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Diagnosis of thyroid disease
using deep convolutional neural
network models applied to
thyroid scintigraphy images: a
multicenter study

Huayi Zhao †, Chenxi Zheng †, Huihui Zhang, Maohua Rao,
Yixuan Li, Danzhou Fang, Jiahui Huang, Wenqian Zhang*‡

and Gengbiao Yuan*‡

Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University,
Chong Qing, China
Objectives: The aim of this study was to improve the diagnostic performance of

nuclear medicine physicians using a deep convolutional neural network (DCNN)

model and validate the results with two multicenter datasets for thyroid disease by

analyzing clinical single-photon emission computed tomography (SPECT) image data.

Methods: In this multicenter retrospective study, 3194 SPECT thyroid images were

collected for model training (n=2067), internal validation (n=514) and external

validation (n=613). First, four pretrained DCNN models (AlexNet, ShuffleNetV2,

MobileNetV3 and ResNet-34) for were testedmultiple medical image classification

of thyroid disease types (i.e., Graves’ disease, subacute thyroiditis, thyroid tumor

and normal thyroid). The best performing model was then subjected to fivefold

cross-validation to further assess its performance, and the diagnostic performance

of this model was compared with that of junior and senior nuclear medicine

physicians. Finally, class-specific attentional regions were visualized with attention

heatmaps using gradient-weighted class activation mapping.

Results: Each of the four pretrained neural networks attained an overall accuracy of

more than 0.85 for the classification of SPECT thyroid images. The improved ResNet-

34 model performed best, with an accuracy of 0.944. For the internal validation set,

the ResNet-34model showed higher accuracy (p < 0.001) when compared to that of

the senior nuclear medicine physician, with an improvement of nearly 10%. Our

model achieved an overall accuracy of 0.931 for the external dataset, a significantly

higher accuracy than that of the senior physician (0.931 vs. 0.868, p < 0.001).

Conclusion: The DCNN-based model performed well in terms of diagnosing

thyroid scintillation images. The DCNN model showed higher sensitivity and

greater specificity in identifying Graves’ disease, subacute thyroiditis, and thyroid

tumors compared to those of nuclear medicine physicians, illustrating the feasibility

of deep learningmodels to improve the diagnostic efficiency for assisting clinicians.

KEYWORDS

deep convolutional neural network, thyroid scintigraphy, artificial intelligence, thyroid
disease, nuclear medicine physicians
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Introduction

In recent years, the worldwide incidence rate of thyroid disease

has increased (1, 2), making it the second-most prevalent disease in

the field of endocrinology (3, 4). In clinical practice, pertechnetate

(99mTcO4
-) thyroid scintigraphy is currently the primary method of

observing the position, shape, size, and functional status of the

thyroid gland and plays a significant guiding role in the treatment of

various thyroid diseases (5, 6). The insidious onset and lack of

specificity in most thyroid diseases often lead to misdiagnosis. Thus,

the best treatment opportunity is often missed, even when clinical

symptoms appear, impacting patient prognosis. Many studies have

demonstrated that thyroid scintigraphy is an effective method for

differentiating Graves’ disease, thyroiditis, and thyroid tumors (7,

8). In addition, the interpretation of thyroid scintigraphy findings

relies heavily on the expertise of nuclear medicine physicians. The

final diagnosis results are easily limited by physicians’ experience

and subjective factors, which can lead to misdiagnosis or affect the

accuracy rate. Therefore, the use of deep learning technology to

assist clinicians in the high-precision diagnosis of thyroid diseases is

of great clinical significance.

DCNN is a deep learning structure that retains spatial

correlations in two-dimensional data and is extensively employed

for artificial intelligence (AI) applications owing to its powerful

feature extraction capabilities (9). Recently, deep learning

algorithms based on DCNNs have shown great potential for

medical image recognition, achieving exceptional diagnostic

accuracy and efficiency in interpreting medical images (10–14).

