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Background: The gut-liver axis indicates a close relationship between the

gastrointestinal microbiome (GM) and primary biliary cholangitis (PBC).

However, the causality of this relationship remains unknown. This study

investigates the causal relationship between the GM and PBC using a

bidirectional, two-sample Mendelian randomization (MR) analysis.

Methods: Genome-wide association data for GM and PBC were obtained from

public databases. The inverse-variance weighted method was the primary

method used for MR analysis. Sensitivity analyses were conducted to assess

the stability of the MR results. A reverse MR analysis was performed to investigate

the possibility of reverse causality.

Results: Three bacterial taxa were found to be causally related to PBC. Class

Coriobacteriia (odds ratio (OR) = 2.18, 95% confidence interval (CI): 1.295-3.661,

P< 0.05) and order Coriobacteriales (OR = 2.18, 95% CI: 1.295-3.661, P<0.05)

were associated with a higher risk of PBC. Class Deltaproteobacteria (OR = 0.52,

95% CI: 0.362–0.742, P< 0.05) had a protective effect on PBC. There was no

evidence of reverse causality between PBC and the identified bacterial taxa.

Conclusion: Previously unrecognized taxa that may be involved in the

pathogenesis of PBC were identified in this study, confirming the causality

between the GM and PBC. These results provide novel microbial targets for

the prevention and treatment of PBC.

KEYWORDS

gastrointestinal microbiome, primary biliary cholangitis, Mendelian randomization,
genetic predisposition, autoimmune liver disease
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1 Introduction

Primary biliary cholangitis (PBC) is a type of autoimmune liver

disease with the clinical features of a high titer of anti-

mitochondrial antibody (AMA) in the serum, elevated biliary

enzymes, and specific bile duct pathology (1). Anatomically, there

is bidirectional crosstalk between the intestine and liver, suggesting

that various intestinal-derived products (such as nutrients, bile

acids, and bacterial metabolites) are transported to the liver

through the portal vein and that the liver secretes bile and

antibodies into the intestine. This bidirectional relationship is

termed the gut-liver axis, which is the theoretical basis for the

relationships between diseases and the gastrointestinal microbiome

(GM) (2).

Gastrointestinal barrier dysfunction and alterations in the

gut microbial composition are commonly observed in patients

with chronic liver diseases. Substances produced by the GM,

such as bacterial components and microbial metabolites,

accumulate in the liver through the gut-liver axis (3, 4).

Specifically, small molecular motifs derived from the GM, such

as lipopolysaccharide, are detected by innate immune receptors

such as Toll-like receptors. This recognition triggers innate

immune responses that ultimately lead to changes in the liver

immune microenvironment, resulting in chronic inflammation

and, in some cases, progression to hepatocellular carcinoma (5,

6). Microbial metabolites, including secondary bile acids, short-

chain fatty acids, and ethanol, are produced through

fermentation of intestinal contents by the GM (7). These

metabolites have various effects on the liver, including direct

toxic effects, pro-inflammatory or anti-inflammatory immune

responses, and the maintenance of intestinal epithelial cell

stability via the gut-liver axis (8–11).

Changes to the GM are observed in patients with PBC.

Compared with healthy controls, the fecal microbial a-diversity is

decreased in patients with PBC (12, 13). Several studies have

reported depletion of potential probiotics and enrichment of

opportunistic pathogenic bacteria within the GM of patients with

PBC (12, 14, 15). Disturbance of the GM is a pivotal factor in the

progression of PBC. However, previous studies report both

consistent and conflicting results as they are case-control

observational studies. Although these studies controlled for the

effects of age and sex as much as possible, the GM is susceptible to

environmental, dietary pattern, and lifestyle changes. The influence

of confounding factors (16) renders these factors difficult to control.

In addition, due to the bidirectional relationship of the gut-liver

axis, it is unclear whether an altered GM triggers PBC or is a

reflection of disease status (17).

