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Pleiotrophin and metabolic
disorders: insights into its
role in metabolism

Cristina Ballesteros-Pla, Marı́a Gracia Sánchez-Alonso,
Javier Pizarro-Delgado, Agata Zuccaro, Julio Sevillano*

and Marı́a Pilar Ramos-Álvarez

Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU
Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid, Spain
Pleiotrophin (PTN) is a cytokine which has been for long studied at the level of the

central nervous system, however few studies focus on its role in the peripheral

organs. The main aim of this review is to summarize the state of the art of what is

known up to date about pleiotrophin and its implications in the main metabolic

organs. In summary, pleiotrophin promotes the proliferation of preadipocytes,

pancreatic b cells, as well as cells during the mammary gland development.

Moreover, this cytokine is important for the structural integrity of the liver and the

neuromuscular junction in the skeletal muscle. From a metabolic point of view,

pleiotrophin plays a key role in the maintenance of glucose and lipid as well as

whole-body insulin homeostasis and favors oxidative metabolism in the skeletal

muscle. All in all, this review proposes pleiotrophin as a druggable target to

prevent from the development of insulin-resistance-related pathologies.

KEYWORDS

pleiotrophin, receptor protein tyrosine phosphatase b/z (RPTP b/z), metabolism,
metabolic disorders, peripheral organs
Introduction

Pleiotrophin (PTN) is an 18-kDa neurotrophic heparin-binding factor that was

simultaneously described by several groups around 1990 (1–5). Ptn gene encodes a basic

protein of 168 amino acids, that after post-transcriptional modifications, renders the active

protein composed of 136 amino acids and a 32 amino acid signal peptide (3, 5, 6). In addition,

PTN maintains a highly conserved sequence among species (sequence identity >90%) and

shares more than 50% sequence identity with midkine, the other member of the family (7).

Ptn expression is highly upregulated during embryonic development and during early

cell differentiation (2, 4, 5). In the adulthood, its expression is decreased in most of the

tissues except for the bone and the nervous system, where the highest expression levels are

maintained (1–5). In humans, circulating PTN levels are significantly associated with

advancing chronological age, what confirms a retention of pleiotrophin expression in adult
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tissues (8). In particular, a residual expression of pleiotrophin has

been found in the adult liver, brain, adipose tissue, testis, and

pancreas (9–11).

Additionally, upregulated pleiotrophin expression has been

associated with biological events that involve cellular proliferation

and differentiation such as tissue regeneration (12), bone repair

(13), inflammatory processes (14), hypoxia (15), tumor growth (16)

and angiogenesis (17). In fact, Ptn gene is a proto-oncogene and

high levels of this cytokine are associated to perineural invasion in

pancreatic cancer (18) and metastasis in prostate cancer (19).

Accordingly, determination of PTN levels has been proposed as a

potential tool for the diagnosis and prognosis of breast cancer (20,

21). Moreover, the expression of this cytokine has shown to be

enhanced in the presence of several growth factors and cytokines,

like androgens (22), TNFa and epidermal growth factor (EGF) (23),

platelet-derived growth factor (PDGF) and basic fibroblast growth

factor (FGF) (24), and to be downregulated in a dose-dependent

manner by 1a,25-Dihydroxyvitamin D(3) (25).

Additionally, several miRNAs are also regulators of PTN

expression. miR-143 represses Ptn expression and enhances

preadipocyte differentiation (26), miR-182 downregulates PTN

levels and participates in the development of endometrial

receptivity (27). PTN levels are negatively correlated with the

levels of miR-137 a miRNA that is decreased in hypertrophic

scars (28) and of those of miR‐384 a microRNA with potential

tumor suppressor activity (29). Moreover, some miRNAs (miR-499

and miR-1709) regulate Ptn expression by affecting the DNA

methylation status of the Ptn gene, and hence, favor the initiation

and progression of some tumoral processes (30).