DCNNs have been widely used to evaluate thyroid lesions on

ultrasound, computed tomography (CT), and magnetic resonance

(MR) images, providing supportive advice for clinical diagnosis (15,

16). In the field of ultrasound diagnosis, differentiating between

benign and malignant thyroid nodules typically yields a diagnostic

accuracy range of 85% to 90%. Li et al. (17) developed a DCNN

model trained with hundreds of thousands of thyroid ultrasound

images. The model achieved recognition accuracies ranging from

85.7% to 88.9% across three validation sets. Another study

conducted by Qi et al. (18) utilized a dataset of over 4,000

ultrasound images to develop a deep learning model specifically

tailored for localizing and evaluating thyroid cancer nodules in

preoperative ultrasound images. The model consistently achieved

an accuracy exceeding 85% across multiple test sets. In terms of CT

diagnosis, Zhang et al. (15) constructed a diagnostic model for

thyroid diseases utilizing a dataset containing over 2,000 CT images

of the thyroid gland, achieving an impressive accuracy rate of

94.2%. Furthermore, DCNNs can achieve performance that meets

or exceeds that of human experts in multiple medical image

classification or detection tasks (19). However, while there are

many studies on imaging modalities, few studies have utilized

algorithms based on deep learning to automatically categorize

thyroid scintigraphy images.

In this study, we used thyroid scintigraphy images to classify

and diagnose Graves’ disease, subacute thyroiditis, thyroid tumors,

and normal subjects using DCNN models and then compared the

results of those methods with those of nuclear medicine physicians.

Finally, we validated the DCNN models with independent internal
Frontiers in Endocrinology 02
and external datasets. The accurate differential diagnosis of thyroid

tumor images is a novel aspect of this study.
Methods

Study cohort

This study was reviewed and approved by the Ethics Committee

of the Second Affiliated Hospital of Chongqing Medical University

and was conducted in accordance with the Helsinki Declaration.

Since this study was a retrospective study with minimal risk, the

requirement for informed patient consent was waived.

In this study, we conducted a retrospective, multicenter

diagnostic study on SPECT thyroid scintigraphy images from

three hospitals in Chongqing. We retrospectively collected
99mTcO4

- thyroid images from cases at the Second Affiliated

Hospital of Chongqing Medical University (Center 1), Southwest

Hospital (Center 2), and Chongqing People’s Hospital (Center 3)

from January 2013 to July 2022. Ultimately, the images collected by

Center 1 were used for training and internal validation of the

DCNN models. The external validation set consisted of the images

collected in Centers 2 and 3.

All collected case images met the specified criteria: 1. The

diagnoses were verified through clinical history and ancillary

tests, including radioiodine uptake tests, thyroid function tests,

and ultrasonography. For many cases, the diagnoses were

confirmed after follow-up treatment. 2. Patients with thyroid

tumors underwent cytological examination or pathological

histological examination. 3. The final clinical diagnosis and all

thyroid scintigraphy imaging results were in agreement. The

exclusion criteria were as follows: 1. Patients who underwent

semi/total thyroidectomy. 2. Incomplete image data. 3. Poor-

quality SPECT images.
Classification criteria

Samples of the four types of thyroid images are shown in

Figure 1. Graves’ disease typically manifests as an enlarged gland

with a diffuse concentration of contrast uptake and distribution.

The normal thyroid gland has a normal location and size, regular

morphology, and a generally uniform distribution of contrast

medium in both lobes. Subacute thyroiditis tends to present early

in the course of the disease with areas of limited or diffuse reduced

radionuclide uptake. Thyroid tumors can be classified as either

benign or malignant. Benign tumors are typically identified as hot

or warm nodules, while malignant tumors are predominantly cold

nodules that may invade surrounding and contralateral normal

tissues. The thyroid tumor samples include benign tumors (thyroid

adenoma and thyroid cystadenoma) and malignant thyroid cancer

(papillary carcinoma, follicular carcinoma, medullary carcinoma,

and undifferentiated carcinoma). A detailed description of the

differences in image patterns for each disease is provided in the

Supplementary Material.
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Imaging protocols

Thyroid scintigraphy was performed at three different hospitals

in accordance with clinical guidelines and the manufacturer’s

recommended parameters. The images were acquired using a

Millennium VG scanner, a Symbia T6 SPECT/CT, and a Symbia

Intevo Bold scanner. The subsequent image acquisition was carried

out by following the instructions for the SPECT equipment

provided by Siemens and GE Healthcare.
Data preprocessing

All thyroid SPECT images extracted from the thyroid imaging

databases of the three hospitals were in JPG format. To obtain

high-quality SPECT images, all thyroid images were cleaned. All
Frontiers in Endocrinology 03
images were screened by two nuclear medicine doctors with ≥ 5

years of SPECT imaging experience. We randomly divided all

thyroid images from Center 1 into two groups, a training set and

an internal validation set, with a ratio of approximately 8:2.

