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Gut microbial change
after administration of
Lacticaseibacillus paracasei
AO356 is associated with
anti-obesity in a mouse model
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So-Young Lee1,4* and Young-Do Nam1*

1Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea,
2Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine,
Seoul, Republic of Korea, 3Bio-medical Institute of Technology, University of Ulsan College of
Medicine, Seoul, Republic of Korea, 4Department of Food Biotechnology, Korea University of Science
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Introduction: The status of an impaired gut microbial community, known as

dysbiosis, is associated with metabolic diseases such as obesity and insulin

resistance. The use of probiotics has been considered an effective approach

for the treatment and prevention of obesity and related gut microbial dysbiosis.

The anti-obesity effect of Lacticaseibacillus paracasei AO356 was recently

reported. However, the effect of L. paracasei AO356 on the gut microbiota has

not yet been identified. This study aimed to elucidate the effect of L. paracasei

AO356 on gut microbiota and ensure its safety for use as a probiotic.

Methods: Oral administration of L. paracasei AO356 (107 colony-forming units

[CFU]/mg per day, 5 days a week, for 10 weeks) to mice fed a high-fat diet

significantly suppressed weight gain and fat mass. We investigated the

composition of gut microbiota and explored its association with obesity-

related markers.

Results: Oral administration of L. paracasei AO356 significantly changed the gut

microbiota and modified the relative abundance of Lactobacillus, Bacteroides,

and Oscillospira. Bacteroides and Oscillospira were significantly related to the

lipid metabolism pathway and obesity-related markers. We also confirmed the

safety of L. paracasei AO356 using antibiotics resistance, hemolysis activity, bile

salt hydrolase activity, lactate production, and toxicity tests following the safety

assessment guidelines of the Ministry of Food and Drug Safety (MFDS).

Discussion: This study demonstrated that L. paracasei AO356 is not only

associated with an anti-obesity effect but also with changes in the gut

microbiota and metabolic pathways related to obesity. Furthermore, the
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overall safety assessment seen in this study could increase the potential use of

new probiotic materials with anti-obesity effects.
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1 Introduction

Obesity is a global public health concern associated with a wide

range of health problems, including diabetes, cardiovascular disease,

and cancer. Obesity, characterized by an excessive accumulation of

body fat, is a complex and multifactorial condition resulting from a

combination of factors such as genetics, environment, and behavior

(1). While traditional interventions such as diet and exercise are

effective in obesity management, emerging evidence suggests that

gut microbiota may also play a role in regulating body weight and

inflammation related to obesity (2, 3). Gut microbiota influences

nutrient absorption, energy balance, and the immunologic system,

which contribute to the modulation of body homeostasis and

metabolism (4–6).

Probiotics are microorganisms that confer a health benefit on

the host when administered in adequate amounts (7). Probiotics are

thought to exert their beneficial effects through various

mechanisms, including modulating the gut microbiota,

strengthening the gut barrier, and interacting with the host

immune system (8). Therefore, the use of probiotics may serve as

an effective approach to the treatment and prevention of obesity via

modulation of the gut microbiota. Our previous study suggested

that Lacticaseibacillus paracasei AO356 exerts its anti-obesity effect

by regulating adipogenesis and thermogenesis (9). However, the

effect of L. paracasei AO356 on gut microbiota was not confirmed.

Lactic acid bacteria including Lactobacillus have been reported to

have functions related to the inhibition of pathogen colonization,

cholesterol metabolism, liver function, and fat accumulation (10–

14). Moreover, the anti-obesity effect of L. paracasei strains are

reported in several animal and human studies (15–17). Of note, L.

paracasei K56 exerts its anti-obesity effect by modulating the gut

microbiota in high-fat diet (HFD)-induced obesity mice (18).

Therefore, we expect the changes in the gut microbiota to be

related to the anti-obesity effect of L. paracasei AO356.

As many beneficial effects of probiotics have been reported,

safety concerns such as antibiotic resistance and toxicity of strains

have been raised as important issues for probiotics selection. In

2021, the Korea Ministry of Food and Drug Safety (MFDS)

presented guidelines regarding the safety of probiotics (19). Thus,

in this study, we investigated the effect of L.paracasei AO356 on gut

microbiota and its association with obesity and evaluated its safety

following the guidelines presented by MFDS. Our findings suggest

that L.paracasei AO356 may be a promising strategy for the

management of obesity and its associated health problems.
02
2 Materials and methods

