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GADD45B regulates the
carcinogenesis process of
chronic atrophic gastritis and
the metabolic pathways of
gastric cancer
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Background: Gastric cancer continues to be a significant global healthcare

challenge, and its burden remains substantial. The development of gastric

cancer (GC) is closely linked to chronic atrophic gastritis (CAG), yet there is a

scarcity of research exploring the underlying mechanisms of CAG-induced

carcinogenesis.

Methods: In this study, we conducted a comprehensive investigation into the

oncogenes involved in CAG using both bulk transcriptome and single-cell

transcriptome data. Our approach employed hdWGCNA to identify pathogenic

genes specific to CAG, with non-atrophic gastritis (NAG) serving as the control

group. Additionally, we compared CAG with GC, using normal gastric tissue as

the control group in the single-cell transcriptome analysis. By intersecting the

identified pathogenic genes, we pinpointed key network molecules through

protein interaction network analysis. To further refine the gene selection, we

applied LASSO, SVM-RFE, and RF techniques, which resulted in a set of cancer-

related genes (CRGs) associated with CAG. To identify CRGs potentially linked to

gastric cancer progression, we performed a univariate COX regression analysis

on the gene set. Subsequently, we explored the relationship between CRGs and

immune infiltration, drug sensitivity, and clinical characteristics in gastric cancer

patients. We employed GSVA to investigate how CRGs regulated signaling

pathways in gastric cancer cells, while an analysis of cell communication shed

light on the impact of CRGs on signal transmission within the gastric cancer

tumor microenvironment. Lastly, we analyzed changes in metabolic pathways

throughout the progression of gastric cancer.

Results: Using hdWGCNA, we have identified a total of 143 pathogenic genes

that were shared by CAG and GC. To further investigate the underlying

mechanisms, we conducted protein interaction network analysis and

employed machine learning screening techniques. As a result, we have

identified 15 oncogenes that are specifically associated with chronic atrophic
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gastritis. By performing ROC reanalysis and prognostic analysis, we have

determined that GADD45B is the most significant gene involved in the

carcinogenesis of CAG. Immunohistochemical staining and differential analysis

have revealed that GADD45B expression was low in GC tissues while high in

normal gastric tissues. Moreover, based on prognostic analysis, high expression

of GADD45B has been correlated with poor prognosis in GC patients.

Additionally, an analysis of immune infiltration has shown a relationship

between GADD45B and the infiltration of various immune cells. By correlating

GADD45B with clinical characteristics, we have found that it primarily affects the

depth of invasion in GC. Through cell communication analysis, we have

discovered that the CD99 signaling pathway network and the CDH signaling

pathway network are the main communication pathways that significantly alter

the microenvironment of gastric tissue during the development of chronic

atrophic gastritis. Specifically, GADD45B-low GC cells were predominantly

involved in the network communication of the CDH signaling pathway, while

GADD45B-high GC cells played a crucial role in both signaling pathways.

Furthermore, we have identified several metabolic pathways, including D-

Glutamine and D-glutamate metabolism and N-Glycan biosynthesis, among

others, that played important roles in the occurrence and progression of GC,

in addition to the six other metabolic pathways. In summary, our study

highlighted the discovery of 143 pathogenic genes shared by CAG and GC,

with a specific focus on 15 oncogenes associated with CAG. We have identified

GADD45B as the most important gene in the carcinogenesis of CAG, which

exhibited differential expression in GC tissues compared to normal gastric

tissues. Moreover, GADD45B expression was correlated with patient prognosis

and is associated with immune cell infiltration. Our findings also emphasized the

impact of the CD99 and CDH signaling pathway networks on the

microenvironment of gastric tissue during the development of CAG.

Additionally, we have identified key metabolic pathways involved in GC

progression.

Conclusion: GADD45B, an oncogene implicated in chronic atrophic gastritis,

played a critical role in GC development. Decreased expression of GADD45B was

associated with the onset of GC. Moreover, GADD45B expression levels were

closely tied to poor prognosis in GC patients, influencing the infiltration patterns

of various cells within the tumor microenvironment, as well as impacting the

metabolic pathways involved in GC progression.
KEYWORDS

gastric cancer, chronic atrophic gastritis, machine learning, metabolism, single
cell sequencing
1 Introduction

Gastric cancer is a highly prevalent malignant tumor of the

digestive system, contributing significantly to cancer-related

mortality worldwide (1). It exhibits epidemiological and

histological variations across different nations, ranking as the fifth

most commonly diagnosed cancer and the fourth leading cause of

cancer-related deaths globally in 2020 (2). Lauren’s classification

distinguishes GC into two major subtypes: intestinal GC and diffuse

GC (3). Epidemiological evidence strongly associates chronic
02
atrophic gastritis with the development of intestinal-type stomach

cancer. CAG patients have an estimated annual risk of GC of 0.1

percent (4, 5). CAG, an inflammatory disease, is characterized by

the loss of gastric glandular tissue in the stomach mucosa. This

results in the replacement of the glandular structure with connective

tissue (non-metaplastic atrophy) or an unidentifiable glandular

structure (metaplastic atrophy) (6). CAG can be classified into

two types based on its etiology: Helicobacter pylori-positive chronic

atrophic gastritis and chronic autoimmune atrophic gastritis

(CAAG). The majority of CAG-induced gastric cancer cases are
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associated with Helicobacter pylori infection (7, 8). The prevailing

consensus is that the Correa cascade hypothesis provides a rough

framework for understanding the cancerous progression from

Helicobacter pylori-positive chronic inflammation of the gastric

mucosa to CAG, intestinal metaplasia, dysplasia, and ultimately

GC. Factors such as the highly acidic and irritating environment,

direct damage to the stomach epithelium caused by Helicobacter

pylori, and the conversion of nitrate in food into nitrite or n-nitroso

compounds by Helicobacter pylori contribute significantly to the

development of gastric cancer (9). Consequently, the progression

from chronic inflammation to CAG, intestinal metaplasia,

dysplasia, and ultimately GC is a complex and multistep

process (10).

The immune microenvironment acts as a barrier comprising

tumor cells, immune cells, fibroblasts, and other cells, along with

their secreted immune factors (11–14). This complex network plays

a dual role by suppressing tumor immunity and promoting tumor

growth and dissemination (15–17). During tumor formation, tumor

cells can dynamically modify their microenvironment through the

secretion of various cytokines, chemokines, and other molecules.

This reprogramming of neighboring cells enables them to actively

contribute to tumor survival and growth (18). Chronic atrophic

gastritis, whether caused by Helicobacter pylori infection or an

autoimmune disorder, is characterized by the infiltration of

immune cells in the gastric epithelium and deeper tissues. The

interplay between these infiltrating immune cells, their secretion of

inflammatory cytokines, and Helicobacter pylori virulence factors

leads to persistent damage and repair reactions within the gastric

epithelium, ultimately promoting the development of gastric cancer

(19, 20). Inflammatory cells such as eosinophils and mast cells have

been increasingly implicated in the carcinogenesis of chronic

atrophic gastritis (21). Understanding the mechanisms underlying

the immune microenvironment’s role in the initiation and

progression of gastric cancer is of utmost importance, given its

significant impact on tumor development. Therefore, investigating

the intricate mechanisms governing gastric cancer has become a

primary focus of research.

Machine learning offers significant research advantages in the

identification of disease biomarkers by efficiently analyzing large

and complex datasets, enabling the discovery of intricate patterns

and relationships that may be overlooked by traditional methods

(22–26). Besides, the adaptability of machine learning algorithms

allows continuous learning from new data, leading to ongoing

refinement and improvement of biomarker identification

processes, ultimately enhancing diagnostic accuracy and precision

(27–31). By integrating diverse data sources and leveraging

advanced algorithms, machine learning facil itates the

identification of disease-specific biomarkers associated with

individual patient characteristics, enabling personalized medicine

approaches and improved treatment selection for better patient

outcomes (32–37). Previous studies on chronic atrophic gastritis

and gastric cancer have been limited by research constraints, often

relying on statistical analysis of epidemiological data and protein-

level immunohistochemistry analysis. However, advancements in

high-throughput sequencing technology, particularly single-cell

sequencing, have provided unprecedented opportunities to
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unravel the intricate mechanisms underlying the formation and

progression of gastric cancer (38). Unfortunately, the scarcity of

chronic atrophic gastritis sequencing data has made the association

between chronic atrophic gastritis and gastric cancer relatively rare.

In this study, our objective is to leverage cutting-edge

bioinformatics techniques to analyze single-cell transcriptome

data of gastric cancer. By doing so, we aim to identify key genes

that play crucial roles in the initiation, advancement, and regulation

of the immune microenvironment in gastric cancer. Through this

comprehensive analysis, we aim to shed new light on the role of

chronic atrophic gastritis in the progression of gastric cancer, thus

expanding our understanding of this complex disease.
2 Methods

2.1 Download and preliminary collation of
the data used in this study

The single-cell sequencing data for CAG was obtained from the

GEO database (registration number GSE134520). This dataset

consisted of 13 experiments involving tissue sequencing. The

submitter of the data utilized Cell Ranger software (version 2.2.0)

for initial preprocessing, which involved removing low-quality cells.