From a pharmacodynamic point of view, PTN is a ligand for

several receptors that are differentially expressed in the different

tissues. So far, PTN has been described to interact with nucleolin

(19), neuropilin-1 (31), syndecans (32, 33), integrin avb3 (34),

integrin aMb2 (Mac-1) (35), anaplastic lymphoma kinase (ALK)

(36), and receptor protein phosphatase b/z (RPTP b/z) (37, 38).
PTN interacts with the glycosaminoglycans of syndecans and

induces its oligomerization affecting its interactions with other

membrane receptors, what has shown to activate focal adhesion

kinase and ERK1/2 (39). Similarly, PTN can also bind to the

extracellular domain of RPTP b/z, inducing its dimerization,

what inhibits the intracellular tyrosine phosphatase activity and

favors the increment in the phosphorylated forms of the RPTP b/z
substrates including b-catenin, ALK, c-Src, PKC, integrin aVb3,
p190RhoGAP and ERK1/2 (40). Although, ALK has been described

as a receptor for pleiotrophin (36) it is not clear if pleiotrophin

directly modulates ALK signaling or if it is a target of the PTN/

RPTP b/z signaling pathway (41). PTN treatment induces the

phosphorylation of the cytoplasmic domains of b3 of avb3
integrin (34). Furthermore avb3 forms a multi receptor complex

with RPTP b/z and nucleolin (42). Pleiotrophin interacts with

nucleolin that participates in PTN nuclear translocation what

have been suggested that may modify gene expression (43).

Altogether, the binding of PTN to these receptors triggers the

activation of intracellular signaling cascades involved in cell

migration and adhesion (19, 44, 45), cancer and metastasis (19,

44, 45), inflammation (35, 46, 47) and neurite outgrowth (2).
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Pleiotrophin in metabolic organs:
implications for metabolism
and disease

Metabolic diseases are characterized by the disruption of normal

metabolic processes which alter the capacity to process

carbohydrates, proteins or lipids. Metabolic disorders include a

wide range of diseases that can be either inherited or acquired

during lifetime. Metabolic syndrome is characterized by the

presence of insulin resistance, central obesity, hypercholesterolemia

and hypertension and poses a higher risk of developing diabetes and

cardiovascular disease (48).

The role of the central nervous system (CNS) in controlling

peripheral metabolism has been extensively described in the

literature (49). The continuous crosstalk between the brain and

peripheral organs through different molecules is key in the regulation

of whole-body metabolic homeostasis (50). Recently, the link between

neurodegenerative diseases and metabolic disorders has gained more

relevance. It has been proposed that the different molecules involved in

the crosstalk between the brain and the adipose tissue, might contribute

to the development of several metabolic and/or neurodegenerative

disorders (49, 51). Thus, diabetic or obese patients are prone to develop

neurodegenerative disorders such as Parkinson´s or Alzheimer´s

Disease (52, 53). However, the mechanisms underlying these

connections remain still unclear.

PTN is a potent modulator of neuroinflammation in the CNS (14)

and participates in the repair, survival and differentiation of neurons

(54). PTN modulates the tyrosine phosphorylation of substrates that

are involved in neuroinflammation through RPTP b/z, which is mainly

expressed in the adult CNS in both neurons and microglia (55). As

PTN signaling pathway regulates the inflammatory condition related to

metabolic disorders, pleiotrophin has been postulated as a promising

candidate for CNS and peripheral metabolism crosstalk (55).

Moreover, recent reports have evidenced that PTN is implicated in

the regulation of peripheral metainflammation, metabolic homeostasis,

thermogenesis, as well as insulin sensitivity in the peripheral tissues (11,

56, 57) Furthermore, Ptn deletion protects against neuroinflammation,

mitochondrial dysfunction, and aberrant protein aggregation in a high

fat diet (HFD) induced obesity model (47).