2.1 Preparation for L. paracasei AO356

L. paracasei AO356 (KCCM12145P), isolated from fecal

samples of healthy Koreans in general dietary pattern, was

cultured in the MRS broth medium (BD Difco co. USA) at 37°C

for 24 h aerobically, collected by centrifugation (1000 × g for 20

min), and washed twice with sterilized PBS. Freeze-dried cells were

then stored at -80°C until they were administered to the mice. The

colony forming unit (CFU) with freeze-dried cells was determined

before they were used.
2.2 An animal experiment

C57BL/6 mice (thirty 6-week-old males) purchased from

Central Lab Animal, Inc. (Seoul, Korea) were housed under

standard laboratory conditions (22 ± 2°C, 12 h light/dark cycle)

and acclimatized to the lab environment for 1 week. The animals

were randomly allocated into three groups. One group was fed a

normal chow diet (ND, Teklad 2018S; Envigo Research

Indianapolis, Indiana, USA). The other two groups were fed a

high-fat diet (HFD) comprising 55% fats (D12492 formula of

Research Diet, Saeron Bio, Gyeonggi, Korea) with or without L.

paracasei AO356. The diets were provided ad libitum, and L.

paracasei AO356 was administered at a dose of 5 × 107 CFU/mg

in 100 µL of PBS by oral gavage 5 days a week for 10 weeks. Two

mice were housed per cage and their body weights were measured

once a week (n=9 for ND, n=8 for HFD and n=9 for HFD +

AO356). At the end of the experiment, fresh feces were collected

and stored at −80°C for gut microbiome analysis. All animals were

then subjected to overnight fasting and sacrificed. Tissues, including

epididymal white fat tissue (EFT), retroperitoneal white fat tissue

(RFT), inguinal white fat tissue (IFT), and intrascapular brown

adipose tissue (BAT), were immediately excised and weighed. The

concentrations of glucose, triglycerides, LDL cholesterol, and HDL

cholesterol in serum were determined by appropriate enzyme

kinetic or colorimetric assays (Roche, Mannheim, Germany) on a

Hitachi automatic analyzer Modular Analytics (Hitachi, Japan).

Serum insulin was quantified using ELISA assay kits (ALPCO,

Diagnostics, NH, USA). Homeostasis model assessment for insulin

resistance (HOMA-IR) was calculated via the following equation

(20): fasting glucose (mg/dL) × fasting insulin (µU/mL) ÷ 2430.
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This experiment was approved by the Korea Food Research

Institutional Animal Care and Use Committee (approval # KFRI-

M-16047) following their guidelines and regulations on the care and

use of laboratory animals.
2.3 Gut microbiota analysis

Metagenomic DNA from feces was extracted using the QIAamp

DNA Stool Mini Kit (Qiagen) with an additional bead-beating step

as previously described (21). The V1-V2 hypervariable region of the

bacterial 16S rRNA genes was amplified by PCR using universal

primers (8F and 338R) with barcode sequences for multiplexing

reads of each sample. Amplicon sequencing was performed on an

Ion Torrent PGM system (Thermo Scientific, DE, USA) with a

318D sequencing chip. Raw sequence reads were quality-filtered

and quality-controlled reads were processed for diversity analysis

and taxonomy assignment using the Quantitative Insights into

Microbial Ecology 1 (QIIME1) software package (22). The

molecular functions of each sample were predicted based on 16S

rRNA data in the Phylogenetic Investigation of Communities by

Reconstruction of Unobserved States (PICRUSt) software (23).
2.4 Determination of minimum inhibitory
concentration (MIC) of antibiotics

The MIC of AO356 was determined with an ETEST® strip

(BioMérieux, SA, France). AO356 was diluted in 0.9% saline

(0.5~1.0 McFarland standard) and streaked on MRS agar plates.

After the plates were dried, ETEST® strips for ampicillin (AM),

chloramphenicol (CL), clindamycin (CM), erythromycin (EM),

gentamicin (GM), kanamycin (KM), streptomycin (SM),

tetracycline (TC), and vancomycin (VA) were applied to the

plates. The antibiotics concentration scale of the strips was from

0.016 mg/mL to 256 mg/mL. The agar plates were incubated

anaerobically at 37°C for 48 h.
2.5 Hemolysis activity test

Hemolysis activity was evaluated by the plate assay described by

the Ministry of Food and Drug Safety (MFDS) for microbiology

guidelines. A loop of AO356 was streaked on a sheep blood agar

plate and incubated at 37°C for 24 h. Escherichia coli (ACTC 1682)

was cultured and used as a positive control. Hemolysis activity was

determined by the form of hemolytic cells formed around colony on

the plate (24, 25). Beta-hemolysis causes a clear zone with the

transparency of the base medium surrounds the colony when

observed under the light. Alpha hemolysis causes a green or

brown discoloration in the medium. Gamma-hymolysis indicates

the lack of hemolysis.
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2.6 Bile salt hydrolase (BSH) activity test