We specifically extracted sequencing information from three tissues

with CAG and three tissues without atrophic gastritis for further

analysis. Regarding stomach cancer, single-cell sequencing data was

obtained from the GEO database with the registration number

GSE163558. The original dataset included three cases of primary

stomach cancer, one case of normal tissue, and six cases of gastric

metastatic carcinoma. For initial data processing, Cell Ranger

software (version 3.0.2) was used. We selected three cases of

primary GC tissues and one case of normal tissues for subsequent

data analysis. To interpret the single-cell transcriptome data, we

employed the Seurat software (version 4.1.1). During the data

reading process, a preliminary quality check was conducted using

the following criteria: each gene had to be detectable in at least 50

cells, and each cell had to express at least three genes.

In this study, the TCGA (The Cancer Genome Atlas) database

was utilized as the training set for obtaining common transcriptome

data of stomach cancer. The data filtering process involved applying

the following criteria: 1. The original location was “stomach”. 2. The

platform was “TCGA-STAD”, and the disease type was “colonies

and adenocarcinomas”. 3. The data category was “transcriptome

profiling”. 4. The data type was “Gene Expression Quantification”.

5. There were no specific screening requirements for other options

like gender, race, age, etc. To integrate, annotate genes, and

eliminate redundancy in expression values, the original data were

extracted. Samples with gene expression values of “0” were excluded

after calculating the average expression value for each gene. A

standard procedure, including transcript normalization and log2

conversion, was applied using the toil package to transform the

RNA sequencing data into the format of per thousand bases per

million fragments. This normalized data was then used for

subsequent analysis. Consequently, the gene expression matrix of

the TCGA cohort was obtained. Clinical data pertaining to matched
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patients, including their TCGA numbers, survival times (in days),

and survival status (survival or death), were extracted. Patients

under the age of 18 or with a survival time of less than 30 days were

excluded from the study.
2.2 Further treatment of single cell
matrix of chronic atrophic gastritis and
gastric cancer

In the analysis of single-cell transcriptome data, Seurat was

typically employed (11, 33). Initially, additional quality control

steps were conducted to ensure the exclusion of low-quality data

that could arise from cell separation-induced injury or library

preparation failure. The following criteria were used for quality

control: (1) The ratio of mitochondrial gene expression to total gene

expression in each cell must be below 35%, and the top 2% of cells

with the highest mitochondrial gene expression must be destroyed.

(2) Exclusion of cells with gene expression levels of less than 500 or

greater than 6000 (3) The UMI count value of the sequencing of

each cell must be greater than 1000. (4) Calculated the proportion of

rRNA expression in the complete gene and eliminated cells in the

highest and lowest 1 percent. To mitigate batch effects during

sample sequencing and ensure that downstream analysis is not

influenced, we employed the Harmony approach from the harmony

package (version 0.1.0) to integrate and debatch multiple samples.

The data was then normalized using the NormalizeData function to

account for differences in cell sequencing depths. Feature selection

was performed using the FindVariableFeatures program, which

identified 2000 highly variable genes for downstream analysis (34,

39). Linear dimension reduction was carried out using the RunPCA

function, aiming to retain the characteristics of the original data

while reducing the data dimensions. The ScaleData function was

utilized to transform the gene expression values into z-scores

following a Gaussian distribution. After the initial linear

dimension reduction, the appropriate dimensions were selected

for the final nonlinear dimension reduction using the UMAP

(Uniform Manifold Approximation and Projection) method (40,

41). The data was projected onto two dimensions to achieve

visualization. The FindNeighbors function was employed to

construct a K-nearest neighbors (KNN) network based on the

Euclidean distance in the PCA space. Edge weights between units

were refined using their shared overlap (Jaccard similarity) in the

local neighborhood, completing the final cell clustering. To enhance

identification of common modular functionality, cell clusters were

aggregated using the FindClusters function with a resolution of 0.5.

To ensure reliable findings, cell annotation involved a

combination of automatic and manual annotation approaches.

The automatic annotation was primarily performed using the

singleR package (version 1.8.1), which predicted the potential cell

types of individual cells based on a reference transcriptome dataset

consisting of pure cell types. Manual annotation was based on the

results of differential analysis. For the differential analysis, the

FindAllMarkers function was utilized to identify genes that were

differentially expressed between each subgroup and all other

subgroups, using a filter criterion of a standard P-value < 0.05.
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The annotation results obtained from the singleR package were

compared and complemented with additional information from

sources such as CellMarker (42), the BMC Genome Biology online

database, and comprehensive literature searches. This

comprehensive approach led to the final annotation results for

each cell cluster. To analyze the copy number distribution at the

single-cell level, the copykat algorithm, which combined Bayesian

techniques with hierarchical clustering, was employed. This

algorithm enabled the identification of subclone structures and

differentiation between benign and malignant cells based on the

copy number distribution of individual cells. The variance of each

cell population was calculated using a gaussian mixture model

(GMM). High-confidence diploid cells were defined as the cell

population with the minimum estimated variance, applying

stringent categorization criteria. Hierarchical clustering of single-

cell copy number data was performed to identify the largest gap

between diploid normal cells and aneuploid tumor cells.
2.3 Identification of common pathogenic
genes in gastric epithelial cells during CAG
and GC based on single-cell transcriptome
weighted gene co-expression network and
inter-group difference analysis

We utilized the hdWGCNA package (version 0.2.2) developed

by Sam Morabito et al. to perform weighted gene co-expression

network analysis (hdWGCNA) on single-cell data (43, 44). The

hdWGCNA method was highly modular and enabled the

identification of robust gene modules and the construction of co-

expression networks across multiple cell scales and hierarchical

structures, specifically designed for single-cell sequencing data. To

apply hdWGCNA, we first established a Seurat object using the

SetupForWGCNA function (fraction = 0.05). Next, using the KNN

technique, we aggregated the average or sum expression of these cell

groups, resulting in a sparse metacell gene expression matrix. We

defined the cell type consisting of malignant cells using the

SetDatExpr function to generate the expression matrix. The

TestSoftPowers function (networkType = ‘signed’) was then

employed to perform parameter scans across various soft power

thresholds (range from 1 to 30). By examining the network

architecture at different power values, we determined the

appropriate soft power threshold for constructing the co-

expression network, ensuring a robust gene-gene adjacency

matrix and eliminating weak links. In this study, a minimum soft

power threshold greater than or equal to 0.9 was selected based on

the fit to the scale-free topology model. The ConstructNetwork

function (setDatExpr = FALSE) was used to create a co-expression

network below the optimal soft threshold. To identify module

feature genes, we applied the ModuleEigengenes function, which

involved performing principal component analysis (PCA) on a

subset of the gene expression matrix representing each module.

This allowed us to obtain the module feature genes (ME) present in

different modules. Additionally, the central gene feature score for

each module was computed using the Seurat or UCell algorithms

through the ModuleExprScore function (n_genes = 25). The
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ModuleCorrelogram function facilitated the visualization of the

associations between modules based on their hME, ME, or hub gene

scores. The importance of modules was determined using the

GetModuleTraitCorrelation function, which conducted

correlation analysis among modules and assessed their

significance based on correlation coefficients and P-values.

Heatmap visualization of module traits was achieved using the

PlotModuleTraitCorrelation function. To investigate the inter-

group differences of gastric epithelial cells, we conducted a

differential gene expression analysis using the FindAllMarkers

function. By examining the stomach epithelial cells in the single-

cell matrix according to cell grouping data, we employed a screening

criterion of P < 0.05 without setting a specific log fold change

(logFC) threshold. This approach aimed to capture differentially

expressed genes to the maximum extent possible while minimizing

the generation of false negative findings.
2.4 Protein interaction network analysis
identified key roles in the pathogenic
gene network

We identified a set of oncogenes associated with CAG by

intersecting four gene sets. To explore the protein-protein

interactions (PPI) among these oncogenes, we utilized the

STRING online database (accessed on March 2, 2022) and

generated a protein interaction network. A confidence threshold

of 0.4 was set as the default criterion for selecting reliable

interactions. Subsequently, we imported the PPI results into

Cytoscape 3.9.1, a network visualization and analysis software

(28). To identify the most significant sub-networks within the PPI

network, we applied the MCODE plug-in, which utilized the K-

means clustering method. This analysis helped us identify key sub-

networks containing vital genes within the context of CAG. By

integrating the information from these key sub-networks and their

constituent genes, we defined the potential network of oncogenes

associated with CAG. This network provided insights into the

molecular interactions and functional relationships among the

identified oncogenes in the context of CAG.
2.5 The TCGA cohort’s most important
genes were re-screened using three
different machine learning approaches

Following the single-cell investigation, we identified a gene set

associated with CAG and its carcinogenic potential. To prioritize the

most important genes within this gene set, we employed three machine

learning techniques. Firstly, we utilized the glmnet package (version

4.1.4) to perform the least absolute shrinkage and selection operator

(LASSO) analysis (45, 46). This technique involved fitting a generalized

linear model while performing variable selection and regularization.