Mendelian randomization (MR) is a new technique used to

explore causal associations using genetics. Genetic variants are used

to construct instrumental variables (IVs) representing exposures,

which are then used to estimate the causal association between

exposures and an outcome (18). Due to the random allocation of

genotypes from parents to offspring, the association between genetic

variants and outcomes remains unaffected by common

confounding factors, establishing reasonable causality (19).
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In this study, two-sample MR analyses were conducted to assess

the potential causal relationships between bacterial taxa (used as

exposures) and PBC (used as the outcome) using genome-wide

association study (GWAS) summary statistics from the MiBioGen

and GWAS Catalog public databases. The reverse causal

relationships between each identified bacterial taxon and PBC

were also investigated.
2 Methods

2.1 Study design and data sources

A two-sample MR analysis satisfies three assumptions (20): the

IVs chosen from the datasets are related to the exposure; there is no

association between the IVs and confounders of the exposure-

outcome relationship; and the IVs are linked to the outcome

through exposures rather than any other way (Figure 1). Single-

nucleotide polymorphisms (SNPs) of each bacterial taxon were

screened using the MiBioGen database to be used as IVs (21, 22).

According to the previous publication (22), once the quality

control-filtered merged reads are processed, all cohorts can use

the standardized 16S processing pipeline available at the GitHub

repository (23). The cohorts used in this study are detailed in the

Supplementary Materials of the previous publication (22). The

overall proportion of proton pump inhibitor and antibiotic usage

was less than 10% in this study. Most of the fecal samples were

gender- and age-matched, and sample quality control, such as

removing ethnic outliers and sex mismatches, was performed

prior to the GWAS analysis. Outcome data were obtained from

the latest genome-wide meta-analysis of PBC (24). Each data source

included in the analyses is detailed in Table 1.
2.2 Instrumental variable selection and
quality control

SNPs with a less stringent cutoff of P < 1×10−5 were considered

significantly related to GM and chosen as the candidate IVs. This

strategy increased the number of SNPs available for subsequent

analyses (25–27). The linkage disequilibrium (LD) between the

candidate IVs were calculated using the 1000 Genomes Project

European sample data as the reference panel (LD correlation

coefficient set to R2< 0.001 and clumping window size = 10,000

kb). Then, the PhenoScanner V2 (28, 29) was used to search the

candidate IVs for confounders to avoid horizontal pleiotropy. IVs

that correlated with risk factors for PBC were excluded. The F-

statistic was used to identify any IV bias, and IVs with an F-statistic<

10 were eliminated (30, 31) by applying formula used in a previous

study (Appendices Equations A, B) (31, 32). Last, the exposure and

outcome of the SNPs were harmonized to confirm that the effect

alleles of the SNPs on the exposure matched with the identical effect

alleles on the outcome. Unmatched SNPs were removed from the

analyses. Palindromic and ambiguous SNPs were inferred during the

harmonization process and also removed.
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2.3 Pleiotropy effect analysis

MR-PRESSO (NbDistribution = 10000) and MR-Egger

regression tests were used to detect potential horizontal

pleiotropy effects. The MR-PRESSO outlier test assessed the

pleiotropic significance of individual SNPs, whereas the MR-

PRESSO global test provided an overall p value for horizontal

pleiotropy. The SNPs were sorted based on their MR-PRESSO

outlier test p values in ascending order and eliminated

individually. Each time an SNP was removed, the MR-PRESSO

global test was performed for the remaining SNPs. This procedure

was repeated until the global test p value was no longer statistically

significant (P > 0.05). All pleiotropic SNPs were removed prior to

the MR analysis.
2.4 MR analysis

MR results based on fewer than three shared SNPs were

excluded. The common methods used for causal inference were

the inverse-variance weighted (IVW) method (the main approach

for causal detection in two-sample MR analysis without horizontal

pleiotropy (33)), weighted median (WM) method (34), MR-Egger

regression method (20), simple mode (35), and weighted mode (36).

The IVW method is complimented by the other methods, which

expands the range of confidence intervals (37). A previously-

reported multiple testing significance threshold at each feature

level (phylum, class, order, family, and genus), defined as P<

0.05/n (where n is the effective number of independent bacterial
Frontiers in Endocrinology 03
taxa at the corresponding taxonomic level), was used (38).