The bile salt hydrolase activity was tested using MRS agar plates

including 0.5% taurodeoxycholic acid (MRS-TDCA). AO356 was

then streaked on MRS-TDCA and incubated anaerobically at 37°C

for 48 h. The BSH activity was determined by the visible halo

surrounding colonies (26).
2.7 Toxicity test with Lactate
dehydrogenase (LDH) assay

The Caco-2 cell line (human epithelial colorectal adenocarcinoma

cell line; ATCCHTB-37) was seeded into a 24-well plate at a density of

1×105 cells/well with a minimum essential medium (MEM) containing

10% fetal bovine serum and 1% penicillin-streptomycin and incubated

at 37°C and 5% CO2 for 2 days. AO356 was treated on a Caco-2 cell

with 1×107, 1×108, and 1×109 CFU/well and incubated at 37°C and 5%

CO2 for 24 h. Escherichia coli (ACTC 1682) was used as a positive

control. The test wa perfomed in triplicate. The supernatant was

centrifuged at 5,000 g for 15 min and used as a sample. The toxicity

of AO356 was determined using an LDH assay kit following the

manufacturer’s protocol (ab65393, Abcam, Cambridge, UK). The non-

treated culture medium was used as a low control, the cell lysis buffer

was used as a high control, and Escherichia coli (ACTC1682), known to

be toxic, was used as a positive control.
2.8 D-lactate production test

The D-lactate production was determined using a D-/L-lactic

acid assay kit following the manufacturer’s protocol (K-DLATE,

Megazyme Ltd., Wicklow, Ireland). AO356 was inoculated on MRS

broth and incubated at 37°C for 24 h. The culture medium was

centrifuged at 5,000 g for 15 min and the supernatant was used for

measurement of lactate production. Lactobacillus rhamnosus GG

was used as a positive control.
2.9 Statistical analysis

Statistical significance was evaluated using a one-way analysis of

variance (ANOVA) followed by Tukey’s a post-hoc test or the

Kruskal-Wallis test followed by Dunn’s test. Permutational

multivariate analysis of variance (PERMANOVA) statistical

analyses were conducted on the Bray-Curtis dissimilarity with 999

permutations using the adonis2 function in the vegan package in R

(27). Statistical significance was set at p<0.05. To identify taxa with

differing relative abundances among groups, linear discriminant

analysis effect size (LEfSe) analyses were conducted using the web-

based program Galaxy (28). The strength of relationships between

parameters was assessed using the Spearman correlation test.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1224636
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Song et al. 10.3389/fendo.2023.1224636
3 Results

3.1 Effects of L. paracasei AO356 on HFD-
induced obesity mice

To examine the effects of L. paracasei AO356 on obesity, we

established an HFD-induced obesity mice model. Food and water

intake was monitored every 2–3 days, and daily food intake and

calories consumed were calculated. HFD feeding led to a significant

decrease in water intake and an increase in calorie intake, body

weight, and fat accumulation compared with the normal diet

(NOR) group (Figure 1). There was no significant difference in

water and calorie intake between the HFD group (HFD) and the

HFD group treated with L. paracasei AO356 (HFD+AO356)

(Figures 1A, B). Notably, 10 weeks of L. paracasei AO356

intervention affected body weight and fat accumulation upon

HFD feeding. L. paracasei AO356 intervention significantly

decreased body weight by 34.21% compared with that in the HFD

group (Figure 1C). Additionally, L. paracasei AO356 intervention

significantly decreased the weights of EFT (34.83%), RFT (36.51%),

IFT (35.40%) and BAT (26.56%) (Figure 1D).

The HFD led to significant increases in insulin resistance and

serum lipid profiles (Supplementary Figure 1). L. paracasei AO356

intervention significantly decreased the levels of glucose (16.07%),

insulin (36.60%), and HOMA-IR (15.82%) which were increased by

the HFD. Although microbial intake improved blood markers that

were increased by the HFD, only glucose levels showed a significant

difference between the L. paracasei AO356 intervention group and

the HFD group (Supplementary Figures 1A-C). L. paracasei AO356
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intervention also significantly decreased the TG levels by 11.42%. In

addition, HDL and LDL cholesterol were decreased by 5.81% and

21.69%, respectively, but this decrease was not statistically

significant when comparing the L. paracasei AO356 intervention

group to the HFD group (Supplementary Figures 1D-F). These

results indicate that L. paracasei AO356 has anti-obesity effects such

as preventing weight gain and fat accumulation.
3.2 Gut microbial change after
administration of L. paracasei AO356