We determined the optimal lambda value, referred to as “lambda.min”,

for the LASSO model (47, 48). Next, we employed the random forest

algorithm using the randomForest program (version 4.7.1.1) (49, 50).

This involved computing the average contribution value of each feature
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on multiple decision trees within the random forest. By comparing the

contributions of various features, we ranked the top 30 genes. Lastly, we

utilized the e1071 software (version 1.7.11) to implement support

vector machine recursive feature elimination (SVM-RFE). SVM-RFE

was a backward selection algorithm based on the support vector

machine’s maximum margin principle. It allowed us to extract

features and rank their significance in distinguishing tumor and non-

tumor groups. The top 30 genes obtained from SVM-RFE analysis

were included in the subsequent analysis (51). The genes selected

through these three machine learning techniques were successfully

validated using the TCGA cohort. These genes represented the most

relevant and significant features associated with CAG in the context

of carcinogenesis.
2.6 Univariate COX regression, KM survival
curve, receiver operating characteristic
curve and immunohistochemistry were
used to find molecules related to gastric
cancer progression

To identify genes that played a critical role in the carcinogenesis

of CAG and the progression of gastric cancer, we employed several

validation approaches. First, we utilized the receiver operating

characteristic curve (ROC) analysis and immunohistochemistry to

confirm the carcinogenic genes identified through machine

learning. For the survival analysis, we used the “survival” and

“survminer” packages (25, 52), setting the significance level at a P

value of 0.05 (All P-value corrections in this study were performed

using the default method, namely the Benjamini-Hochberg (BH)

method). The TCGA cohort was divided into high- and low-

expression groups based on the median value, and Kaplan-Meier

(KM) analysis (24), employing the product-limit technique, was

performed. The area under the ROC curve (AUC) was used to

assess the diagnostic value of GC, with an AUC greater than 0.7

indicating higher diagnostic accuracy. The gene that passed both

the survival analysis and ROC analysis was considered as the final

gene associated with CAG and GC, referred to as CRG. To

investigate the protein-level changes of CRG, we conducted an

immunohistochemistry analysis using the human protein atlas. This

analysis allowed us to track and visualize the expression of CRG

protein in human tissue samples, providing further insights into its

potential role in the development and progression of CAG and GC.
2.7 The effect of CRG expression on the
immune microenvironment of gastric
cancer patients

To investigate the impact of CRG on immune cell infiltration in

the tumor microenvironment of gastric cancer, we employed the

CIBERSORT deconvolution method. This computational tool

utilizes linear support vector regression and a reference dataset of

known immune cell subtypes to quantify immune infiltration based

on the expression matrix. Using the concept of differential analysis,

we compared immune cell infiltration between two patient groups.
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We examined the differences in immune cell composition and

function within the immunological milieu of these two groups

based on known functional annotations. Furthermore, we

assessed the expression frequency of common immunological

checkpoints in patients with different patterns of immune cell

infiltration. To predict the responsiveness of patients with various

immune cell infiltration patterns to immunotherapy, we utilized the

online database called Tumor Immune Dysfunction and Exclusion

(TIDE). This database provides valuable insights and predictions

regarding the potential efficacy of immunotherapy in different

patient populations. By integrating these analyses, we aimed to

gain a better understanding of the relationship between CRG,

immune cell infiltration, and the potential for immunotherapy

response in gastric cancer patients.
2.8 The clinical importance of CRG
expression for the diagnosis and treatment
of patients with gastric cancer

To assess the clinical significance of CRG in gastric cancer

patients, we obtained clinical data from the TCGA cohort and

performed data filtering and merging with transcriptome data. This

resulted in a dataset of 371 gastric cancer patients with integrated

clinical and gene expression information. Subsequently, we

conducted statistical analysis to reveal whether the expression

levels of CRGs were significantly correlated with clinical

parameters such as age, gender, differentiation degree, TNM

stage, T, N, and M grouping of cancer patients (P<0.05).

There are a variety of treatments for tumors, including surgical

resection, radiotherapy, chemotherapy, immunotherapy, and MRI-

guided focused ultrasound (MRgFUS) (53). To investigate the

sensitivity of CRG in GC patients to common chemotherapy

regimens, we employed the pRRophetic algorithm. This algorithm

utilizes a ridge regression model that combines the GDSC cell line

expression profile and the TCGA gene expression profile. It

predicted the half-inhibitory concentration of the drug (IC50),

which represented the drug concentration at which 50% of cells

undergo apoptosis, based on the drug sensitivity analysis developed

by Paul Geeleher et al. in 2014 (54). To illustrate the results of the

drug sensitivity analysis, we used box plots to visualize the

dispersion of IC50 values across multiple samples. Additionally,

we examined the correlation between the model score and IC50 to

assess the relationship between CRG expression and drug sensitivity

(55). By conducting these analyses, we aimed to explore the clinical

implications of CRG in gastric cancer patients, including its

associations with patient characteristics and its potential role in

predicting the response to common chemotherapy regimens.
2.9 Trajectory analysis of CRG high/low
expression gastric cancer cells and their
specific transcription factors

We proceeded to investigate the influence of CRG expression on

individual GC cells. To achieve this, we isolated GC cells from the
Frontiers in Endocrinology 06
single-cell matrix of GC samples and performed a reclassification

process consistent with the initial classification. Refinement of the

classification was based on the expression of cell-specific markers,

cell cycle genes, and CRG. This allowed us to distinguish between

gastric cancer stem cells, cancer cells with high CRG expression, and

cancer cells with low CRG expression.

To infer the differentiation trajectory of GC cells and

understand the evolution of cell subtypes during development, we

conducted pseudo-time series analysis using the monocle package

(version 2.22.0). This analysis involved assessing changes in gene

expression across various GC cell subsets over time. We employed

the detectGenes function to eliminate low-quality cells (expression

threshold = 0.1) and computed size factors and dispersions. After

selecting the top 200 differentially expressed gene clusters, we used

the reduceDimension function’s DDRTree method to reduce the

dimensionality of the data (56). We then calculated the

developmental time, inferred the trajectory, sorted the cells based

on the pseudo-time, and visualized the results using a tree diagram.

The branching pattern of GC stem cells helped determine the

starting point of the differentiation trajectory.

For predicting the activity of transcription factors (TFs), we utilized

the “DoRothEA” package, which incorporated a gene regulatory

network consisting of symbolic TF-target gene interactions. Initially,

we employed the run_viper function to calculate the viper score for

each regulator gene in the DoRothEA network. Next, we incorporated

the TF activity matrix into the cell clustering and dimension reduction

process, following the same methods as before. We further computed

the TF activity fraction for each cell subset. Finally, we visualized the 90

TFs with the most significant changes between CRG high-expression

and low-expression gastric cancer cells using a heatmap, based on their

TF scores.

By employing these analytical approaches, we aimed to gain

insights into the differentiation trajectory and cellular dynamics of

gastric cancer cells, as well as predict the activity of TFs associated

with CRG expression in gastric cancer cells.
2.10 Identified the important signaling
pathways of CRG mediated chronic
atrophic gastritis carcinogenesis

To identify the CRG involved in the activation of signaling

pathways in gastric cancer cells, we performed Gene Set Variation

Analysis (GSVA) on gastric cancer tissues obtained from the TCGA

cohort. Additionally, we extracted epithelial cells from the single-

cell matrix of CAG and performed GSVA analysis on two groups of

epithelial cells based on their grouping information (non-atrophic

gastritis vs. chronic atrophic gastritis). Similarly, using the single-

cell matrix of GC, we performed GSVA analysis on epithelial cells

according to their grouping information (normal gastric tissue vs.