Detailed information on data preprocessing is provided in the

Supplementary Material.
Network architecture

In this study, we appropriately modified the fully connected

(FC) layer in ResNet-34 and compared this modified model with

three pretrained AI models, including AlexNet (20), ShuffleNetV2

(21), MobileNetV3 (22), and ResNet-34 (23). The structure of our

improved deep convolutional neural network (ResNet-34) is

depicted in Figure 2. The whole network structure consists of a
FIGURE 1

Four different thyroid images: (A) Graves’ disease; (B) normal thyroid; (C) subacute thyroiditis; and (D) thyroid tumor.
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dual-stage process. In the first stage of the process, the main features

are extracted from the input SPECT images using the ResNet-34

architecture, which is currently one of the most widely used deep

residual networks. The final FC layer in the original ResNet-34 was

removed. The four modules included in ResNet-34 can extract a

total of 512 features from low to high levels. Then, all 512 features

were processed using two FC layers with leaky rectified linear unit

(ReLU) activation and one FC layer with softmax activation

(24) to calculate and output the probability of a patient having a

studied thyroid diseases. The ReLU activation function introduces

nonlinearity to enhance the expressive capacity of the DCNN. The

shortcut connection facilitates a direct transmission of input

information to output, ensuring the integrity of information

transmission. To enhance the generalizability of the model and

minimize the risk of overfitting, we incorporated dropout into the

first FC layer, with a dropout probability of 0.8 (25).
Training and evaluation methods

Cross-entropy (26) is a commonly used loss function. It is

widely used in classification tasks because it allows training to

converge quickly. As there was no category imbalance in our data,

we utilized the cross-entropy loss function to optimize the model.

The adaptive moment estimation (Adam) optimizer, the most

stable optimizer in DCNN construction, was employed with an

attenuation weight of 1e-4 to update the weight parameters during

the training process. The initial learning rate was set to 2.5 × 10 −5

and was gradually updated using the stochastic gradient descent

algorithm during fine-tuning. Specifically, the learning rate was

reduced to one-tenth of the original rate after every 80 batches. We

set the batch size to 12 and the maximum number of iterations to

200. To ensure the rigorous evaluation of all datasets included in

this study and minimize the potential variance caused by limited

datasets, we conducted 5-fold cross-validation on the model with

the highest accuracy.

Thyroid images from both validation sets were provided to one

junior nuclear medicine physician with 2 years of experience

(L.Y.X.) and one senior nuclear medicine physician with 5 years
Frontiers in Endocrinology 04
of experience (Z.C.X.). These physicians were blinded to the patient

information and classification results. Their diagnostic performance

was then compared with that of the best DCNN model. In addition,

all neural network models were implemented on the PyTorch

platform and trained and tested with the same computing

conditions. Computing was performed using hardware with an

NVIDIA GeForce RTX 3080 Ti GPU. See the Supplementary

Material for details on the operating environment.
Feature visualization

Currently, DCNNs are considered uninterpretable and are still

in the ‘black box’ stage (27, 28). To better interpret the predictions

of our DCNNmodels, we utilized gradient-weighted class activation

mapping (Grad-CAM) to generate heatmaps (29). The Grad-CAM

method was chosen to interpret the network predictions and

provide better insights into the reasoning behind them. We

extracted feature weights from the last convolutional layer of the

DCNN model to build the class activation map.
Statistical analysis

To compare the performance of the deep learning model with

that of nuclear medicine physicians, we constructed receiver

operating characteristic (ROC) curves. The DeLong test was used

to determine the significant differences in the area under the

receiver operating characteristic curve (AUC) between the various

diagnostic methods. We reported accuracy, sensitivity, specificity,

negative predictive value (NPV) and positive predictive values

(PPV) with 95% confidence intervals (CIs) for both the deep

learning models and nuclear medicine physicians, as well as k
values and F1 scores. The differences in accuracy between the

DCNN model and clinical physicians were compared using the

chi-squared test. The statistical analyses were performed using

SPSS software (version 26.0), MedCalc (version 20.218), and R

(version 4.2.2) statistical software, with P < 0.05 considered

statistically significant.
FIGURE 2

Schematic visualization of the improved ResNet-34 model architecture. Conv, pool, and FC represent the convolution kernel, pooling, and fully
connected layers, respectively. “×3/5/2” indicates the number of times the structure is repeated; “/2” indicates the corresponding step size, “Conv7-
64” means a convolutional core size of 7 × 7 and a filter number of 64 for the input and output, and the dashed lines indicate different input and
output sizes.
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Results