The alpha diversity indices such as Chao1 and Shannon were

similar among all groups (Figures 2A, B). However, the results of

PCoA on the Bray-Curtis distance matrix showed differences

among groups (Figure 2C). The ND group and the other two

groups were clustered into two areas. The HFD and the L. paracasei

AO356 intervention groups did not overlap and could be

distinguished. The composition and the relative abundance of

bacteria at the phylum level are shown in Figure 2D. In the ND

group, the gut microbiota was dominated by Bacteroidetes followed

by Firmicutes. Conversely, in the other two groups, Firmicutes was

predominant, followed by Bacteroidetes. The HFD significantly

decreased the relative abundance of Bacteroidetes and increased

the relative abundance of Firmicutes in the HFD group compared to

the ND groups. However, there was no significant difference in the

relative abundance of Bacteroidetes and Firmicutes between the

HFD and HFD+AO356 groups. Figure 2E presents the composition

and relative abundance of the gut microbiota at the family level. In
B C

D

A

FIGURE 1

Effect of L. paracasei AO356 on weight and fat accumulation in a high-fat diet (HFD)-induced obese model after intervention for 10 weeks. (A) Water
intake (B) Calorie intake (C) Body weight (D) Fat weight. Statistical significance was assessed using one-way ANOVA and Tukey’s multiple
comparison test. The significance is indicated by *P < 0.05, **P < 0.01, ***P < 0.001. ND, normal diet mice; HFD, HFD mice; HFD+AO356, HFD mice
with Lacticaseibacillus paracasei AO356 intervention; EFT, epididymal white fat tissue; RFT, retroperitoneal white fat tissue; IFT, inguinal white fat
tissue; BAT, brown fat tissue.
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the ND group, the gut was dominated by the S24-7 family, followed

by an unclassified family of Clostridiales. In contrast, in the HFD

and HFD+AO356 groups, the S24-7 family, and unclassified

families of Clostridiales, Ruminococcaceae, Lachnospiraceae, and

Desulfovibrionaceae shared the predominance. Of note, the L.

paracasei AO356 intervention significantly restored the relative

abundance of Bacteroidaceae, which was significantly increased by

the HFD when compared to the ND group.
Frontiers in Endocrinology 05
3.3 Association of gut microbiota with
body weight and fat accumulation

LEfSe analysis was performed to identify significantly

differential genera among groups (Figure 3A). The ND group had

a higher relative abundance of Prevotella, Sutterella, and

Lactobacillus. The HFD group had a higher relative abundance of

Bacteroides and Mucispirillum. The HFD+AO356 group had a
B C

D

E

A

FIGURE 2

Effect of Lacticaseibacillus paracasei AO356 on the structure of gut microbiota in a high-fat diet (HFD)-induced obese model after intervention for
10 weeks. (A) Chao1 alpha diversity index. (B) Shannon alpha diversity index. (C) principal coordinate analysis (PCoA) plot based on Bray-Curtis
dissimilarity. (D) Stacked bar chart of gut microbiota at phylum level and the relative abundance of phyla in each group. (E) Stacked bar chart of gut
microbiota at phylum level and the relative abundance of families in each group. ND, normal diet mice; HFD, HFD mice; HFD+AO356, HFD mice
with Lacticaseibacillus paracasei AO356 intervention; Data in the box plots are presented as the mean ± SD. Statistical significance was assessed
using the Kruskal–Wallis test and Dunn’s multiple comparison test. The significance is indicated by *P < 0.05, **P < 0.01, ***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1224636
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Song et al. 10.3389/fendo.2023.1224636
higher relative abundance of nine genera including Allobaculum,

Oscillospira, and Ruminococcus. Moreover, L. paracasei AO356

intervention significantly increased the relative abundance of

Lactobacillus and decreased the relative abundance of Bacteroides

in the HFD+AO356 group compared to the HFD group

(Figure 3B). A Spearman correlation analysis was performed to

identify the association of gut microbial genera with obesity-related

markers (Figure 3C). Six genera were found to be significantly

correlated with one or more obesity-related markers. In particular,

Bacteroides showed a positive correlation with body weight, fat

accumulation (RFT, IFT, and EFT), insulin resistance (Glucose,

insulin, and HOMA-IR), and triglyceride levels. In contrast,

Oscillospira showed a negative correlation with body weight, fat

accumulation (RFT and IFT, insulin resistance (Glucose, insulin,

and HOMA-IR), and lipid profiles (LDL and HDL cholesterol).