In this review we summarize the main roles of pleiotrophin in

the development and metabolism of key metabolic organs

(Figure 1), and how these effects may contribute to the

development of metabolic disorders and more precisely,

metabolic syndrome.
Pleiotrophin in liver regeneration and
metabolic regulation

The liver is the main metabolic organ of the organism and

regulates energy homeostasis by modulating glucose and lipid

metabolism (58, 59). Liver integrity is crucial for liver

functionality. Accordingly, liver has a unique capacity to

regenerate after tissue damage (60), and several cytokines and

growth factors have been shown to be essential for liver
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regeneration (61–65). PTN exerts an antiapoptotic activity through

the inhibition of caspase-3 (66) and is a potent mitogen for

hepatocytes (67). In this line of evidence, PTN potentiates

regeneration after partial hepatectomy (68), regulates the

proliferation of bile ducts after liver injury and is overall

implicated in liver regeneration and development (68, 69). In fact,

after liver damage, under hypoxic conditions or in the presence of

high PDGF levels (15), Ptn expression and secretion is induced in

the hepatic stellate cells (HSCs) and once secreted, PTN exerts its

mitogenic effects on hepatocytes (68, 70). Regarding the metabolic

effects of pleiotrophin in hepatocytes, PTN binding to the N-

syndecan activates the PI3K/Akt/mTORC1 pathway what

increases the levels of sterol regulatory element‐binding protein

1c (SREBP‐1c) and the expression of lipogenic genes, inducing fatty

acid synthesis (29).

In the liver, Ptn deletion in mice lowered lipid accumulation

and decreased the mRNA levels of the enzymes involved in both

fatty acid and triacylglyceride synthesis. Although the exposure to a

HFD promoted hyperinsulinemia and insulin resistance in wild

type mice, Ptn deletion blocks the HFD-induced hyperinsulinemia

and the increment in the HOMA-IR index, and also protects against

HFD-induced hepatic steatosis (57).

On the other hand, PTN has also shown to be necessary for

hepatic homeostasis during pregnancy (56). Deletion of Ptn is

associated with a defective hepatic peroxisome proliferator-

activated receptor alpha (PPARa) and NUR77 activation that

impairs lipid and carbohydrate metabolism. As a consequence, in
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the absence of pleiotrophin, a marked reduction in fatty acid,

triacylglyceride and cholesterol synthesis is observed in the liver.

Additionally, hepatic secretion of triacylglycerides and hepatic lipid

accumulation are reduced in the pregnant Ptn knock out mice (56).
Role of pleiotrophin in skeletal muscle
development and function

Pleiotrophin is expressed in all types of muscle cells (smooth

muscle, cardiac muscle, and skeletal muscle) and it is distributed in

the basement membranes and epithelial cell surfaces (71–73). First

of all, expression of pleiotrophin has been reported in intestinal

smooth muscle cells (24). Secondly, Ptn is upregulated during in

vitromyogenesis as well as in rat soleus muscle during regeneration

after crushing. The expression levels of PTN progressively increased

during the differentiation process with a peak during the fusion of

myoblasts into myotubes (74). Moreover, PTN staining was

localized in differentiating skeletal muscles and in the outer

mesenchymal layer of the stomach and the intestine, which gives

rise to the smooth muscle layer (75). PTN has neurotrophic activity

and induces clustering of acetylcholine receptors (AchR) at

neuromuscular junctions (NMJ). During rat embryogenesis, at

embryonic day E16, PTN is located close to AchR clusters on the

muscle cell surface (76). Moreover, Ptn is expressed in macrophages

and non-myelinating glial cells (Schwann cells) which are
FIGURE 1

Summary of the main biological events regulated by PTN occurring in the metabolic organs. The main metabolic events regulated by PTN in liver,
pancreas, adipose tissue, skeletal muscle, and mammary gland. The receptors of PTN expressed in these organs that presumably mediate PTN
signaling pathways have also been included.
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important cell types implicated in the NMJ (77). PTN also

accumulates in extracellular structures that line growing axonal

processes and disappears after neurite extension has been

completed (78).

During the regeneration of adult muscle, in a general

inflammatory milieu, platelets and myogenic precursor cells start

secreting various growth factors, to counteract the deleterious

effects of a muscle lesion (71–73). PDGF, a chemotactic factor for

satellite cells, is released by platelets from injured vessels and may

contribute to the increment in the expression of PTN in the

damaged area (74) . Ple iotrophin not only enhances

vascularization mechanisms but is equally involved in the

formation of new myofibers (74). PTN mRNA and protein

expression increase during the regeneration process of a crushed

muscle with a peak at day 5 in the newly formed myotubes and in

the activated myoblasts, being the levels restored 15 days after the

damage (74).