GC tissue). By comparing the results of the three analyses, we

identified signaling pathways that exhibited consistent trends across

all three datasets. These pathways, showing consistent activation or

inhibition in association with CRG-mediated chronic atrophic

gastritis carcinogenesis, were considered essential signaling

pathways implicated in the disease.
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2.11 The effect of gastric cancer cells with
high/low expression of CRG on
intercellular communication in
tumor microenvironment

To investigate the impact of high or low CRG expression in GC

cells on cell-to-cell communication within the tumor

microenvironment, we conducted a cell signal communication

analysis. Cell-to-cell communication referred to the exchange of

information between cells through chemical signal molecules,

which played a crucial role in regulating various biological

processes such as development, differentiation, and inflammation

(28–31, 57). In this study, we utilized the “CellChat” software (version

1.1.3) to infer and analyze the intercellular interaction network. First,

we identified the overexpressed ligands or receptors within specific

cell groups. Then, we determined the interactions between the

overexpressed ligands and receptors. The communication

probability of all ligand-receptor interactions associated with each

signaling route was inferred, and the aggregate communication

network between cells was established by considering the linkages

or the aggregate communication probability. By projecting the gene

expression data into a PPI network, we constructed a comprehensive

network of cell communication at the ligand-receptor and signaling

pathway levels. This analysis allowed us to gain insights into the

complex interplay and communication among different cell types

within the gastric cancer microenvironment.
2.12 Identifying metabolic changes in
chronic atrophic gastritis and gastric
cancer using scMetabolism

To investigate the metabolic characteristics of gastric cancer

tissue at the single-cell level, we conducted metabolic analysis using

the scMetabolism package (58). This package provided a

comprehensive metabolic module that allowed us to annotate and

quantify metabolites within each individual cell. By combining

information from public metabolite databases and relevant

literature, we determined the specific types and quantities of

metabolites present in each cell. Next, we mapped the annotated

metabolites to well-established metabolic pathway databases such as

kyoto encyclopedia of genes and genomes (KEGG). Through

enrichment analysis methods, we evaluated the enrichment of

metabolic pathways in individual cells or across multiple cells.

This analysis enabled us to explore the biological functions

associated with different metabolic pathways and gain insights

into the composition of metabolic networks within GC tissue. By

employing the scMetabolism package and leveraging existing

knowledge on metabolites and metabolic pathways, we were able

to shed light on the metabolic processes and their potential

implications in GC at the single-cell level.
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2.13 Cell culture

The normal gastric mucosal cell line GES-1 and gastric cancer

cell lines AGS, HGC-27, MKN28, and MKN45 were obtained from

the Cell Resource Center of Peking Union Medical College. These

cell lines were cultured in DMEM medium supplemented with 10%

FBS and 1% penicillin sodium and streptomycin. The cells were

maintained in a constant temperature incubator set at 37°C with a

5% CO2 atmosphere.
2.14 Real-time quantitative PCR and
immunofluorescence staining

For reverse transcription, the HiScript III first-strand cDNA

synthesis kit (Nanjing, China) was employed following the

manufacturer’s instructions. Real-time PCR was conducted on the

ABI StepOne PlusTM system using SYBR® Green for Master

Mix (Vazyme, Nanjing, China). Relative mRNA expression was

calculated using the 2-CT method, with triplicate measurements

performed. The primer sequences can be found in Supplementary

Table 1.

The study protocol was approved by the Ethics Committee of

the First Affiliated Hospital of Soochow University and adhered to

the guidelines outlined in the Helsinki Declaration. Paraffin sections

of gastric cancer and adjacent normal tissues were obtained from

the First Affiliated Hospital of Soochow University. The sections

underwent dewaxing, hydration, antigen repair, and blocking

procedures. Immunofluorescence staining of GADD45B was

performed in Seville, Wuhan, China. The number of GADD45-B-

positive cells in cancer and adjacent tissues was determined using

fluorescence microscopy.
2.15 CCK8 experiment

The cancer cell lines AGS, HGC-27, MKN28, and MKN45 were

maintained in sterile conditions until they reached the logarithmic

growth phase, after which they were washed with sterile PBS. The

cells were then seeded into 96-well plates at a specific density and

incubated under constant temperature and humidity until they

reached a stable state of attachment and growth. To assess the

effects of the tested factors on cell proliferation and survival, CCK-8

reagent was added to the cell culture medium at a specific ratio (59).

The cells were incubated for 4 hours under constant temperature

and humidity. Following the incubation period, the absorbance

values of the different treatment groups and the control group were

measured using a multifunctional microplate reader. The relative

proliferation rate of the different treatment groups was calculated to

evaluate the impact of the tested factors on cell proliferation

and survival.
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2.16 Cell scratch test

The appropriate cell lines were cultured until they reached the

logarithmic growth phase, and then a specific density of cells was

seeded in 6-well or 12-well plates and incubated until they reached a

stable state. A straight line was created on the cell monolayer using a

cell scraper to generate a wound area. Subsequently, the cells were

treated with the test compound or other factors at different

concentrations, and both control and experimental groups were

established. The cells were further incubated under constant

temperature and humidity conditions for a specific period to allow

for cell migration. To assess cell migration and invasion, the cells within

the wound area were stained with various cell staining reagents, and the

migration ability was observed and captured under a microscope. The

evaluation of the test factors’ effect on cell migration involved

calculating the area not occupied by cells in the wound area or

measuring the distance of cell movement, among other indicators.
2.17 Online website

GEO: https://www.ncbi.nlm.nih.gov/geo/

CellMarker: http://xteam.xbio.top/CellMarker/

BMCGenomeBiology: https://genomebiology.biomedcentral.com/

TCGA: https://www.cancer.gov/about-nci/organization/ccg/

research/structural-genomics/tcga

STRING: https://string-db.org/

The human protein atlas: https://www.proteinatlas.org/

CIBERSORTx: https://cibersortx.stanford.edu/

TIDE: http://tide.dfci.harvard.edu/
3 Results

3.1 Single cell sequencing analysis revealed
the unique immune microenvironment
landscape of CAG and GC

We initiated the processing and analysis of the sequencing data

for CAG. The raw data consisted of 29,678 cells and 19,823 genes.

After conducting quality control, we obtained a Seurat matrix

comprising 20,151 cells and 19,823 genes (Supplementary

Figure 1). Subsequently, we selected the first 30 principal

components for further exploration through PCA. Utilizing

UMAP dimensionality reduction, we identified 16 distinct cell

subsets (Figure 1A). Among these subsets, there were 4,511 cells

from non-atrophic gastritis tissues and 15,640 cells from chronic

atrophic gastritis tissues (Figures 1B, C). Each cell subset exhibited

varying levels of gene expression, with subgroups 2, 3, 4, and 6

demonstrating higher gene expression compared to subgroups 1, 5,

8, 10, and 13, while subgroups 2, 3, 4, and 6 exhibited lower gene

expression (Figure 1D). To further classify the cell subsets, we

utilized marker genes associated with tumor parenchyma and

interstitial components (Figure 1E). By annotating each subgroup,

we were able to distinguish the cell types within each subgroup,
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leading to the identification of eight distinct cell types (Figure 1F).

For a comprehensive understanding of the subsets, cell proportions,

cell variations, as well as tissue and sample distributions, we

provided detailed figures in Figures 1G–K.

We proceeded to apply the same analysis to the sequencing data

for stomach cancer. The initial GC matrix consisted of 18,223 cells

and 24,159 genes. After conducting quality control, we retained

13,641 cells and 24,159 genes for further analysis. By utilizing a

similar approach, we divided the total cell population into 16 distinct

subgroups (Figure 2A). Among these subgroups, 11,425 cells

originated from GC tissues, while 2,216 cells originated from

healthy stomach tissues (Figures 2B, C). Subgroups 0, 2, 3, and 4

exhibited lower levels of gene expression, while subgroups 1, 8, 7, and

13 displayed higher levels of gene expression (Figure 2D). Further

examination of the cellular composition revealed that the majority of

cells within the stomach cancer microenvironment were immune

cells, while interstitial cells were less abundant (Figure 2E). Through

annotation, we identified eleven distinct cell types (Figure 2F).

Additionally, utilizing the Copykat algorithm, we identified

aneuploid cells that shared similarities with the cell subsets defined

by the tumor marker gene “EPCAM,” all of which originated from

epithelial cells (Figure 2F). For a comprehensive overview of subset

proportions, cell variations, as well as tissue and sample distributions,

please refer to Figures 2G–K. In this study, the identified cells and the

corresponding cell markers were shown in Supplementary Figure 2.
3.2 The common pathogenic genes of CAG
and GC were identified by hdWGCNA

We constructed a co-expression network based on single-cell

data using the optimal soft threshold of 8, as shown in Figure 3A.

The module interconnectivity (kME) was evaluated based on the

characteristic genes of each module (Figure 3B). As a result, we

identified seven non-gray modules and their corresponding distinct

genes (Figure 3C). The enrichment fraction of these distinctive

genes in each cell subgroup was visualized in Figure 3D. The

correlation between modules was depicted in Figure 3E. Notably,

all seven modules, consisting of 2421 genes, showed strong

associations with epithelial cells, as indicated by the heatmap in

Figure 3F. Moreover, a comparison of epithelial cells between CAG

and NAG groups revealed 519 differentially expressed genes.

In the case of GC, we utilized a soft threshold of 5 to construct a

co-expression network (symbolic network), as depicted in

Figure 4A. Thirteen modules were identified within the GC tissue

co-expression network (Figures 4B, C). The enrichment scores and

correlations of distinctive genes within these 13 modules were

displayed in Figures 4D, E. However, module 9 did not exhibit

statistically significant associations with epithelial cells based on the

correlation heatmap. Hence, we focused on the remaining 12

modules, which encompassed a total of 3337 genes, for further

investigation. Additionally, by performing differential analysis

between normal and cancerous stomach tissues, we identified

2852 differentially expressed genes within the epithelial

cell population.
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3.3 Protein-protein interaction network
analysis provided a key subnetwork of
common pathogenic genes

Following the integration of the four datasets from the previous

step, we identified a total of 143 potential oncogenes associated with

CAG, as illustrated in Figure 5A. The PPI network of these 143

genes was visualized using the STRING online website (Figure 5B).