Study population

A total of 4285 SPECT images were retrospectively collected for

this study. Of these images, 1091 images were excluded based on

our inclusion and exclusion criteria. Therefore, 3194 SPECT images

were eventually included in this study (Figure 3). Among the 3194

patients (3194 images) included in the study, 2329 (72.92%) were

female and 865 (27.08%) were male, with an average age of 45.00 ±

14.50. Table 1 shows the fundamental clinical characteristics of the

patient cohort under investigation in this study.
Preliminary DCNN model predictions

The internal dataset was randomly split into a training set and a

validation set at a ratio of 8:2. The improved ResNet-34 model and

the other three DCNN models (AlexNet, ShuffleNetV2 and

MobileNetV3) were used to make initial predictions with the

internal validation dataset. The metrics for the classifications

using the four DCNN models with the internal validation set are

listed in Table 2. These four DCNN models achieved good

performance in terms of thyroid disease identification with the

validation set. Our improved model performed better than the other

models. The overall accuracies of AlexNet, ShuffleNetV2,

MobileNetV3 and ResNet-34 with the internal validation set were

0.856, 0.887, 0.928 and 0.944, respectively (Figure 4A), and the k
values were 0.808, 0.850, 0.904 and 0.925, respectively (Table 2).

The ROC curves for these four DCNN models for the diagnostic

internal dataset are shown in Supplementary Figure S3. Notably, the
Frontiers in Endocrinology 05
AUC of the ResNet-34 model was 0.992, indicating its superior

performance compared to that of the other models.
Cross-validation

A 5-fold cross-validation was performed with an internal

dataset to quantitatively evaluate the classification performance of

the improved ResNet-34 model. The results are shown in Table 3.

The mean classification accuracy, sensitivity and specificity of our

model on the 5-fold cross-validation were 94.8%, 94.8% and 98.3%,

respectively, and the standard deviation did not exceed 0.01,

demonstrating the excellent classification performance and

robustness of the improved ResNet-34 model for thyroid

SPECT images.
Comparison of the diagnostic performance
between nuclear medicine physicians and
the best DCNN model

As the improved ResNet-34 performed better than the other

models, we compared the diagnostic performance of this model with

that of nuclear medicine physicians. Two nuclear medicine

physicians, who were blinded to the cytology data and biochemical

indicators, performed differential diagnoses using SPECT images

from the internal and external validation sets. Figure 4B shows the

classification accuracies of the model and the nuclear medicine

physicians with the two independent validation datasets. The

recognition accuracies for the junior and senior physicians and the

model were 0.741, 0.860, and 0.961 with the internal validation set
FIGURE 3

Flowchart of the exclusion criteria for the final study population. A total of 3194 patients from three hospitals participated in the study. The images
collected from 2581 patients from one hospital were used for training and internal validation, and the images from 613 patients from the other two
hospital were used for external validation.
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and 0.702, 0.868, and 0.931 with the external validation set,

respectively. These findings emphasize that the senior nuclear

medicine physician outperformed the junior physician with the

internal and external validation sets by more than 10% (p<0.001).

Additionally, our model achieved higher accuracies in identifying

SPECT thyroid images with both validation sets compared to those of

the experienced physician (p<0.001), improvements of approximately

6% - 10%. The confusionmatrices of the two validation datasets using

ResNet-34 are shown in Supplementary Figure S2.
Frontiers in Endocrinology 06
Tables 4, 5 show the performance of the DCNN model and the

junior and senior nuclear medicine physicians for each classification

with the internal and external validation sets, respectively. The

DCNN achieved the highest overall accuracy of 0.961 when

classifying four common thyroid scintigram images in the

internal validation set, whereas the overall accuracy dropped to

0.931 with the external validation set. After applying the ROC, the

DCNN for the diagnosis of three thyroid diseases achieved a

considerable performance, with an AUC of 0.993 for Graves’
TABLE 2 Performance of each model on the internal validation set.