Skeletal muscle plays a key role in metabolism, uptaking up to

80% of postprandial glucose and it is one of the key players in the

development of whole-body insulin resistance (79). Moreover,

muscle functions as an endocrine organ given its capacity to

secrete molecules known as myokines that are released in the

circulation (80). These myokines are essential for the crosstalk

between the skeletal muscle and other organs, such as the adipose

tissue, the brain, or the bone and may favor the development of

some metabolic diseases (80). Transgenic mice over-expressing

PTN in bone (PtnTg), under the control of the human bone

specific osteocalcin promoter, exhibit higher oxidative metabolism

in soleus muscle. This increment in oxidative metabolism may be

the consequence of the enrichment in the number of the highly

oxidative type 1 fibers, and higher mRNA levels of ATP-sensitive K+

channel (Abcc8), cytochrome c oxidase subunit IV (Cox4i1), and

citrate synthase (Cs), and increased vascularization (72). Although

these effects observed in these mice overexpressing PTN seem to be

related to a paracrine action of this cytokine, from a metabolic point

of view, a higher oxidative metabolism in the skeletal muscle may

have a protective action against the development of insulin

resistance and type 2 diabetes and highlights the role of this

cytokine in the metabolic homeostasis in the skeletal muscle.
Role of pleiotrophin in adipogenesis
and adipose tissue browning

An impairment of adipogenesis favors the development of

obesity, insulin resistance and diabetes (81). Consequently, the

molecules regulating preadipocyte proliferation and adipogenesis

might be targets for the treatment of these metabolic diseases. PTN

is expressed in the adipose tissue (82), and differential expression of

PTN was found between omental and subcutaneous adipose tissue.

As increased omental adipose tissue mass has a higher risk of

obesity-associated metabolic diseases, PTN expression has therefore

been proposed as a possible link between obesity, diabetes, and

cardiovascular diseases (82).
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Pleiotrophin gene expression varies during adipocyte

differentiation suggesting a possible role of PTN in adipogenesis

(26, 83). Particularly, Ptn expression is almost undetectable in

preadipocytes, increases during confluence and quickly decreases

when differentiation is induced. Moreover, as Ptn expression is

induced by ADAMTS1 (ADAM metallopeptidase with

thrombospondin type 1 motif 1) via the Wnt/b-catenin pathway,

the activation of ADAMTS1 could also play a role in preadipocyte

differentiation (84). In fact, when brown adipocytes differentiate,

the levels of Adamts1 (84) are decreased and so the levels of Ptn

(11), supporting the idea that PTNmight be implicated in adipocyte

proliferation but not in differentiation. In fact, as shown in the 3T3-

L1 cell line, PTN impairs preadipocyte differentiation through the

inhibition of PPARg (Peroxisome proliferator-activated gamma)

and through a crosstalk between the PTN/PI3K/Akt/GSK-3b/b-
catenin and theWnt/Fz/GSK-3b/b-catenin signaling pathways (83).

Some micro-RNAs that regulate adipogenesis have been

involved in the development of metabolic disorders such as

obesity and diabetes (85). miR-143 favors preadipocyte

differentiation, as its levels begin to increase when adipocyte

differentiation is induced. Furthermore, miR-143 interacts with

the coding region of Ptn gene and it is able to repress Ptn

expression (26). An up-regulated expression of miR-143 in

association with an increased expression of Pparg and aP2

(adipocyte protein 2), two adipocyte genes involved in the

pathophysiology of obesity and insulin resistance, was found in

the adipose tissue of obese mice fed with HFD (86).