Sensitivity analyses were performed to assess the robustness of

the findings. A leave-one-out analysis was conducted to determine

if any single SNP drove the significant results (39).
2.5 Heterogeneity

The heterogeneity of the IVs was measured using Cochran’s

IVW Q statistics. A Q value higher than the number of instruments

minus one suggests the presence of invalid instruments and

heterogeneity. A Q statistic p value< 0.05 indicates heterogeneity

(40, 41).
2.6 Reverse MR analysis

A reverse MR analysis was conducted to investigate the causal

influence of PBC on each identified bacterial taxon that was

identified as significant in the previous analyses. PBC was used as

the exposure (the p value for SNPs significantly related to PBC was

set to 5×10–8), and each identified causal bacterial taxon was set as

the outcome. The reverse MR analysis was conducted using the

same steps as the quality control of the IVs, MR analysis, and

sensitivity analysis.

All statistical analyses were performed using R software (42)

(version 4.1.3). The R packages used for the statistical analysis were

TwoSampleMR (35, 39) (version 0.5.6) and MR-PRESSO (43)

(version 1.0).
FIGURE 1

Three assumptions of two-sample Mendelian randomization (MR) analysis and the workflow of this study. Concisely, each bacterial taxon (at phylum,
class, order, family, and genus) served as an exposure, and PBC served as the outcome. Quality control was taken to ensure that the selected IVs
were reliable and accurate in determining a causal link between GM and PBC.
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3 Results

3.1 Selection of IVs

A total of 14570 SNPs among 211 taxa were identified,

including 937, 1583,1642, 2567, and 7841 at the phylum, class,

order, family, and genus levels, respectively (Table S1). After

clumping, 2212 SNPs remained as candidate IVs. The

PhenoScanner V2 identified only one candidate IV (Table S2)

that was associated with smoking, a risk factor for PBC (1). The

F-statistics of the IVs were all > 10 (Table S3), suggesting no

indication of weak instrument bias. A total of 711 IVs remained

after harmonizing the exposure and outcome data (Table S4). Three

pleiotropic SNPs were removed via the MR-PRESSO outlier test

(Table S5).
3.2 Causal associations between the GM
and PBC

The MR results were retained if they were based on three or

more shared SNPs. A total of 149 independent bacterial taxa

remained after the MR analysis, including 88 at the genus level (P

threshold of 5.68×10−4), 27 at the family level (P threshold of

1.85×10-3), 14 at the order level (P threshold of 3.57×10-3), 12 at the

class level (P threshold of 4.17×10-3), and eight at the phylum level

(P threshold of 6.25×10-3) (Table S6).

Causal relationships between PBC and three bacterial taxa, class

Coriobacteriia, order Coriobacteriales, and class Deltaproteobacteria,

were identified using the IVW and WMmethods (P< 0.05) (Table 2,

Figures 2, 3). The p values of the IVW method were inferior to the
TABLE 2 The causal effects of bacterial taxa on primary biliary cholangitis.

Taxa Method Na bb SEc p-value ORd 95% CIe

Class Coriobacteriia MR Egger 3 1.93 8.64×10-1 2.68×10-1 6.91 1.27-37.536

Weighted median 3 8.40×10-1 3.32×10-1 1.14×10-2 2.32 1.208-4.44

Inverse variance weighted 3 7.78×10-1 2.65×10-1 3.33×10-3 2.18 1.295-3.661

Simple mode 3 1.03 4.57×10-1 1.54×10-1 2.79 1.14-6.829

Weighted mode 3 1.01 4.69×10-1 1.63×10-1 2.75 1.099-6.894

Order Coriobacteriales MR Egger 3 1.93 8.64×10-1 2.68×10-1 6.91 1.27-37.536

Weighted median 3 8.40×10-1 3.32×10-1 1.15×10-2 2.32 1.207-4.442

Inverse variance weighted 3 7.78×10-1 2.65×10-1 3.33×10-3 2.18 1.295-3.661

Simple mode 3 1.03 4.08×10-1 1.28×10-1 2.79 1.254-6.21

Weighted mode 3 1.01 4.26×10-1 1.41×10-1 2.75 1.193-6.347

Class Deltaproteobacteria MR Egger 4 -5.35×10-1 3.97×10-1 3.11×10-1 0.59 0.269-1.277

Weighted median 4 -6.83×10-1 2.46×10-1 5.43×10-3 0.50 0.312-0.817

Inverse variance weighted 4 -6.57×10-1 1.83×10-1 3.25×10-4 0.52 0.362-0.742

Simple mode 4 -7.29×10-1 3.38×10-1 1.20×10-1 0.48 0.249-0.935

Weighted mode 4 -6.98×10-1 2.83×10-1 9.04×10-2 0.50 0.286-0.867
fr
a Numbers of SNPs, b Coefficient in the regression model, c Standard error, d Odds ratio, e Confidence interval.
TABLE 1 Description of the data sources.