These results suggested that the L. paracasei AO356 intervention-

induced changes in gut microbiota are linked to its anti-obesity

effects such as preventing weight gain and fat accumulation.
3.4 Functional metagenome
prediction analysis

To evaluate differences in functional attributes of gut

microbiota in response to L. paracasei AO356 intervention,

predicted functional metagenomic profiles based on the Kyoto
Frontiers in Endocrinology 06
Encyclopedia of Genes and Genomes (KEGG) pathways were

generated using PICRUSt. Twenty-five pathways were found to be

associated with L. paracasei AO356 intervention (Supplementary

Table 1). The L. paracasei AO356 intervention resulted in the

enrichment of the biosynthesis of other secondary metabolites

(isoflavonoid biosynthesis), carbohydrate metabolism-related

pathways (butanoate metabolism, propanoate metabolism, and

pentose phosphate metabolism), and lipid metabolism-related

pathways (biosynthesis of unsaturated fatty acids, fatty acid

metabolism, and ether lipid metabolism). Spearman’s correlation

analysis was performed to identify the association of enriched

pathways with obesity-related markers and genera (Figure 4). Ten

pathways were found to be significantly correlated with one or more

obesity-related markers. Of note, lipid metabolism-related

pathways (Ether lipid metabolism, biosynthesis of unsaturated

fatty acids, fatty acid biosynthesis) are strongly negatively

correlated with obesity-related markers. In particular, biosynthesis

of unsaturated fatty acids showed a negative correlation with RFT,

IFT, glucose, and Bacteroides, and a positive correlation with

Oscillospira, Dorea, and Anaerotruncus. Additionally, Fatty acid

biosynthesis showed a negative correlation with body weight, RFT,

HOMA-IR, TG, and HDL-C, and a positive correlation with

Oscillospira. These results suggested that the L. paracasei AO356

intervention induced the modulation of lipid metabolism such as

ether lipid metabolism, biosynthesis of unsaturated fatty acids, and

fatty acid biosynthesis linked to the changes in gut microbiota such
B

CA

FIGURE 3

Association of microbiota Lacticaseibacillus paracasei AO356 and obesity-related markers. (A) LEfSe analysis identifies the significantly differently
abundant taxa with a cutoff value of log10(LDA score) above 2.0. (B) Box plot of the relative abundance of Lactobacillus and Bacteroides. (C) A
heatmap generated using Spearman correlation shows the association of genera with obesity-related markers. HFD, HFD mice; HFD+AO356, HFD
mice with Lacticaseibacillus paracasei AO356 intervention; Data in the box plots are presented as the mean ± SD. Statistical significance was
assessed using the Mann–Whitney test. The significance is indicated by *P < 0.05, **P < 0.01, ***P < 0.001. The color scale of the heatmap indicates
the value of the correlation coefficient.
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as Bacteroides, Oscillospira, and Dorea, resulting in an anti-

obesity effect.
3.5 Safety evaluation

To evaluate the safety of L. paracasei AO356, we examined the

antibiotics resistance, hemolysis activity, bile salt hydrolase (BSH)

activity, measurements of D-/L-lactate production, and toxicity

using an LDH assay which included safety assessment items

presented in the food safety guidelines (29). The antibiotic

resistance of L. paracasei AO356 for ampicillin, chloramphenicol,

clindamycin, erythromycin, gentamicin, kanamycin, streptomycin,

tetracycline, and vancomycin was determined using an E-test strip.

The MIC values of L. paracasei AO356 were lower than the cut-off

in the the European Safety Food Authority (ESFA) guidelines,

suggesting that L. paracasei AO356 is susceptible to 9 antibiotics

(Supplementary Table 2). In the hemolysis activity test, L. paracasei

AO356 exhibited non-hemolytic activity (g-hemolysis). Conversely,

Escherichia coli, which is known to be toxic, showed clear hemolytic

activity (b-hemolysis) (Supplementary Figure 2A). We examined

the BSH activity of L. paracasei AO356 with taurodeoxycholic acid

(TDCA), which is one of the bile salts, and the result was negative

(Supplementary Figure 2B). To verify the safety of L. paracasei

AO356 for virulence or toxin-related propertes, we performed an

LDH assay (Supplementary Figure 2C). The cytotoxicity of caco-2

cells co-cultured with E. coli was 95–100%, whereas the cytotoxicity

of caco-2 cells co-cultured with L. paracasei AO356 was 17–22%.

The cytotoxicity of L. paracaseiAO356 was similar to that of the low

control (21%) treated only media. In measurement of D-lactate, L.

paracasei AO356 produced 2.18 g/L (94.30%) of L-lactate and 0.14

g/L (5.70%) of D-lactate. The level of D-lactate production was

lower than that of Lactobacillus rhamnosus GG which is one of the

most commonly used probiotic strain (Supplementary Figure 2E).
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These results suggested that L. paracasei AO356 can be considered a

safe strain and used as a healthy functional food ingredient.
4 Discussion

In this study, the L. paracasei AO356 intervention prevented

weight gain and fat accumulation without changes in energy intake.

The L. paracasei AO356 intervention also modulated the overall

composition of gut microbiota and changed the gut microbiota at

the genus level. Additionally, the L. paracasei AO356 intervention

also modulated the predicted functional metagenomic profiles and

changed the pathways correlated with weight gain and fat

accumulation. Furthermore, we have secured the safety of L.

paracasei AO356 for antibiotics resistance, hemolysis activity, bile

salt hydrolase activity, toxicity, and D-lactate production. These

results indicate that L. paracasei AO356 has an anti-obesity effect,

can modulate gut microbiota, and is guaranteed to be safe as a

probiotic and healthy functional food.