Recent studies using a Ptn knock out mice model (Ptn-/-) reveal

that Ptn deletion is associated with decreased body weight and

adiposity, altered fat distribution, impaired periovarian white

adipose tissue expandability, increased catecholamine-induced

lipolysis and reduced inhibitory response to insulin of lipolysis

(11). Moreover, Ptn-/- mice are glucose intolerant and develop

insulin resistance in later life and preferentially oxidize fatty acids

as main energy source instead of glucose both in the light and dark

periods (11). In fact, Ptn deletion is associated with an increased

conversion of T4 to T3 by deiodinase 2 (DIO2) and increased fatty

acid thermogenesis in brown adipose tissue (11). Additionally,

pleiotrophin deletion is associated with browning and increased

expression of uncoupling protein-1 (UCP-1) and other specific

markers of brown/beige adipocytes in periovarian adipose tissue of

female Ptn-/- mice (57). Therefore, it has been proposed that

absence of pleiotrophin has a protective role against high fat diet-

induced insulin resistance and obesity in rodents.
Role of pleiotrophin in mammary
gland development

PTN stimulates angiogenesis and promotes invasion and

metastasis in breast cancer. Thus, PTN protein was purified for

the first time from tissue culture supernatants of human breast

cancer cells (87). PTN is expressed in primary breast cancers and in

estrogen receptor-negative breast cancer cell lines (88), and is
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upregulated in carcinogen induced mammary carcinomas in

rats (88).

Nevertheless, Ptn expression is also detected in the normal

human breast (89) and in the normal mouse mammary gland (90).

In the human, Ptn is expressed mainly in the alveolar epithelial and

myoepithelial cells (89) and it is secreted in human milk and

colostrum (91). In the mouse, Ptn is expressed in the adipocytes

and in the epithelial cells (89) and the differentiation of mammary

gland starts after weaning, and hormonal stimuli induces ductal tree

proliferation, branching and invasion of the mammary fat pads.

Treatment with a monoclonal anti-PTN neutralizing antibody has

demonstrated that PTN is required to maintain mammary epithelial

cells in a proliferative state and delays ductal outgrowth, branching

and terminal end formation. In particular, PTN seems to inhibit

differentiation and to delay mammary gland maturation through

the inhibition of phospho ERK1/2 signaling (92).

The levels of Ptn mRNA also vary during the intense

remodeling of mammary gland during pregnancy and lactation.

Ptn expression is not modified during the first 10 days of pregnancy

when ductal epithelial cells proliferate in mammary gland.

However, by day 15, when the epithelial ductal cells start

undergoing lobular-alveolar differentiation, Ptn mRNA levels are

downregulated 30-fold. After weaning, during the apoptosis of

mammary epithelial cells after lactation, Ptn mRNA levels are

restored to the ones of non-pregnant animals (92). Moreover,

lower Ptn mRNA levels were detected in the mammary gland of

parous dams when compared to nulliparous dams in rodents (93).
Pleiotrophin and pancreas: the
pancreatic beta cell

Pleiotrophin is highly expressed during embryonic and fetal

development in those organs that undergo branching morphogenesis,

like the pancreas (75). During the branching ductal morphogenesis of

the embryonic pancreas in the mice, PTN modulates cell proliferation

and angiogenesis (94). Prior to pancreatic evagination, PTN is located in

the areas of vasculogenesis adjacent to the differentiating ductal

epithelium. At the embryonic day E11-13 in mice, PTN is localized in

the basement membranes of the pancreatic epithelium. With the

progress of differentiation, PTN becomes localized only to the

undifferentiated “cord” region, and by E18 only to blood vessels.

Furthermore, in mouse 3D culture of E11 pancreatic explants, the

antisense inhibition of Ptn expression impaired the differentiation of

endocrine precursors and blunted glucagon and insulin expression (94).

Pancreatic b cells share with neurons that are excitable cells (95)
and that retain high levels of Ptn expression in the adult. In fact,

PTN maintains a high level of expression in the b cells of pancreatic

islets of adult rats [10], mice [10] and humans [10]. The expression

of Ptn in b cells could potentially contribute to adaptive increases in

b cell mass as PTN is prominently expressed in Ins+ GlutLO2 cells, the

immature pancreatic b cells that have multipotential islet endocrine

cell lineage potentiality, and retain the proliferative capacity (10).