Data GWASa summary
data of each
bacterial taxon

GWAS summary
data of PBCb

Data source MiBioGen (21, 22) GWAS Catalog (24)(ID:
GCST90061440)

Setting Meta-analysis study
Population: European,
Asian, and North American
(mainly European)

Meta-analysis study
Population: European

Participants 24 cohorts from 18340
participants, containing 211
taxa (131 genera, 35
families, 20 orders, 16
classes, and nine phyla)

24510 European (Canada,
U.S., Italy, U.K.)
Number of PBC = 8021
Number of
controls = 16,489

Measurement,
quality control,
and selection of
SNPsc (when
used as
exposures)

Minor allele frequency >
0.05
P< 1×10-5

Measurement of linkage
disequilibrium (R2<0.001,
clumping window size =
10000kb)
Excluding SNPs related to
risk factors of outcome
F-statistics ≥10
Removing palindromic and
ambiguous SNPs

Minor allele frequency >
0.1
P< 5×10-8

Measurement of linkage
disequilibrium (R2<0.001,
clumping window size =
10000kb)
Excluding SNPs related to
risk factors of outcome
F-statistics ≥10
Removing palindromic and
ambiguous SNPs

Methods of
assessment or
diagnostic criteria
for diseases

The core-measurable
microbiome is defined as
the list of bacterial taxa
present in more than 10%
of the samples in a cohort.

All patients fulfilled the
criteria of the European
Association for the Study
of Liver Diseases for
primary biliary cirrhosis.
a, genome-wide association; b, primary biliary cholangitis; c, single nucleotide polymorphisms.
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corresponding modified thresholds. The results of the IVW method

indicate that the class Coriobacteriia (odds ratio (OR) = 2.18, 95%

confidence interval (CI): 1.295-3.661, P = 3.33×10-3) and order

Coriobacteriales (OR = 2.18, 95% CI: 1.295-3.661, P = 3.33×10-3)

are associated with a higher risk of PBC and that the class

Deltaproteobacteria (OR = 0.52, 95% CI: 0.362–0.742, P =

3.25×10−4) has a protective effect on PBC. The MR-Egger

regression, simple mode, and weighted mode methods yielded

similar causal estimates for the magnitude and direction.
3.3 Sensitivity analysis

The MR-Egger intercept indicated no horizontal pleiotropy in

the identified taxa (P > 0.05). The MR-PRESSO analysis revealed no

outliers among the IVs. Additionally, the Cochrane Q statistics

indicated no noticeable heterogeneity (P > 0.05) (Table S7). The

leave-one-out analysis demonstrated that no individual SNP

significantly affected the correlation between each identified

bacterial taxon and PBC (Figure 4).
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3.4 Reverse MR analysis