Our previous study investigated the effects of L. paracasei

AO356 on an obesity mice model concerning aspects of

regulating adipogenesis and thermogenesis (9). The study

revealed that the anti-obesity effect of L. paracasei AO356 may be

associated with the downregulation of adipogenesis transcription

factor and lipid metabolism-related genes, such as Srebp1c, Pparg,
Fas, C/ebpa, and Fabp4 and upregulation of thermogenesis-related

genes, such as Ucp1, Cpt1, Pgc1a, Cidea, and Prdm16 in epididymal

and subcutaneous fat pads. The study also compared the anti-

obesity effects of L. paracasei AO356 at two concentrations of 1×

107 CFU/head or 1 × 108 CFU/head. There was no significant

difference in the anti-obesity effect of L. paracasei between the two

concentrations, which suggested that L. paracasei AO356 showed

anti-obesity activity at doses > 107 CFU/head. However, the

previous study did not explore the effect of L. paracasei AO356
FIGURE 4

Association of predicted functional metagenome with gut microbiota and obesity-related markers. A heatmap generated using Spearman correlation
shows the association of predicted functional metagenome at level 3 with obesity-related markers and genera that correlate with obesity-related
markers. The significant correlations are indicated by *P < 0.05, **P < 0.01, ***P < 0.001. The color scale indicates the value of the correlation
coefficient.
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on gut microbiota. Therefore, in this study, we investigated the

influence of L. paracasei AO356 and its anti-obesity effects on the

composition of gut microbiota and predicted metagenomic profiles

at an intermediate concentration of 5 × 107 CFU/head.

In this study, Prevotella and Bacteroides were the most

characteristic genera in the ND and HFD groups, respectively. The

association of Prevotella and Bacteroides with diet and obesity has

been reported. Industrialized populations consuming Western diets,

low in fiber and high in fat and processed sugar, have a gut

microbiota dominated by Bacteroidaceae (whose representative

genus is Bacteroides), whereas traditional populations have a gut

microbiota dominated by Prevotellaceae (whose representative genus

is Prevotella) (30). Individuals whose guts are enriched with

Bacteroides have a higher incidence of diseases associated with a

Western diet than individuals whose guts are enriched with Prevotella

(31). Bacteroides were prominent among obese individuals and

positively correlated with BMI (32). Additionally, an abundance of

Prevotella and Bacteroides are associated with anti-obesity

susceptibility. Individuals with high Prevotella/Bacteroides ratios are

more susceptible to loss of body weight and body fat after a high-fiber

diet (33, 34). Anti-obesity probiotics, including complexes of

Lactobacillus plantarum CBT LP3 and Bifidobacterium breve CBT

BR3, were not effective in individuals whose guts were enriched with

Bacteroides (35). The rate of decrease in BMI in individuals whose

guts were enriched with Prevotella was higher than in individuals

whose guts were enriched with Bacteroides after 3 weeks of a calorie-

restriction diet (36). Our results showed that the L. paracasei AO356

intervention restored the relative abundance of Bacteroideswhich was

increased by the HFD feeding. Our results, in combination with

previous literature, suggest that decreased relative abundance of

Bacteroides after L. paracasei AO356 intervention may have

contributed to increased susceptibility to body weight and body fat

loss in HFD-induced obese mice.

We also discovered that the L. paracasei AO356 intervention

significantly increased the relative abundance of Oscillospira.

Oscillospira showed a negative correlation with obesity-related

markers and a negative correlation with metabolic pathways such

as unsaturated fatty acid biosynthesis, fatty acid biosynthesis, and

butanoate metabolism. Several clinical studies found that individuals

with lower BMIs had guts that were more enriched Oscillospira

compared to those with a higher BMI and that Oscillospira was

negatively correlated with BMI (37–41). Recently, Oscillospira was

proposed as a candidate for next-generation probiotics (42).

However, the mechanism by which Oscillospira acts on obesity is

still unclear. Chen et al. suggested that the glycan degradation

properties of Oscillospira were a possible mechanism for the reason

why Oscillospira is related to leanness (43). Hosts need to consume

energy to regenerate the degraded glycan that constitutes gut mucins

degraded by Oscillospira. In our study, the anti-obesity effect of L.

paracasei AO356 and enriched Oscillospira was correlated with the

biosynthesis of unsaturated fatty acids. Unsaturated fatty acids are a

type of fatty acid that have one or more double bonds in their

chemical structure. Omega-3 fatty acids are well known unsaturated

fatty acids and have health beneficial properties such as anti-

inflammatory effects and hypotriglyceridemia. They also improve
Frontiers in Endocrinology 08
body composition and obesity-related metabolic changes including

lipid metabolism (44, 45). Conjugated linoleic acid (CLA), one of the

unsaturated fatty acids, has positive health effects on body

composition and blood lipid concentrations (46). Diets rich in

unsaturated fatty acids improve blood glucose control (47). Given

that Oscillospira, obesity-related markers and metabolic pathways are

correlated, and in light of previous literature, further research should

be conducted to determine whether the anti-obesity effect of L.

paracasei AO356 is caused by gut microbial changes.