By utilizing Cytoscape’s MCODE plug-in, we extracted the most

significant subnetwork from the entire network, which consisted of

51 key molecules (Figure 5C).
3.4 Three machine learning methods
identified 15 oncogenes of CAG

To minimize the false-positive rate of our findings, we

employed three machine learning methods to identify the key

genes within the subnetwork. Firstly, using the LASSO regression

model, we selected lambda.min and identified 26 genes as

significant (Figures 6A, B). Subsequently, through random forest

analysis, we ranked the genes based on their importance and
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extracted the top 30 genes (Figures 6C, D). Additionally, using

SVM-RFE with 10-fold cross-validation, we obtained the top 30

genes based on their average ranking across the folds (Figures 6E,

F). Ultimately, 15 genes were consistently identified as significant by

all three machine learning algorithms: HSP90AB1, FUS, CTSD,

KRT8, TALDO1, BTG2, TXNRD1, GADD45B, PSMB3, RPL9,

NQO1, MTHFD2, CFL1, PRDX1, and PFDN2.
3.5 Prognostic analysis, ROC curve and
human protein atlas identified GADD45B as
an oncogene of chronic atrophic gastritis
and related to the prognosis of
patients with GC

The baseline data of pancreatic cancer patients in the TCGA

cohort were presented in Supplementary Table 2. To identify

oncogenes associated with the development of gastric cancer in

CAG, we analyzed 15 genes. Among them, HSP90AB1, FUS,

BTG2, TXNRD1, GADD45B, PSMB3, RPL9, MTHFD2, and

PFDN2 showed area under the curve (AUC) values greater than

0.7 in ROC analysis, indicating their potential diagnostic value

(Figure 7A). In the KM survival analysis, CFL1 and GADD45B
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C

FIGURE 1

Microenvironment landscape of CAG and NAG. (A) The distribution of 16 cell subsets after UMAP dimension reduction. (B) Cell distribution in CAG
and NAG. (C) Distribution of all cells in 6 tissue samples. (D) The gene expression of each cell-the darker the color, the higher the expression of the
cell. (E) Preliminary classification of gastritis tissue. (F) Eight cell subtypes after annotation. (G–K) The proportion of different cell division methods
from different tissue/sample sources. (G) The proportion of 16 cell subsets in 6 source tissues. (H) The proportion of 16 cell subsets in CAG and NAG
tissues. (I) The proportion of three microenvironment components in six source tissue samples. (J) The proportion of three microenvironment
components in CAG and NAG tissues. (K) The proportion of eight cell subsets in CAG and NAG tissues.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1224832
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xu et al. 10.3389/fendo.2023.1224832
were found to be correlated with patients’ prognosis (P = 0.038 and P

= 0.042, respectively) (Figures 7B, C). Furthermore, GADD45B (P =

0.021) was identified as a significant risk factor for survival in GC

patients through univariate COX regression (60), while the other

genes did not show such an association with prognosis (Figure 7D).

Based on these findings, we concluded that GADD45B was a

prominent oncogene linked to CAG and was significantly

associated with the prognosis of GC patients, suggesting its

potential involvement in regulating GC progression. The expression

of GADD45B in the human protein atlas revealed moderate staining

intensity in normal tissues and low to moderate staining intensity in

malignant tissues (Figure 7E).

3.6 Immune infiltration analysis showed
the effect of GADD45 B on the immune
microenvironment of GC patients and the
prediction of the effect of immunotherapy

Given that chronic atrophic gastritis was an inflammatory

disease, we identified GADD45B as a crucial oncogene that might

contribute to the development of GC. We hypothesized that
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GADD45B might play a significant role in regulating the tumor

microenvironment in GC. Analyzing the single-cell matrix of CAG

and GC, we observed high expression of GADD45B in various

immune cells (Figures 8A, B). Based on the expression level of

GADD45B, we conducted an immune infiltration study using data

from the TCGA cohort of GC. The analysis revealed a correlation

between GADD45B expression and the infiltration of B cells, CD8+

T cells, monocytes, and NK cells (Figures 8C, D). The upregulation

of several known immune checkpoints was observed in the high-

expression group of GADD45B, suggesting more severe

immunosuppression in the tumor microenvironment of patients

with high GADD45B expression (Figure 8E). The differential

analysis and correlation analysis yielded consistent results,

indicating a potential impact of GADD45B expression on the

infiltration of plasma cells, mast cells, and dendritic cells

(Figure 8F). Furthermore, GC tissues with high expression of

GADD45B frequently exhibited immune checkpoint upregulation

and significant suppression of anti-tumor immunity, as evidenced

by statistically significant differences (Figure 8G). Considering this

immunological dysfunction and substantial suppression of anti-

tumor immunity, immunotherapy might hold promise as a
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FIGURE 2

Microenvironment landscape of GC and non-tumor tissues. (A) The distribution of 16 cell subsets after UMAP dimension reduction. (B) Cell
distribution in GC tissues and normal gastric tissues. (C) Distribution of all cells in 4 tissue samples. (D) The gene expression of each cell-the darker
the color, the higher the expression of the cell. (E) Preliminary classification of gastritis tissue. (F) Eleven cell subtypes after annotation. (G–K) The
proportion of different cell division methods from different tissue/sample sources. (G) The proportion of 16 cell subsets in 4 source tissues. (H) The
proportion of 16 cell subsets in GC tissues and normal gastric tissues. (I) The proportion of three microenvironment components in 4 source tissue
samples. (J) The proportion of three microenvironment components in GC tissues and normal gastric tissues. (K) The proportion of eight cell
subsets in GC tissues and normal gastric tissues.
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significant treatment for patients with GC displaying high

expression of GADD45B (Figure 8H).
3.7 Drug sensitivity analysis demonstrated
the effect of GADD45B on drug therapy in
patients with gastric cancer

We investigated the correlation between GADD45B expression

and clinical characteristics in GC patients. The data revealed that
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GADD45B expression was frequently higher in patients under 65

years old compared to those over 65 years old (Figure 9A). No

significant difference in GADD45B expression was observed between

males and females (Figure 9B). GADD45B had an impact on cancer

differentiation, especially in patients with G2 and G3 stage tumors,

where there were differences in the expression levels of GADD45B

(Figure 9C). Furthermore, GADD45B expression was not associated

with hematogenous or lymph node metastasis in GC (Figures 9D, E).

Its main effect on TNM staging was seen in the depth of tumor

invasion, contributing to the overall staging (Figures 9F, G).
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FIGURE 3

hdWGCNA has identified the key epithelial cell genes in the pathogenesis of chronic atrophic gastritis. (A) The selection of the optimal soft
threshold. (B) Build a co-expression network based on the ideal “8” soft threshold and divide the genes into several modules to get a gene clustering
tree. (C) Calculate the feature-based gene connectivity of each gene in the co-expression network analysis to determine the highly connected
genes in each module. (D) Calculate gene scores for each module gene based on the UCell algorithm. (E) Correlation heatmap between modules.
(F) The correlation heatmap between grouping information (chronic atrophic gastritis vs. non-atrophic gastritis) and epithelial cells. * represent P <
0.05, ** represent P < 0.01, and *** represent P < 0.001.
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Moreover, GADD45B expression was found to potentially

influence the efficacy of chemotherapy in stomach cancer

patients. Drug sensitivity analysis indicated an inverse

relationship between the expression level of GADD45B and

therapeutic sensitivity to docetaxel, lapatinib, and paclitaxel,

suggesting that patients with low or high GADD45B expression

might experience increased efficacy with these drugs. Additionally,

a positive correlation was observed between the sensitivity to

methotrexate treatment and GADD45B expression level,

indicating potential increased efficacy in patients with high

GADD45B expression. However, GADD45B expression level did
Frontiers in Endocrinology 12
not correlate with the therapeutic sensitivity of gemcitabine,

camptothecin, and cisplatin (Figures 9H–N).
3.8 The reclassification of GC cell subsets
revealed the effect of GADD45B on the
differentiation trajectory and specific
transcription factors of GC cells

To explore the impact of GADD45B on GC cells, we isolated

and reclassified the epithelial cells from the single-cell matrix of GC
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FIGURE 4

hdWGCNA has identified the key epithelial cell genes in the pathogenesis of gastric cancer. (A) The selection of the optimal soft threshold. (B) Build
a co-expression network based on the ideal “5” soft threshold and divide the genes into several modules to get a gene clustering tree. (C) Calculate
the feature-based gene connectivity of each gene in the co-expression network analysis to determine the highly connected genes in each module.
(D) Calculate gene scores for each module gene based on the UCell algorithm. (E) Correlation heatmap between modules. (F) The correlation
heatmap between grouping information (GC and normal tissues) and epithelial cells. * represent P < 0.05, ** represent P < 0.01, and *** represent P
< 0.001.
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tissue. After performing dimensionality reduction and clustering,

we identified six distinct cell subsets (Figure 10A). Subgroup 1

exhibited elevated expression levels of cell cycle genes PCNA and

MKI67, as well as the tumor stem cell marker CD44 (Figure 10B).