model class Recall Specificity Precision NPV AUC F1 k value

AlexNet Graves’ disease 92.3 99.0 96.8 97.4 0.996 0.949 0.808

Normality 92.5 89.6 73.0 97.5 0.970 0.816

SAT 90.9 98.2 94.5 96.9 0.992 0.927

Tumor 67.4 94.2 80.2 89.3 0.930 0.733

ShuffleNetV2 Graves’ disease 98.5 97.4 92.8 99.5 0.995 0.955 0.850

Normality 95.0 91.9 78.1 98.4 0.964 0.857

SAT 93.2 99.0 96.9 97.7 0.994 0.950

Tumor 68.9 96.9 88.4 90.0 0.937 0.775

MobileNetV3 Graves’ disease 100.0 98.7 96.3 100.0 0.999 0.981 0.904

Normality 95.0 96.2 88.4 98.4 0.990 0.916

SAT 93.9 98.2 94.7 97.9 0.997 0.943

Tumor 82.6 97.4 91.6 94.2 0.973 0.869

ResNet34 Graves’ disease 97.7 99.0 96.9 99.2 0.997 0.973 0.925

Normality 96.7 97.2 91.3 99.0 0.991 0.939

SAT 93.9 99.2 97.6 97.9 0.992 0.958

Tumor 89.4 97.1 91.5 96.4 0.980 0.904
fron
SAT, Subacute thyroiditis; AUC, the area under the curve; k value, Fleiss’s k value; NPV, negative predictive value; PPV, positive predictive value.
The values below indicate 95% CIs.
TABLE 1 Baseline characters of patients.

Variables All patients Training cohort Internal Validation External
Validation

Number of 3194 2067 (64.72%) 514 (16.09%) 613 (19.19%)

Patients (%)

Age 45.00 ± 14.50 45.48 ± 14.31 46.05 ± 15.82 42.49 ± 13.70

Gender (%)

Male 865 (27.08%) 564 (27.29%) 148 (28.79%) 153 (24.96%)

Female 2329 (72.92%) 1503 (72.71%) 366 (71.21%) 460 (75.04%)

Disease type (%)

Graves’ disease 808 520 (25.16%) 130 (25.29%) 158 (25.77%)

Normality 742 484 (23.42%) 120 (23.35%) 138 (22.51%)

SAT 826 531 (25.69%) 132 (25.68%) 163 (26.59%)

Tumor 818 532 (25.74%) 132 (25.68%) 154 (25.12%)
Qualitative variables are in n (%), and quantitative variables are in mean ± SD when appropriate.
tiersin.org

https://doi.org/10.3389/fendo.2023.1224191
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhao et al. 10.3389/fendo.2023.1224191
disease, 0.994 for normal thyroid, 0.999 for subacute thyroiditis, and

0.983 for thyroid tumor with the internal validation set.

Accordingly, satisfactory results of 0.969, 0.985, 0.996, and 0.981,

respectively, were obtained using this model with the external

validation set.

Figure 5 illustrates the ROC curves for both the nuclear

medicine physicians and the DCNN. The diagnostic performance

of the junior and senior nuclear medicine physicians was compared

with that of the DCNN. The model demonstrated significantly

higher AUCs for all classes when classifying Graves’ disease, normal

thyroid, subacute thyroiditis, and thyroid tumor SPECT images

with both the internal and external validation sets. The AUCs of the

model were significantly different from those of the two nuclear

medicine physicians, with p < 0.05 in all cases (see Supplementary

Tables S1, S2).
DCNN model visualization

During classification, the DCNN applied a final convolutional

layer gradient to the thyroid tumor images for feature visualization

during classification to generate heatmaps (Figure 6). The heatmaps

for each DCNN model are shown in Supplementary Figure S1. The

obtained heatmaps identify the region of thyroid tissue with the

most typical features in the SPECT images, thus distinguishing this
Frontiers in Endocrinology 07
region from regions with normal thyroid tissue. The darker color of