Butanoate, also known as butyrate, and propanoate, also known

as propionate, are short-chain fatty acids that are produced by

bacteria in the gut during the fermentation of dietary fiber (48).

Butanoate metabolism involves the breakdown of butanoate into

acetyl-CoA, which can then be used as a source of energy by the

body. Propanoate metabolism involves the conversion of succinate

to methylmalonyl-CoA, which can then enter the citric acid cycle to

produce energy. Butanoate and propanoate metabolism are

important for maintaining gut health by reducing inflammation

and improving gut function and energy metabolism (49–51). In this

study, we found a positive correlation between enriched

carbohydrate metabolism-related pathways (butanoate

metabolism and propanoate metabolism) and Oscillospira after

the L. paracasei AO356 intervention. Similar to our result, a study

showed that Pleurotus ostreatus had a preventive effect on obesity

and beneficially modulated gut microbiota, including increased

relative abundance of Oscillospira and the butanoate and

propanoate metabolism pathway (52). Other studies also showed

that propanoate metabolism was enriched after Lactobacillus

plantarum HNU082 intervention in an HFD-induced

hyperlipidemia rat model. Propanoate metabolism was also linked

to improvements in the gut microbiota and the prevention of

hyperlipidemia (53). Our results showed that an enriched

propanoate metabolism pathway after L. paracasei AO356

intervention was negatively correlated with serum triglycerides.

Further studies to determine whether Oscillospira has an anti-

obesity effect via the butanoate and propanoate metabolism

pathways will help elucidate the mechanism of the anti-obesity

effect of L. paracasei AO356.

Additionally, we found that the isoflavonoid biosynthesis

pathway was enriched after the L. paracasei AO356 intervention.

Isoflavonoids are a class of phytoestrogens that are found in

soybeans and other legumes and have been associated with

various health benefits, including anti-inflammatory and anti-

cancer effects (54). Recent research has also highlighted the

potential role of isoflavonoids in the regulation of body weight

and metabolism. For example, a meta-analysis study with 17 trials

found that isoflavonoids tended to decrease body mass index (55).

An animal study found that isoflavonoids decreased body weight

and adipose tissue weight (56). The mechanism of action of

isoflavonoids on obesity was found to be the inhibition of fat

production and increased fatty acid b-oxidation, which leads to

reduced body fat (57, 58). Another suggested mechanism is that

isoflavonoids interact with intracellular estrogen receptors, which

results in reductions in the accumulation of lipids and the

distribution of adipose tissue (59). Additionally, the isoflavonoid
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biosynthesis pathway includes the metabolism of isoflavonoids,

such as daidzein and genistein, into more bioactive compounds,

such as equol, which has been shown to have anti-obesity effects

(60–62). Conversion of isoflavonoids into bioactive compounds

mediated by gut microbiota is also proposed as one of the

mechanisms of action of isoflavonoids on obesity. Overall, our

findings suggest that the anti-obesity effects of L. paracasei AO356

may be mediated, at least in part, by changes in gut microbiota

function, including the enrichment of the isoflavonoid biosynthesis

pathway. However, further studies are needed to elucidate the role

of the isoflavonoid biosynthesis pathway in the anti-obesity effect of

L. paracasei AO356.

Recently, as side effects from taking probiotics or migration of

antibiotic resistance genes through probiotic strains have become a

problem, each country presented guidelines for the safety of

probiotics (19). In previous studies, the safety of L. paracasei

AO356 was evaluated before the presentation of the guideline from

the Korea Ministry of Food and Drug Safety (MFDS) (24). To

evaluate the safety, the study conducted including antibiotics

resistance tests, a hemolytic test, and enzyme (gelatinase and b-
glucuronidase) activity tests in previous study. In 2021, MFDS

