding specificity even in the context of liver nuclear

extracts; P1-HNF4a also seems to have a preference for GC-rich

motifs that bind SP1, consistent with interactions noted previously

between these two transcription factors (95, 112). ChIPseq analysis

also revealed very similar genome-wide binding of the P1 and P2

isoforms, despite a dysregulation of hundreds of genes, although

there were some notable differences in chromatin binding in the

Apoa1 - Apoc3 - Apoa4 locus that correlated with levels of RNA

expression (75) (Figure 5). In contrast, protein-protein interaction

studies showed differential binding of HNF4a in wild-type livers

compared to a7HMZ livers to several proteins, including those

involved in the circadian clock (NFIL3, ARNTL, CLOCK) as well as

nuclear receptors and other transcription factors (75). Those

protein-protein interactions, as opposed to DNA specificity or

access to the chromatin, are presumed to be responsible for the

dysregulation of target genes in the livers of WT and a7HMZ livers,

especially in the fasted state. Metabolomic analysis showed

increased levels of lipids and ketone bodies in mice expressing

only P2-HNF4a (a7HMZ); in contrast, levels of glucose, pyruvate

and citric acid were lower in the a7HMZ mice (75), as noted

previously (94). Finally, while the P2-HNF4a hepatic transcriptome

was more similar to the fetal liver transcriptome than that of WT
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adult mice, it did not strongly resemble that of liver cancer and there

was no increased incidence in liver tumors even in a7HMZ mice

more than a year old (75). This suggests that while P2-HNF4a
might be upregulated in human liver cancer, it does not appear to be

a driver of the cancer phenotype, at least in mice.
12 The search for the HNF4 ligand

Crystallographic studies from two independent groups revealed

a mixture of tightly bound fatty acids in the LBD of bacterially

expressed HNF4a (49, 50). This led to the conclusion that HNF4a
was not a druggable target as its ligand binding pocket was

essentially permanently occupied (113). Given that bacterial cells

are known to have different fatty acid compositions than

mammalian cells, in order to identify HNF4a ligand(s) from a

more physiologically relevant environment, HNF4a was

immunoprecipitated from mouse liver and bound molecules were

analyzed by gas chromatography/mass spectrometry (GC/MS) (47).

The essential fatty acid linoleic acid (LA, 9, 12, octadecadienoic acid,

C18:2, D9,12) was the only lipid found to be bound to endogenous

HNF4a protein in mouse liver. Furthermore, when HNF4a was

isolated from the livers of mice undergoing a prolonged fast, the

amount of bound LA was noticeably decreased, consistent with

depletion of LA during the fast. Follow up mutagenic studies in the

ligand binding pocket confirmed specific binding while kinetic

studies with isotopically labeled LA proved that binding was

completely reversible (47). Expression profiling studies in the

presence and absence of LA revealed that ligand binding only

moderately affected the transcription of HNF4a target genes, an

effect which could have been due to a decreased level of HNF4a
protein in the presence of LA (47). Other nuclear receptor ligands

are known to alter receptor stability, in addition to recruiting co-

activators or co-repressors (114). Notably, HNF4a appears to have

high endogenous transcriptional activity in its ligand-free state; its

expression is also increased in the fasted state, due in part to the fact

that insulin decreases the expression of P1-HNF4a via SREBPs

(115). The role of the different HNF4a isoforms, if any, in terms of

ligand function is not known: the LBDs of P1- and P2-HNF4a are

identical but the AF-1 in other nuclear receptors is known to

interact with the LBD and impact ligand function (79). There is

one curious finding related to the HNF4a isoforms and LA

metabolism – a7HMZ mice have greatly reduced levels of key

cytochrome P450 genes that metabolize LA into bioactive oxylipins

– Cyp2c50, Cyp2c54 (75, 116). The significance of this finding

remains to be determined.

In the end, the role, if any, of the HNF4a ligand in the

transcriptional function of the protein remains to be elucidated.

Nonetheless, one wonders whether it is simply a coincidence that

LA is an essential fatty acid that every animal organism must obtain

ultimately from plants and that HNF4 is just one of two nuclear

receptors found in the oldest living animal organisms close to the

time more than a billion years ago that animals diverged from

plants and fungi (32, 117–119). Furthermore, one must consider the

possibility that even if modern HNF4a is truly not functionally

responsive to LA, it is possible that at some point during evolution
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LA (or some other ligand) did in fact act in a classical fashion.