the heatmap indicates the greater contribution of the corresponding

region of the original image to the network. Our findings

demonstrate that the region of interest in the image using the

improved ResNet-34 was broadly consistent with the actual lesion

location, yielding the best performance.
Discussion

Many studies have shown that computer-aided systems can be

beneficial to clinicians in terms of improving their diagnostic skills

(30–33). Our study confirms this by successfully using deep

learning neural networks to build a model that intelligently

identifies three thyroid diseases captured by SPECT. The results

of our retrospective study indicate that the improved ResNet-34

model, which was evaluated with the internal validation dataset,

achieved high accuracy, sensitivity, and specificity in the automated

identification of Graves’ disease, subacute thyroiditis, and thyroid

tumors in a real-world setting. After 200 epochs of training, the

improved ResNet-34 model achieved accuracies of 0.961 and 0.931

for the internal and external validation sets, respectively, which

were significantly higher than those of an experienced nuclear

medicine physician (0.961 vs. 0.860, p<0.001; 0.931 vs. 0.868,

p<0.001, respectively). To our knowledge, we are the first to apply
TABLE 3 The result of the five-fold cross-validation.

Fold Accuracy Recall Specificity PPV NPV AUC

1 94.6% 94.6% 98.2% 94.5% 98.2% 0.990

2 95.2% 95.2% 98.4% 95.1% 98.4% 0.990

3 94.4% 94.5% 98.1% 94.5% 98.2% 0.994

4 96.1% 96.1% 98.7% 96.1% 98.7% 0.993

5 93.6% 93.6% 97.9% 93.7% 97.9% 0.989

Mean ± std 94.8% ± 0.009 94.8% ± 0.009 98.3% ± 0.003 94.8% ± 0.009 98.3% ± 0.003 0.991 ± 0.002
BA

FIGURE 4

(A) Preliminary predictive performance of the four DCNN network models with the internal datasets. (B) Performance of junior and senior nuclear
medicine physicians and the ResNet-34 model with the internal and external validation sets.
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deep learning to thyroid scintigraphy for the intelligent diagnosis of

thyroid tumors.

Deep learning has garnered significant attention in recent years

for its potential in diagnosing thyroid disorders. However, most

models have focused exclusively on the benign and malignant

classification of individual thyroid nodules, while other common

disorders, such as hyperthyroidism, hypothyroidism, and

thyroiditis, have received insufficient attention. Zhang et al. (30)
Frontiers in Endocrinology 08
addressed this gap by developing a deep learning model named the

Hashimoto’s thyroiditis network (HTNet) that diagnoses

Hashimoto’s thyroiditis using approximately 100,000 thyroid

ultrasound images for training. HTNet showed a promising AUC

of 0.905. In addition, Zhang et al. (15) performed multiple

classifications of thyroid disease types using CT and ultrasound

imaging modalities through the Xception model architecture.

Although the model achieved high accuracy for identification
TABLE 5 Performance metrics of the ResNet34 model with junior and senior nuclear medicine physicians on the external validation set.

ResNet34 Junior Senior

Graves’
disease

Normality SAT Tumor Graves’
disease

Normality SAT Tumor Graves’
disease

Normality SAT Tumor

Recall
(%)

88.0
82.0-92.2

94.2
89.0-97.0

97.5
93.9-
99.0

92.9
87.7-
96.0

70.3
62.7-76.8

75.4
67.6-81.8

82.8
76.3-
87.8

51.9
44.1-
59.7

88.6
82.7-92.7

94.2
89.0-97.0

92.0
86.8-
95.3

72.7
65.2-
79.1

Specificity
(%)

100.0
99.2-100.0

94.5
92.1-96.2

99.8
98.8-
100.0

96.7
94.7-
98.0

93.8
91.2-95.7

78.1
74.2-81.6

96.4
94.3-
97.8

92.4
89.6-
94.5

96.9
94.9-98.2

92.4
89.7-94.5

97.3
95.4-
98.5

95.9
93.6-
97.3

PPV
(%)

100.0
97.3-100.0

83.3
76.7-88.4

99.4
96.5-
100.0

90.5
84.9-
94.2

79.9
72.4-85.7

50.0
43.3-56.7

89.4
83.5-
93.4

69.6
60.6-
77.2

90.9
85.3-94.5

78.3
71.4-83.9

92.6
87.5-
95.7

85.5
78.5-
90.5

NPV
(%)