Although avb3 integrin is a PTN receptor that is expressed in

the pancreatic islets (96), RPTP b/z is the most probable target for
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PTN in pancreatic islets (10). Treatment with rPTN increased DNA

synthesis and upregulated the expression of Pdx-1 and insulin genes

in the INS1E rat insulinoma cells suggesting that PTN modulates b
cell expansion through RPTP b/z and/or other surface binding

proteins (10).

On the other hand, the excitability of b cells is dependent of

glucose uptake and triggers the opening of the voltage-dependent

calcium channels, allowing the entrance of calcium inside the b cell

which leads to insulin secretion (97, 98). In previous studies using

female Ptn-/- mice, glucose tolerance and insulin responsiveness

were improved in 3-month-old Ptn-/- mice, but in later life these

mice become hyperinsulinemic, insulin-resistant and glucose

intolerant (11). Therefore, Ptn deletion may favor a prediabetic

state that increases the susceptibility to develop diabetes in later

stages of life. Besides, late pregnant Ptn knock out mice are

hypoinsulinemic, hyperglycemic and glucose intolerant and have

a decreased expression of key proteins involved in glucose and lipid

uptake and metabolism (56).
Conclusions and future perspectives

Pleiotrophin has been widely studied in the field of cancer and

much work has been also carried out to analyze its implications in the

CNS. In this review, we summarize the main actions of PTN at the

main metabolic peripheral organs obtained from the experiments in

which pleiotrophin levels are increased (by recombinant pleiotrophin

administration and transgenic overexpression) or reduced (by miRNA,

siRNA, neutralizing antibodies or Ptn deletion).

In the mammary gland, this cytokine favors tumor growth and

progression and delays the full development of the tissue. In this line of

evidence, blocking PTN with anti-PTN antibody enhanced ductal

development in the mammary glands. Pleiotrophin is expressed in

the young endocrine pancreas and in the adult pancreas and it is

overexpressed during b cell regeneration after streptozotocin treatment.

Moreover, the administration of recombinant pleiotrophin in an

insulinoma cell line induces b cell expansion and enhances the

expression of insulin-related genes. In the muscle, pleiotrophin is

overexpressed during tissue regeneration. Transgenic overexpression

of Ptn in the muscle enhances vascularization and oxidative muscle

metabolism through an increment in the activity of citric acid cycle and

electron transport system. No evidence is available yet regarding the

effects of Ptn deletion on muscle oxidative metabolism. However, the

actions of PTN on oxidative metabolism and whole-body energy

expenditure are also derived from the effects of PTN on adipose

tissue and liver. Ptn expression increases in preadipocytes during

confluence and quickly decreases once differentiation starts. In fact,

when adipocyte differentiation starts miR-143 levels start to increase

what may repress Ptn expression and treatment with rPTN inhibits

preadipocyte differentiation. Nevertheless, pleiotrophin deletion

impairs fat accumulation and the expansibility of adipose tissue and

favors lipolysis of triacylglycerides in the adipose tissue and free fatty

acid release. Moreover, pleiotrophin deletion induces browning in

white adipose tissue and increases the thermogenic activity of the

brown adipose tissue increasing the use of fatty acids instead of

carbohydrates for energy production. The role of PTN on hepatic
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lipid metabolism and development has also been clearly evidenced.

PTN expression increases during liver regeneration and development.

Additionally, the overexpression of pleiotrophin has also shown to

increase fatty acid synthesis and the expression of lipogenic genes.

However, Ptn deletion decreases both the liver size and the gene

expression of proteins involved in lipogenesis, both during late

pregnancy and in a HFD-induced obesity mice model, and thus may

protect against steatosis.

These findings suggest a role for pleiotrophin in the

development of pathologies related to insulin resistance such as

aging or diabetes, however, much effort is still needed to fully

understand and deepen the knowledge of the field. We believe in the

importance of a more profound and further characterization of Ptn

knock out and transgenic animal models to fully elucidate the

implications of this cytokine in pancreas functionality and

muscle metabolism.
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