Perhaps as other nuclear receptors, such as the PPARs, evolved as

long chain fatty acid binding transcription factors, HNF4

transitioned into a different mode of regulation. For example,

more than 13 phosphosites were initially identified in HNF4a in

absence of any sort of environmental cues (52), a number that has

since more than doubled in Phosphosite Plus (120). Characterized

phosphosites include that of AMPK (121, 122) which is activated in

the fasted state, protein kinase C (PKC) (123) which has been

shown to respond to polyunsaturated fatty acids like LA [e.g., (124,

125)] and Src tyrosine kinase which selectively targets P1-HNF4a
but not P2-HNF4a (90). This selective activity of Src could explain

the loss of P1-HNF4a and the retention of P2-HNF4a in both liver

cancer and colon cancer – Src is known to be elevated in both (126).
13 Discussion

In conclusion, many questions remain about what are the most

critical functions of the P1- versus P2-driven HNF4a isoforms and

why this dual promoter system has been conserved across so many

species (Figure 3C). This is particularly relevant given that the exon

swap mice expressing either only P1-HNF4a or P2-HNF4a are

viable and healthy, unless they are subjugated to certain stresses. For

example, a7HMZ mice, which express only P2-HNF4a, cannot
survive a prolonged fast as well as WT or even a1HMZ mice (75);

they are also extremely sensitive to experimentally induced colitis

(78). P1- and P2-HNF4a are both expressed in the fetal liver but in

a healthy, unstressed adult liver it is primarily the P1 promoter that

is active as P1-HNF4a protein represses the P2 promoter (Figure 6).

In the adult liver, HNF4a coordinates the expression of genes

responsible for basic metabolism in conjunction with the circadian

clock machinery, with P2-HNF4a being expressed only during

limited times of the day/night. Certain metabolic stressors,

including fasting, a high fat diet, alcoholic liver disease and liver

cancer increase expression of P2-HNF4a by mechanisms that

appear to involve promoter regulation by transcription factors,

long ncRNAs and/or DNA methylation. Signaling molecules such

as kinases could also impact the delicate balance of P1- and P2-

HNF4a proteins.

While many mutations leading to MODY1 have been found in

the P2-promoter, many fewer have been found in the P1-promoter

(6, 127). This led to the assumption that MODY1 mutations were

relevant primarily in the pancreas, where P2-HNF4a expression is

dominant. Knowing now that P2-HNF4a is expressed in the adult

liver under certain conditions of stress – including fasting and type

2 diabetes – raises the possibility that the effects of the MODY1

mutations in the P2 promoter could be due, at least in part, to an

inability to express P2-HNF4a in the liver under key conditions (Da

83). Indeed, recent clinical findings suggest that certain MODY1

mutations in the coding regions may have an effect in the liver and

kidney as well as the pancreas (11).

Similarly, the exact role of the HNF4a isoforms in liver cancer is

not completely clear. A knockout of HNF4a increases chemically

induced liver cancer in rodents and P1-HNF4a interacts with cyclin

D1 in a negative reciprocal regulatory axis to control hepatocyte
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proliferation (4, 128, 129). But why is P2-HNF4a increased in liver

cancer? Given that P1-HNF4a has been shown to repress the P2

promoter either directly or indirectly (80, 83, 104), could it be

simply that the tumor suppressive P1-HNF4amust be decreased in

order for the hepatocytes to proliferate and that once its expression

is reduced, P2-HNF4a expression is coincidentally increased? It will

be of interest to determine whether the negative regulatory loop

between P1-HNF4a and cyclin D1 pertains to P2-HNF4a as well.

Finally, it is intriguing to speculate that differential expression of

P1- and P2-HNF4a in the different zones of the liver could be

involved in different metabolic functions such as ketogenesis versus

gluconeogenesis. Hypoxic conditions near the central vein are

associated with ketogenesis while normoxia is in the zone where

gluconeogenesis occurs (Figure 1). HNF4a has been shown to

associate with hypoxia inducible factor (HIF) in the kidney to

turn on the expression of the erythropoietin gene (EPO) which

stimulates red blood cell production (130): that was presumably P1-

HNF4a, the only promoter known to be active in the kidney (34). In

contrast, in pancreatic cells in vitro hypoxia activates AMPK which

in turn decreases expression of HNF4a, presumably P2, by some as

yet unknown mechanism (131). Clearly, many questions remain

about the HNF4a isoforms in the liver, the genes they regulate, and

the factors/conditions that regulate them. The next 30 years of

HNF4a research will hopefully answer those and other questions

that have not yet been formulated.
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FIGURE 6

Balance of HNF4a isoforms in different stages of liver development and disease. See text for details.
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