presented guidelines that included the evaluation of antibiotics

resistance, hemolysis activity, bile salt hydrolase (BSH) activity,

toxicity, and D-lactate production (19). Therefore, we additionally

evaluated the safety of L. paracasei AO356 according to the MFDS

guideline. Some strains of lactic acid bacteria (LAB) isolated from

fermented foods have been reported to have resistance to antibiotics

including erythromycin and tetracycline (63, 64). In addition, LAB

play role as a storage for antibiotic-resistant genes and can transfer

them to other bacteria (65). Antibiotic resistance is an important for

health issue because it can increase morbidity and mortality in

patients. For this reason, there is an increasing concern in

antibiotic-resistant bacteria in the field of foods and medicine, and

antibiotic resistance must be confirmed for the safety of probiotics. In

our study, the assessment of antibiotic resistance with E-test

demonstrated that L. paparacasei AO356 is a safe strain due to its

sensitivity accorded with the EFSA-presented antibiotics guidance for

L. paracasei species. Hemolysis, which is virulence factor, is a lysis of

red blood cells by hemolysins secreted by bacteria. In particular, the

absence of hemolytic activity is a critical factor in probiotics selection

because beta-hemolysis could lead hemolytic anemia by destroying

red blood cells (66). Also, hemolysis affects the innate and adaptive

immune system and people with chronic inflammatory diseases are

particularly vulnerable to infection (67). As with the results that most

LAB strains had no hemolytic activity, it was observed that L.

paracasei AO356 also did not have a hemolytic activity (68). BSH

produced by intestinal bacteria is involved in the first steps of bile acid

transformation in catalyzing hydrolysis of conjugated bile slats (69).

The BSH activity has been reported to be related to functional activity

such as serum cholesterol reduction and anti-obesity activity (70);

However, there are some negative concerns regarding BSH activity,

such as the potential production of cytotoxic and carcinogenic

secondary bile salts (71). The enriched deconjugated bile acids by

BSH can lead to diarrhea, promoted intestinal inflammation,

cholestasis (72). Furthermore, deconjugated bile acids are

subsequently transformed into secondary bile acids such as
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deoxycholic acid (DCA) and lithocholic acid (LCA), by 7-a-
dehydroxylase (69). These secondary bile acids have been reported

to be cytotoxic and co-carconogenic in vitro, and related to colorectal

cancer (71, 73). In this study, we confirmed that L. paracasei AO356

have no BSH activity and it indicated that L. paracasei AO356 with

minimal stability concerns in toxic substances produced by BSH.

Other toxin and virulence properties were confirmed through the

cytotoxicity of the L. paracasei AO356 for Caco-2 cell line. The

Cytotoxicity was verified by measurement of LDH concentration

released from damaged cells (74). E.coli (ACTC1682) is known to be

toxic and induced cell damage similar to treated cell lysis buffer, but

our finding demonstrated athat L. paracasei AO356 showed no

toxicity to Caco-2 cell line. Finally, we evaluated the capacity to

produce D-lactate of L. paracaseiAO356. Some Lactobacillus spp. can

produce D-lactate as well as L-lactate. In human, while L-lactate is

rapidly metabolized to pyruvate, D-lactate is restrictively metabolized

by D-a-hydroxy acid dehydrogenase, an enzyme produced by

intestinal microbes (75). The excessive accumulation of D-lacatate

in blood (≥3 mmol/L in healthy people or 2.5-3.0 mmol/L in patient

with short bowel syndrome) can lead to D-lactic acidosis

accompanied by various neurologic manifestations (75).

Particularly, it could be severe problems in infants an in patients

with short bowel syndrome. Thus, the FAO/WHO requires

information about D-lactate production to assess the safety of

probiotics, and recommended that the product label should specify

the information about strains that produce D-lacate (76, 77). In this

study, we confirmed that L. paracasei AO356 mainly produced L-

lactate and rarely produced D-lactate, which is similar to L.

rhamnosus GG, commercial probiotics. L. paracasei AO356 has

secured safety for all indicators presented by the guideline. These

findings indicated that L. paracasei AO356 meets the safety criteria

for probiotics recommended by EFSA andMFDA, thereby suggesting

its potential as safe probiotics.

In summary, we showed that the L. paracasei AO356 intervention

attenuated the development of HFD-induced obesity in mice. The L.

paracasei AO356 intervention also modulated gut microbiota, which

may be associated with anti-obesity related markers, biosynthesis of

other secondary metabolites-related pathways (isoflavonoid

biosynthesis), carbohydrate metabolism-related pathways (butanoate

metabolism, propanoate metabolism, and pentose phosphate

metabolism) and lipid metabolism-related pathways (biosynthesis of

unsaturated fatty acids, fatty acid metabolism, and ether lipid

metabolism). L. paracasei AO356 with anti-obesity effects can

modulate gut microbiota, however more accurate mechanisms should

be studied to evaluate whether the anti-obesity effect is caused by

changes in gut microbiota induced by L. paracaseiAO356. Moreover, L.

paracasei AO356 conformed to the safety assessment guides presented

by the MFDS and is therefore suitable for the development of probiotics

as a healthy functional food and especially as an alternative therapeutic

target for obesity prevention and treatment.
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