Therefore, we classified subgroup 1 as cancer stem cells and

subgroups 0, 2, 3, and 5 as common tumor cells (Figure 10C).

Next, we stratified the tumor cells based on the expression level of

GADD45B. Tumor cells with expression values above the median

were categorized as GADD45B-high, while those with expression

values below the median were classified as GADD45B-low. To

investigate the impact of GADD45B on the differentiation

trajectory of tumor cells, we performed pseudo-time series
Frontiers in Endocrinology 13
analysis on these three cell types. Analysis showed that the

differentiation trajectories of GADD45B-high tumor cells and

GADD45B-low tumor cells were essential ly the same

(Figures 10D, E), but further Beam tests indicated that GADD45B

played an important role in the differentiation and development

process of GC cells (P<0.05). Furthermore, we identified the most

significant transcription factors associated with GADD45B-high

tumor cells and GADD45B-low tumor cells. GADD45B-high tumor

cells showed strong associations with transcription factors such as

ELK1, PAX5, SMAD3, BACH1, and NR1H2. On the other hand,

ATF3, BHLHE40, ZNF263, and FOXP2 transcription factors were

strongly associated with GADD45B-low tumor cells (Figure 10F).
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FIGURE 5

PPI analysis identified the core genes in the common pathogenic gene network of CAG and GC. (A) In two sets of single-cell transcriptome data, the
intersection of important module genes and differentially expressed genes. (B) The protein interaction network constructed for the intersection
genes on the String online website. (C) MCODE identified the key sub-networks in the intersection network.
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FIGURE 6

Identification of oncogenes in chronic atrophic gastric cancer based on three machine learning methods. (A, B) LASSO regression selected 28
variables based on the minimum lambda value. (C, D) random forest sorts the importance of all genes. (E, F) SVM-RFE evaluated all genes using a
ten-fold cross-validation method and ranked the important gene rows according to the average ranking. (G) The Venn graphic illustrates the results
shared by the three screening procedures.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1224832
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xu et al. 10.3389/fendo.2023.1224832
3.9 Enrichment analysis of single cell
transcriptome and bulk transcriptome
based on KEGG database identified
significant differences in WNT signaling
pathway in cancer cells with high/low
expression of GADD45B

To elucidate the signaling pathway through which GADD45B

controls gastric epithelial cells and contributes to the carcinogenic

process of CAG, we conducted analyses using bulk transcriptome and

single-cell transcriptome data. The GSVA was applied to both

datasets. In the TCGA cohort, GSVA results revealed that the

TGF-BETA signaling pathway, MAPK signaling pathway, JAK-

STAT signaling pathway, and WNT signaling pathway exhibited

distinct activities in GC tissues with different expression levels of

GADD45B (Figure 11A). Analyzing the single-cell matrix of

epithelial cells from CAG patients, GSVA showed high expression

of the PPAR, MTOR, Neurotrophin, andWNT signaling pathways in

gastric epithelial cells (Figure 11B). In the single-cell matrix of gastric
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cancer, GSVA demonstrated high activity in the P53, TOLL-LIKE

RECEPTOR, and WNT signaling pathways (Figure 11C). Notably,

theWNT signaling pathway emerged as crucial in the pathogenesis of

CAG and GC, exhibiting a strong inverse correlation with GADD45B

expression. Lastly, we assessed the activation level of the WNT

signaling pathway in the tumor microenvironment, where GC cells

prominently displayed its activation (Figure 11D). In conclusion, the

WNT signaling pathway was identified as the pivotal pathway

through which GADD45B regulated the carcinogenesis of CAG.
3.10 Cell communication analysis of CAG
and GC single-cell transcriptomes revealed
the effect of GADD45B on tumor cell
signal transduction in the
immunological microenvironment

We conducted a comparison of the signaling pathways between

CAG and non-atrophic gastritis, as well as between GC and normal
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FIGURE 7

Verification and re-screening of oncogenes in chronic atrophic gastric cancer. (A) The diagnostic value of CRGs was determined using ROC analysis.
(B, C) Survival analysis based on the product limit method and log-rank test Grouping is based on the median value of the expression. (D) Prognostic
analysis based on univariate COX regression. (E) Immunohistochemical results of GADD45B on the human protein atlas.
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gastric tissue. Our analysis revealed that the CD99 signaling pathway

was upregulated in the microenvironment of CAG, while the CDH

signaling pathway was downregulated in the microenvironment of GC

(Figures 12A, B). To further explore the impact of GADD45B on signal

transduction in themicroenvironment of GC tumors, we compared the

cell communication between GADD45B-high and GADD45B-low GC

cells. We found that GADD45B-high GC cells had closer

communication with other cells in the tumor microenvironment
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than GADD45B-low GC cells, with vascular endothelial cells, tumor-

associated fibroblasts, and tumor-associated macrophages serving as

the primary signal-transmitting cells (Figures 12C, D). We also

investigated the roles of GC cells in the CD99 and CDH signaling

pathways. In the CD99 signaling pathway, GC cells, tumor-associated

fibroblasts, and vascular endothelial cells were the primary signal-

transducing cells (Figures 12E, F). Among them, GADD45B-high GC

cells were the most important cells in this pathway, as they acted as the
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FIGURE 8

Effect of GADD45B on cell infiltration and function of GC immune microenvironment. (A, B) The expression of GADD45B in the microenvironment
of CAG and GC. (C, D) Depending on the level of GADD45B expression, the degree of immune cell infiltration varied between the two groups. (E)
Immune checkpoint expression levels differ between the two groups. (F) GADD45B and immune cell correlation. (G) Differences in immune function
between the two groups. (H) Prediction of the efficacy of immunotherapy in two groups of gastric cancer patients. "ns" represent P > 0.05. *
represent P < 0.05, ** represent P < 0.01, and *** represent P < 0.001.
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FIGURE 9

Correlation of clinical features and drug sensitivity analysis of GADD45B. (A–G) Correlation of clinical features of GADD45B. (A) Age. (B) Gender. (C)
Grade. (D) Distant metastasis. (E) Lymph node metastasis. (F) TNM staging. (G) Primary tumor infiltration. (H–N) The effect of GADD45B on drug
efficacy. (H) Docetaxel. (I) Gemcitabine. (J) Camptothecin. (K) Cisplatin. (L) Lapatinib. (M) Methotrexate. (N) Paclitaxel.
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most crucial signal transmitters and receivers (Figures 12G, H). The

CD99-CD99 receptor pair was the most significant receptor pair in this

pathway (Figure 12I). In contrast, in the CDH signaling pathway, GC

cells, tumor-associated fibroblasts, progenitor cells, and vascular

endothelial cells were primarily involved in signal transduction

(Figures 12J, K). GADD45B-low GC cells played the most crucial

role as signal receivers in this pathway, while GADD45B-high GC cells

were the primary signal senders (Figures 12L, M). The CDH1-CDH1

receptor pair was the most significant receptor pair in this

pathway (Figure 12N).
3.11 scMetabolism revealed the metabolic
changes mediated by GADD45B in two
pathological processes

Based on the scMetabolism package, we analyzed the results

mapped to KEGG and observed significant alterations in

metabolic pathways in GC cells overexpressing GADD45B.
Frontiers in Endocrinology 16
Three metabolic pathways were upregulated: Fructose and

mannose metabolism (P = 0.003), D-Glutamine and D-

glutamate metabolism (P = 0.007), and Amino sugar and

nucleotide sugar metabolism (P = 0.002). Conversely, seven

pathways were downregulated: Glycosylphosphatidylinositol

(GPI)-anchor biosynthesis (P = 0.004), Neomycin, kanamycin,

and gentamicin biosynthesis (P = 0.008), N-Glycan biosynthesis

(P = 0.008), Linoleic acid metabolism (P = 0.023), Arginine

and proline metabolism (P = 0.029), Ether lipid metabolism

(P = 0.045), and Pantothenate and CoA biosynthesis (P = 0.049).