No reverse causal association between PBC and the identified

bacteria were identified (Table S8).
4 Discussion

Researchers have reported that the GM contributes to PBC via

molecular mimicry, translocation of gut bacteria to the liver

through the damaged intestinal epithelium, movement of immune

cells from the intestine to the liver, and abnormal bile acid

metabolism (44, 45). Molecular mimicry is a common mechanism

by which foreign substances, such as the GM, cause autoimmunity

in the body. This occurs when proteins or peptides from the gut

microbiota resemble self-peptides, which may activate T or B cells

that attack host cells in vulnerable individuals (46). AMA is an

autoantibody specific for PBC that targets lipoic acid on 2-oxo-acid

dehydrogenase complexes within the inner mitochondrial

membrane. Increases in the number of autoreactive clusters of
A B

C

FIGURE 2

Scatter plots for the causal association between bacterial taxa and primary biliary cholangitis. Single nucleotide polymorphisms (SNPs) were used to
assess the impact of each bacterial taxon on primary biliary cholangitis (PBC) by five MR methods (A–C). The dots represent the effect size (b) of
each SNP on each bacterial taxon (x-axis) and PBC (y-axis), and the grey crosses represent the standard errors. Regression slopes show the
estimated causal effect of each bacterial taxon on PBC. The light blue, dark blue, light green, dark green, and red regression lines represent the
inverse variance weighted method, MR-Egger regression, simple mode, weighted median method, and weighted mode, respectively.
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CD4+or CD8+ pyruvate dehydrogenase complex (PDC-E2)-specific

T cells are observed in the liver (1). There is growing evidence that

microbial mimics can induce AMA expression. Bacterial sequences

from Escherichia coli and Sphingomonas can react with AMA in the

serum of patients with PBC (47, 48), and their ability to induce

autoimmune cholangitis has been verified in vivo (49, 50). No causal

relationship between Escherichia coli or Sphingomonas and PBC
Frontiers in Endocrinology 06
was identified in this study, which may be due to the limited

number of taxa in the MiBioGen database; therefore, the

corresponding IVs could not be screened for the MR analyses.

In this study, the class Coriobacteriia and its lower taxonomic

rank order Coriobacteriales of the phylum Actinobacteria (51) were

associated with a higher risk of developing PBC. Members of this

category are anaerobic organisms that survive in various ecological
FIGURE 3

The circular heat map of two-sample Mendelian randomization (MR) analysis. The first track represented the p-value of the MR analysis. From
external to internal, it represented different methods, including the inverse variance weighted method, MR-Egger regression, Simple mode, Weighted
median, and weighted mode method. The color gradient tended towards red to indicate smaller p-values. The block marked with ‘black stars’
signified that the taxon reached the modified significance threshold at a specific taxonomy. The second track represented the b value. Red blocks
indicated harmful factors for PBC, with darker shades indicating a higher risk of illness. Green blocks represented protective factors against PBC,
with darker shades indicating a lower risk of illness.
A B C

FIGURE 4

Leave-one-out analysis for identified bacterial taxa on primary biliary cholangitis. The sensitivity of the causal effect of different single nucleotide
polymorphisms (SNPs) of each taxon on primary biliary cholangitis was analyzed through leave-one-out analysis in (A–C). The error bar depicts the
95% confidence interval using the inverse variance weighted method.
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environments and do not produce spores. They may either be strict

or facultative in their anaerobic requirements (52–55). Limited

research regarding their influence on human diseases and the

relat ionships between the class Coriobacteri ia , order

Coriobacteriales, and PBC has been conducted. Yi et al. reported

that long-term exposure to nitrogen dioxide significantly increases

gamma-glutamyl transpeptidase and glutamic-pyruvic transaminase

levels in patients with schizophrenia and that Coriobacteriales

intestinal bacteria mediates this effect by 13.98% and 49.56%,

respectively (56). The results of this previous study suggest that

Coriobacteriales may be an intermediary in the mechanism by which

smoking or environmental exposure initiates PBC (1). Another study

reported that Coriobacteriaceae and Coriobacteriales are significantly

enriched in the urethral secretions of patients with chronic prostatitis

(57), a specific type of urinary tract infection. In addition, several

extensive case-control cohort studies have reported that urinary tract

infections are related to PBC (1), which is supported by the genetic

results of the current study. Approximately 75-95% of patients with

PBC suffer from hyperlipidemia due to various complex procedures

associated with biliary cholestasis (58, 59). Coriobacteriia were

elevated in the guts of females with low high-density lipoprotein

cholesterol (60). Interestingly, genera in the Coriobacteriia class were

lower in patients with familial hypercholesterolemia who had used

statins for more than 12 months than in healthy control patients (61).

Patients with PBC and metabolic syndrome are at a higher risk of

cardiovascular events (62). However, further experimental

verification is required to determine whether Coriobacteria can be

targeted to improve the lipid metabolism abnormalities in patients

with PBC.