96.0
93.8-97.4

98.2
96.6-99.1

99.1
97.8-
99.7

97.6
95.7-
98.6

90.1
87.1-92.5

91.6
88.5-93.9

93.9
91.4-
95.8

85.1
81.7-
88.0

96.1
93.9-97.5

98.2
96.5-99.1

97.1
95.1-
98.3

91.3
88.4-
93.5

AUC 0.969
0.952-
0.981

0.985
0.972-
0.993

0.996
0.988-
0.999

0.981
0.966-
0.990

0.820
0.788-
0.850

0.767
0.732-
0.800

0.896
0.869-
0.919

0.722
0.684-
0.757

0.928
0.904-
0.947

0.933
0.910-
0.952

0.947
0.926-
0.963

0.843
0.812-
0.871

F1 0.936 0.884 0.985 0.917 0.747 0.601 0.860 0.595 0.897 0.855 0.923 0.786

K value 0.909 0.603 0.824
front
SAT, Subacute thyroiditis; AUC, the area under the curve; k value, Fleiss’s k value; NPV, negative predictive value; PPV, positive predictive value.
The values below indicate 95% CIs.
TABLE 4 Performance metrics of the ResNet34 model with junior and senior nuclear medicine physicians on the internal validation set.

ResNet34 Junior Senior

Graves’
disease

Normality SAT Tumor Graves’
disease

Normality SAT Tumor Graves’
disease

Normality SAT Tumor

Recall
(%)

97.7
93.4-99.2

95.8
90.6-98.2

100.0
97.2-
100.0

90.9
84.8-
94.7

84.6
77.4-89.8

75.0
66.6-81.9

76.5
68.6-
82.9

60.6
52.1-
68.5

93.8
88.3-96.8

81.7
73.8-87.6

94.7
89.5-
97.4

73.5
65.4-
80.3

Specificity
(%)

99.5
98.1-99.9

98.0
96.0-99.0

99.0
97.3-
99.6

98.4
96.6-
99.3

91.4
88.2-93.8

89.6
86.2-92.2

96.6
94.3-
98.0

88.0
84.3-
90.8

99.2
97.7-99.7

96.7
94.4-98.1

87.7
84.0-
90.6

97.6
95.6-
98.8

PPV
(%)

98.4
94.5-99.6

93.5
87.7-96.7

97.1
92.7-
98.9

95.2
90.0-
97.8

76.9
69.4-83.1

68.7
60.3-76.0

88.6
81.5-
93.2

63.5
54.8-
71.4

97.6
93.2-99.2

88.3
81.0-93.0

72.7
65.6-
78.8

91.5
84.6-
95.5

NPV
(%)

99.2
97.7-99.7

98.7
97.0-99.5

100.0
99.0-
100.0

96.9
94.7-
98.2

94.6
91.8-96.5

92.2
89.0-94.5

92.3
89.2-
94.5

86.6
82.8-
89.6

97.9
96.0-99.0

94.5
91.9-96.4

98.0
95.8-
99.0

91.4
88.3-
93.8

AUC 0.993
0.982-
0.998

0.994
0.983-
0.999

0.999
0.992-
1.000

0.983
0.968-
0.993

0.880
0.849-
0.907

0.823
0.787-
0.855

0.866
0.833-
0.894

0.743
0.703-
0.780

0.965
0.946-
0.979

0.892
0.862-
0.914

0.912
0.884-
0.935

0.856
0.822-
0.885

F1 0.981 0.947 0.985 0.931 0.806 0.720 0.821 0.620 0.957 0.848 0.822 0.815

K value 0.948 0.655 0.813
SAT, Subacute thyroiditis; AUC, the area under the curve; k value, Fleiss’s k value; NPV, negative predictive value; PPV, positive predictive value.
The values below indicate 95% CIs.
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with two thyroid datasets (0.942 and 0.972), no multicenter

validation was performed. However, it is worth noting that the

studies mentioned above only involved ultrasound and CT images

and did not utilize the characteristic information from SPECT

images to aid in diagnosis. In our study, the potential of DCNN-

based deep learning models to assist clinicians in making efficient

and accurate diagnoses by utilizing SPECT thyroid image features

for disease and normal image screening tasks is demonstrated.

Unlike human visual assessment, deep learning algorithms make

final determinations based on the overall characteristics of thyroid

SPECT images at different levels of radioactivity and across different

locations. The advantage of deep learning algorithms is that they

can consider the thyroid as a pixel-by-pixel volume in a

classification task, providing a more accurate and quantitative

assessment of thyroid imaging information compared to

qualitative extrapolation. This allows for a more efficient and

repeatable imaging diagnosis, reducing the risk of misdiagnosis

due to manual subjective factors. Furthermore, the thyroid SPECT

images utilized in our research were generated by different SPECT

apparatuses, thereby augmenting the heterogeneity of data that can

be employed to train the algorithm and assess the interpretation

subjectivity among nuclear medicine physicians.