We further investigated whether these ten metabolic pathways

exhibited changes during the progression from CAG to gastric

cancer. Our analysis revealed that eight metabolic pathways

underwent significant changes during this transition. Notably, six

pathways—D-Glutamine and D-glutamate metabolism (Figure 13A),

N-Glycan biosynthesis (Figure 13B), Linoleic acid metabolism

(Figure 13C), Arginine and proline metabolism (Figure 13D),

Amino sugar and nucleotide sugar metabolism (Figure 13E), and

Pantothenate and CoA biosynthesis (Figure 13F)—exhibited
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FIGURE 10

Reclassification of gastric cancer cells, cell trajectory analysis and transcription factor prediction. (A) The epithelial cells in the gastric cancer matrix
were extracted and reclassified into 5 cell subsets. (B) The marker genes of each cell subgroup. (C) Fine annotation of tumor cells. (D) Differentiation
trajectories of three cell types. (E) Differentiation trajectories of cell differentiation and maturation. (F) The most variable transcription factor between
GADD45B-high GC cells and GADD45B-low GC cells.
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simultaneous alterations in both pathological processes. Among these

pathways, D-Glutamine and D-glutamate metabolism, Linoleic acid

metabolism, Arginine and proline metabolism, Amino sugar and

nucleotide sugar metabolism, and Pantothenate and CoA

biosynthesis displayed opposite trends in the two pathological

processes. Conversely, N-Glycan biosynthesis exhibited consistent

upregulation in both CAG and GC (Figures 13G, H).
3.12 Immunofluorescence and real-time
quantitative PCR

We conducted immunofluorescence staining using gastric

cancer patients’ tissues and normal tissues obtained from our

hospital. The findings indicated a noteworthy reduction in

GADD45B expression in GC tissues compared to normal tissues

(Figures 14A, B). Additionally, we performed PCR detection on GC

cell lines and GC lines. The statistical analysis demonstrated that

GADD45B expression was higher in the normal gastric epithelial

cell line (GES-1) in comparison to GC cell lines (AGS, HGC-27,

MKN28, and MKN45) (Figure 14C).
3.13 Cell function assay

The outcomes of the CCK-8 experiment revealed that GC cell

lines exhibiting high levels of GADD45B expression displayed

greater cell viability compared to those with low GADD45B

expression (Figure 14D). This suggested that GADD45B might

promote the growth of GC cell lines. In the scratch experiment,

the experimental group (MKN45) exhibited a significant reduction
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in wound width and a shortened wound closure time compared to

the control group (HGC-27). These observations indicated an

increased migration speed of the cells (Figure 14E).
4 Discussion

Chronic atrophic gastritis, a recognized precursor to gastric

cancer, is widely acknowledged to be the initial step in the cascade

leading to gastric cancer. Numerous retrospective studies and

evidence from basic research support the notion that CAG plays

a pivotal role in the development of gastric cancer (61, 62).

Consequently, transcriptomic alterations in atrophic gastritis may

be closely linked to the generation of cancer cells. Previous

investigations by various researchers have explored this

association. For instance, Vytenis Petkevicius et al. examined the

relationship between long-chain non-coding RNA ANRIL, H19,

MALAT1, MEG3, HOTAIR polymorphisms, and gastric cancer and

CAG. Their study demonstrated that lncRNAs influence CAG,

leading to gastric cancer (63). Similarly, using high-throughput

transcriptome data, Fan Zhang et al. identified CYP3A4 as a

predictor for CAG progression and poor prognosis in gastric

cancer (64). However, existing research on transcriptomic

changes induced by CAG in gastric cancer still faces certain

limitations. The scarcity of chronic CAG sequencing samples

hampers extensive bioinformatics analyses, often limiting studies

to a few bulk transcriptome datasets. Additionally, previous studies

have not fully harnessed the latest bioinformatics and statistical

methods to validate their findings. In this study, we aimed to

investigate the transcriptome changes in gastric epithelial cells

during the progression from CAG to gastric cancer using both
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FIGURE 11

GSVA analysis identified carcinogenic signaling pathways in gastric epithelial cells. (A) GSVA analysis after grouping according to GADD45B
expression level in the TCGA cohort. (B) The signaling pathway of significant changes in epithelial cells during the pathogenesis of CAG. (C) Signaling
pathways in which epithelial cells undergo significant changes during the pathogenesis of GC. (D) The activation level of the WNT signaling pathway
in each cell of the GC tumor microenvironment.
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bulk and single-cell transcriptome data. By identifying oncogenic

drivers of CAG, we sought to explore their association with the

immune microenvironment and the advancement of gastric cancer.

Our objective was to offer a fresh perspective on the carcinogenic

mechanisms underlying chronic atrophic gastritis and develop

novel analytical approaches for bioinformatics research.

GADD45B is a member of the GADD45 gene family, which also

includes GADD45A and GADD45G. It plays a crucial role in

responding to physiological and environmental stresses, such as

carcinogenic stress, by regulating cell cycle arrest, DNA repair, cell

survival, senescence, and apoptosis (65). The expression of GADD45B
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is closely associated with the development and progression of various

malignancies. Studies have demonstrated that low expression of

GADD45B in normal tissues promotes carcinogenesis, whereas high

expression in malignant tissues contributes to tumor development. In

hepatocellular carcinoma, GADD45B expression is decreased in tumor

tissues and different hepatocellular carcinoma cell lines, while it

remains unchanged in normal liver tissues and cell lines. GADD45B

acts as a critical regulator in the development of hepatocellular

carcinoma (66). Patients with stage II colon cancer and high levels of

GADD45B expression have shown poor overall survival (OS) and

progression-free survival (PFS) rates (67). Elevated expression of
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FIGURE 12

Effect of GADD45B on signal communication in gastric cancer microenvironment. (A) Microenvironmental signal changes in chronic atrophic
gastritis pathogenesis. (B) Changes in microenvironment signals during the pathogenesis of gastric cancer. (C) Signaling pathways in which epithelial
cells undergo significant changes during the pathogenesis of GC. (C, D) The importance of GADD45B-high gastric cancer cells and GADD45B-low
gastric cancer cells in the communication network in the GC microenvironment. (E–H) The main participants of the CD99 signaling pathway
network in the GC microenvironment and the importance of the participants. (I) CD99-CD99 is the most important ligand-receptor in the CD99
signaling pathway network. (J–M) The main participants of the CDH signaling pathway network in the GC microenvironment and the importance of
the participants. (N) CDH1-CDH1 was the most important ligand-receptor in the CDH signaling pathway network.
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GADD45B has also been identified as a prognostic factor for papillary

thyroid cancer patients who have undergone complete thyroidectomy

and radioactive iodine therapy, showing reduced disease-free survival

(68). Additionally, GADD45B overexpression has been found to

enhance the migration of ovarian cancer cells and is closely linked to

ovarian cancer metastasis (69). Similar observations have been made in

our research. We found that GADD45B plays distinct roles in different

stages of gastric cancer. During the carcinogenic phase of chronic

atrophic gastritis, GADD45B primarily inhibits gastric cancer

development by suppressing the WNT signaling pathway. However,

in advanced gastric cancer tissues, GADD45B exhibits a positive

correlation with WNT signaling intensity, indicating its involvement

in tumor progression. Furthermore, GADD45B promotes

immunosuppression within the tumor microenvironment by

modulating signaling interactions between gastric cancer cells and

tumor-associated fibroblasts, vascular endothelial cells, and other

microenvironmental cells. It also promotes the expression of

immune checkpoints, thereby facilitating gastric cancer progression.

Nevertheless, the precise mechanism underlying the functional switch

of GADD45B remains to be elucidated, necessitating further research

in this area.

Immune system is crucial for both immunotherapy and the

growth of malignancies (12–14, 26, 70). Additionally, by analyzing

the tumor immune microenvironment, it is possible to achieve
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predictions regarding the efficacy of tumor immunotherapy (71,

72). Our research focused on the role of GADD45B in regulating the

immune microenvironment of GC patients. The expression level of

GADD45B influenced various immune cells, including B cells, CD8

+ T cells, monocytes, and others. It upregulated the expression of

immune checkpoints, leading to immune suppression within the

tumor microenvironment. Consequently, GC patients exhibited a

highly immunosuppressive tumor microenvironment, which

negatively impacted the effectiveness of chemotherapy and

immunotherapy. Previous studies have indicated that GADD45B

also controlled the functionality of immune cells. In malignant

melanoma, GADD45B played a crucial role as an anti-tumor

response participant by regulating the immune response of Th1

cells and CD8+ T cells (73). Additionally, GADD45B was found to

modulate the innate immune function of granulocytes and

macrophages by regulating p38 and JNK signaling pathways,

which affected reactive oxygen species production, phagocytosis,

adhesion, and chemotaxis (74). The immune regulation mediated

by GADD45B in GC patients was a complex process. Consequently,

targeting GADD45B has the potential to emerge as a novel

therapeutic strategy for GC.