In this study, the class Deltaproteobacteria was found to have a

defensive role in preventing PBC. Deltaproteobacteria is a gram-

negative class of Proteobacteria involved in the carbon and sulfur

cycles (63). The lower taxonomic levels of the class Deltaproteobacteria,

order Desulfovibrionales, and family Desulfovibrionaceae tended to

have a protective effect on PBC, though the threshold of the modified

p-value was not met in this study (Figure 3, Table S6). In contrast to the

current findings, previous studies suggested that Deltaproteobacteria

and its descendants are potentially pathogenic gut bacteria (64–70).

Desulfovibrionaceae is capable of producing hydrogen sulfide (H2S)

(71). Excessive H2S in the focal intestinal tract may reduce disulfide

bonds in the mucous layer, breaking down the mucous barrier and

exposing epithelial cells to bacteria and toxins, which may lead to

intestinal inflammation (72). In contrast, low levels of endogenous or

exogenous H2S directly stabilize the mucus layers, preventing microbial

biofilms from attaching to the epithelium, which stops the release of

harmful pathogenic microorganisms and assists in resolving tissue

damage and inflammation (72). In addition, metabolic H2S has been

reported to improve insulin resistance in mice with non-alcoholic fatty

liver disease via the AKT signaling pathway (73), suggesting that an

overabundance of Deltaproteobacteria and their descendants

colonizing the human gut may disrupt the balance of the local

microbiota and become pathogenic. However, the safety zone for the

abundance of these taxa is not predictable. Therefore,

Deltaproteobacteria and their descendants may be protective or

harmful. The necessary equilibrium of these taxa in the human gut

requires further investigation.
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Organisms that are causally related to PBC (12, 14, 74), such as

Streptococcus, Enterococcus, or Veillonella, were not identified as

potential biomarkers in this study. The alterations in the GM

associated with PBC may be an effect rather than a cause,

indicating that the disease state of PBC (bile stasis and immune

dysregulation of the gut-liver axis) affects the composition of

the GM.

The efficacies of treatment options for PBC are limited (1, 75).

Microbiome modulation therapies, such as the use of antibiotics,

supplementation with probiotics, and fecal microbiota

transplantation (FMT), have been used to treat liver diseases,

including recurrent encephalopathy, non-alcoholic fatty liver

disease, liver cancer, and cholestatic liver diseases (76–79).

Although no clinical trials have specifically focused on PBC,

promising results have been obtained regarding the safety of FMT

in primary sclerosing cholangitis (PSC), another cholestatic liver

disease. A previous study demonstrated improvements in the

alkaline phosphatase levels and enrichment of specific bacterial

strains in patients with PSC (80). Therefore, the identification of

bacteria that could be protective or potentially harmful against PBC

may be a therapeutic intervention for the regulation of the GM.

This study has advantages and limitations. It is the first bi-

directional, two-sample MR study to explore the causal relationship

between the GM and PBC, with strict conditions for screening the

IVs. This study provides genetic evidence regarding the gut-liver

axis and identifies three bacterial taxa associated with PBC that have

not been previously studied. However, the number of microbiota

taxa in the database was limited, resulting in a lack of IVs for the

MR analysis. In addition, it is unclear whether there are overlapping

samples in the GWAS data of GM and PBC, which may lead to bias.

Further experimental and clinical validation is necessary to confirm

these findings. Last, the GWAS samples of the MiBioGen database

were mainly of European ancestry; therefore, these results are

limited to patients of European descent.

In conclusion, this study identified a causal relationships

between the GM and PBC. The class Coriobacteriia and order

Coriobacteriales may be intermediate factors in inducing PBC and

participating in disease progression, whereas Deltaproteobacteria

may play a protective role. However, it is essential to note that the

findings of this study have limitations, and further validation

through experiments and clinical studies is required to confirm

these observations.
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R2 =
2� EAF� (1 − EAF)� b2exposure

2� EAF� (1 − EAF)� b2exposure + 2� EAF� (1 − EAF)�
(Eq:A)

F = R2 � N − 2
1 − R2   (Eq:B)

R2stands for the exposure variance defined by each IV, EAF

means effect allele frequency, bexposure and SE2
exposure refer to the

estimated effect and standard error of SNPs on specific gut

microbiome respectively, and N is the sample size.
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