Multiple factors contribute to the continued progression of

tumors in chemotherapy patients, including drug resistance (75–

77). Chemotherapy is the primary treatment modality for advanced
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FIGURE 13

Expression changes of metabolic pathways in two diseases. (A–F) The enrichment of six key metabolic pathways in chronic atrophic gastritis and
gastric cancer tissues. (A) D-glutamine and D-glutamate metabolism; (B) N-glycan biosynthesis. (C) Linoleic acid metabolism. (D) Arginine and
proline metabolism; (E) Amino sugar and nucleotide sugar metabolism. (F) Pantothenate and CoA biosynthesis. (G) The expression levels of the six
metabolic pathways in chronic atrophic gastritis and non-atrophic gastritis tissues. (H) The expression levels of the six metabolic pathways in gastric
cancer and non-cancerous tissues.
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gastric cancer. Given the significant correlation between GADD45B

and GC prognosis, GADD45B could serve as a predictive marker

for the efficacy of pharmacological treatments in GC. Previous

randomized controlled trials and basic experiments have shown the

significant anti-gastric cancer activity of agents such as docetaxel

(78), lapatinib (79), paclitaxel (80), methotrexate (81), gemcitabine

(82), camptothecin (83), and cisplatin (84). Sensitivity analysis has

revealed an inverse relationship between the expression level of

GADD45B and the therapeutic response to docetaxel, lapatinib, and

paclitaxel. Patients with low GADD45B expression might exhibit

better treatment response, while those with high GADD45B

expression might have a poorer response. Consequently, in

clinical practice, low GADD45B expression could guide the

selection of docetaxel, lapatinib, or paclitaxel as treatment

options. Furthermore, immunotherapy has emerged as an

innovative and promising approach for GC treatment (85).

Consequently, our research predicted the impact of GADD45B on
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immunotherapy for patients with GC. In this context, our research

explored the potential impact of GADD45B on immunotherapy for

GC patients. We observed that GC tissues with high expression of

GADD45B were characterized by a highly immunosuppressive

microenvironment, suggesting that immunotherapy may have a

more favorable effect in such cases. These findings hold significant

clinical implications for the pharmacological management of GC.

The WNT signaling pathway plays a crucial role in various

physiological processes, such as embryonic development, lineage

commitment, adult stem cell homeostasis, and tissue regeneration

(86). As one of the earliest signaling pathways identified in the

tumor microenvironment, the WNT pathway has been implicated

in carcinogenesis. The WNT family consists of 19 secreted

glycoproteins, and its downstream effects could be categorized

into b-catenin-dependent and b-catenin-independent pathways,

depending on the requirement of b-catenin. Upon binding of

WNT ligands, the co-receptors LRP5/6 and FZD are activated,
A B

D

E

C

FIGURE 14

Results of in vitro experimental validation. (A, B) Immunofluorescence staining results of gastric cancer tissues and adjacent tissues. (C) The
expression of GADD45B in normal gastric epithelial cell line (GES-1) and four gastric cancer cell lines (MKN28, AGS, HGC-27, MKN45). (D) CCK-8
experiments on four gastric cancer cell lines. (E) Analysis results of scratch experiments on MKN45 and HGC-27 cell lines. ** represent P < 0.01.
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leading to the recruitment of AXIN1/2 and DVL to the membrane

(active WNT signals). This results in the destruction of the

destruction complex, leading to the stabilization and nuclear

translocation of b-catenin. In the nucleus, b-catenin interacts

with TCF and LEF, recruiting coactivators such as p300 and CBP

to promote the transcription of WNT target genes (87, 88). Previous

studies have established a link between the WNT signaling pathway

and the development of CAG and GC. Helicobacter pylori, a major

pathogen associated with CAG and GC, could activate the WNT

signaling pathway in gastric epithelial cells through various

mechanisms. In gastric cancer, Helicobacter pylori upregulates

the expression of Wnt10a and Wnt10b, thereby activating the

Wnt/b-catenin pathway (89, 90). Additionally, helicobacter pylori

infection in gastric epithelial cells leads to rapid activation of the co-

receptor for the Wnt/b-catenin pathway, LRP6, resulting in the

nuclear accumulation of b-catenin (91). Through GSVA analysis of

single-cell transcriptome data, we identified the WNT signaling

pathway as a co-expressed pathway in the pathogenesis of both

CAG and gastric cancer. Furthermore, analysis of the TCGA cohort

revealed a negative association between theWNT signaling pathway

and GADD45B expression. GADD45B acts as a tumor suppressor

during the progression from chronic atrophic gastritis to gastric

cancer by inhibiting the WNT signaling pathway.

The expression level of GADD45B in GC cells has a significant

impact on the disease’s progression and biological characteristics. GC

cells with high GADD45B expression exhibit enhanced invasiveness

and closer interactions with the immune microenvironment. Within

the tumor microenvironment, GC cells with high GADD45B

expression are prominently involved in the CD99 signaling network,

while those with low GADD45B expression predominantly participate

in the CDH signaling network. CD99 is a cell surface protein with

diverse properties and an incompletely understood mechanism of

action. It is involved in critical biological processes such as cell

adhesion, migration, death, differentiation, and inflammation (92), as

well as immune system regulation and cancer development. In

numerous cancers, CD99 is highly expressed (93). In the CDH

network, CDH1-CDH1 serves as the principal ligand receptor.

CDH1 encodes cadherin-1, a calcium-dependent cell adhesion

glycoprotein comprising five extracellular cadherin repeats, a

transmembrane domain, and a conserved cytoplasmic tail. CDH1 is

vital for maintaining cell adhesion and adhesion junctions in normal

tissues (94). Reduced CDH1 expression or function in tumor tissues

increases the likelihood of distant metastasis (95). According to our

research, GC cells with high GADD45B expression play a crucial role in

the CD99 and CDH1 networks. They primarily communicate with

other tumor cells, fibroblasts, and vascular endothelial cells through

CD99-CD99 interactions within the CD99 network. On the other

hand, GC cells with low GADD45B expression participate in the

primary CDH signaling pathway network and interact with other

tumor cells, fibroblasts, and vascular endothelial cells via CDH1-CDH1

ligand receptors. Analysis of GC tissues from the TCGA cohort

revealed a positive correlation between GADD45B and CD99

expression, while GADD45B exhibited a negative correlation with

CDH1 expression. This suggests that GADD45B regulates the

invasiveness of GC cells to promote disease progression. Moreover,

GC cells with high GADD45B expression display greater invasiveness
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compared to those with low GADD45B expression. The tumor

microenvironment in GC plays a pivotal role in disease progression,

particularly during the advanced stage of invasion.

Since the discovery of the Warburg effect, it has become evident

that metabolism plays a crucial role in diseases development (96).

Advancements in high-throughput sequencing technology have

enabled a more integrated analysis of transcriptomics and

metabolomics, allowing for a comprehensive examination of

metabolic pathways in GC at the single-cell level. In the

pathogenesis of CAG, inflammation-induced damage to gastric

mucosal epithelial cells leads to significant downregulation of

most metabolic pathways. However, during the progression of

gastric cancer, these downregulated metabolic pathways were

reactivated and often surpass their original levels. Thus, the

identification of six co-expressed metabolic pathways in our study

hold great significance in understanding the progression of GC.

Glutamine, a vital and widely utilized nutrient, played diverse roles

in cancer cells, including energy formation, redox homeostasis,

macromolecule synthesis, and signal transduction (97). N-glycan, a

common protein modification in mammals, is closely associated

with cancer growth, invasion, and metastasis (98). Linoleic acid,

acting through various classical tumor pathways such as the Akt

pathway, induces cancer cell invasion and migration (99). Amino

sugar and nucleotide sugar metabolism are involved in the synthesis

and glycosylation modification of molecules like proteins and lipids,

exhibiting high activity in tumor cells (100). Pantothenic acid and

coenzyme A have the capacity to regulate the anti-tumor immunity

of different immune cells (101). In summary, GADD45B exerted a

significant influence on the metabolic pathways of gastric cancer

cells. Targeting GADD45B in treatment strategies might prove

effective in restoring abnormal metabolic capacities within tumor

tissues. The findings from our study provided valuable insights for

the development of novel therapeutic approaches aimed at

modulating gastric cancer metabolism.

Our study has certain limitations. Firstly, the carcinogenic

mechanism of GADD45B regulation in chronic atrophic gastritis

is a complex process, and this study only provides preliminary

evidence. Further research can utilize more in vitro and in vivo

models, as well as larger-scale clinical samples, to validate the role of

GADD45B in carcinogenesis of chronic atrophic gastritis. Secondly,

due to the lack of evidence, the application of our research findings

in the clinical setting is challenging. Therefore, a significant amount

of prospective research is still needed to validate our conclusions.

Lastly, the absence of sequencing data may lead to inevitable biases,

potentially compromising the reliability of the results. Hence, large-

scale sequencing and integrative analysis are still necessary.
5 Conclusion

GADD45B, a cancer-related gene, has been implicated in the

development of chronic atrophic gastritis. Low levels of GADD45B

expression in gastric epithelial cells contribute to the activation of the

WNT signaling pathway, thus promoting the carcinogenic process

associated with chronic atrophic gastritis. Moreover, GADD45B plays

a crucial role in mediating the communication between gastric cancer
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cells and the immune microenvironment, resulting in enhanced

invasiveness and poor prognosis for GC patients. Additionally,

GADD45B exerted broad regulatory effects on the metabolic

pathways involved in chronic atrophic gastritis and gastric cancer

tissues, ultimately facilitating the progression of gastric cancer.
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