Although some studies have explored the use of AI for the

automated classification of thyroid scintillation images, they all

have certain limitations. We have summarized the distinctive

aspects of our study compared to other studies (Supplementary

Table S3). Qiao et al. (34) reported good diagnostic performance of

deep learning models (i.e., AlexNet, VGG-16, and ResNet) in

thyroid scintigraphy. Ma et al. (35) developed an optimized
Frontiers in Endocrinology 09
convolutional neural network for diagnosing thyroid diseases (i.e.,

Graves’ disease, subacute thyroiditis, and Hashimoto’s disease).

Unlike the three-classification approach used by Qiao et al., both

our study and Ma et al. employed a more comprehensive four-

classification method. Additionally, our study incorporated thyroid

tumor images, enabling clinicians to expedite the later-stage

diagnosis and treatment of thyroid tumors, thus saving valuable

time. In terms of accuracy, Qiao et al. achieved an overall accuracy

of up to 86.8% in the classification of the three diseases, which is

significantly lower than the diagnostic accuracy achieved in this

study. It is noteworthy that although they compared DCNNs with

clinicians, they did not perform multi-center validation or

interpretability analysis. Similarly, while Ma et al. achieved higher

accuracy, their study lacked comparison with clinicians and

explanatory analysis, and relied solely on evaluation at a single

hospital, limiting the generalizability of their findings.

Consequently, our study stands out due to its larger dataset, more

comprehensive methodology, and stronger model generalizability.

Moreover, the DCNN model was able to diagnose over 500 images

in the internal validation set in only 11 seconds, which was much

more efficient than the performance of our nuclear medicine

physicians. Overall, our model not only demonstrated consistent

and superior accuracy in terms of classification performance

compared to that of other DCNN models and physicians but

was also more efficient in diagnosing diseases, allowing for

more medical images to be processed, making it suitable for

clinical applications.

The interpretability of current deep learning models is limited,

making it challenging to understand how the algorithms process the
FIGURE 5

ROC curves of the ResNet-34 model and the junior and senior nuclear medicine physicians for differentiating thyroid diseases. The yellow, blue and
green lines indicate the performance of the ResNet-34 model and junior and senior nuclear medicine physicians, respectively. AUC, area under the
curve. ROC, receiver operating characteristic curve. Compared to the performance of the junior and senior nuclear medicine physicians, the
ResNet-34 model showed better diagnostic performance in identifying Graves’ disease, normality, subacute thyroiditis and thyroid tumors, with
statistically significant differences between the model and physicians (Supplementary Tables S1, S2).
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input data and make internal connections to the final predicted

labels (36). Therefore, it is crucial to ensure that during thyroid

tumor identification, the DCNN model focuses on the SPECT

features of thyroid tumors rather than irrelevant regions. To

address this, we utilized the attentional heatmap generated by

Grad-CAM to infer which part of the original input image the

model focused on, thereby improving the model’s interpretability

and providing additional confidence in the DCNNs’ classification

ability. Furthermore, the activated areas superimposed on the

original images can be used for qualitative assessment by nuclear

medicine physicians in practice, enabling them to quickly check the

points on which the classification is based.
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Our study has several limitations that must be acknowledged.

First, our study is a retrospective study, and the findings are based

on the composition of a limited-sized dataset. Therefore, further

extensive prospective studies are necessary to improve the findings

before actual clinical application. Second, we collected typical

images from patients with Graves’ disease, subacute thyroiditis,

thyroid tumors, and normal thyroids retrospectively to train the

model, and the number of images was limited. Third, in practice,

only by analyzing all available images can a thorough and critical

assessment of a patient’s thyroid be performed, and scans from the

same patient may reveal features of numerous different diagnoses.

However, in the proposed deep learning model, only one label is
FIGURE 6

SPECT images and heatmaps of two clinical thyroid tumors. (A, B) Images from a 40-year-old male with a follicular adenoma cystic change on the
left side of the thyroid. SPECT image (A) shows a normal thyroid position with a rounded radiolucent defect in the lower and middle left glandular
shadow. The overlaid heatmap (B) is an example of a true positive case, where the deep learning model and the two nuclear medicine physicians
correctly predicted a thyroid tumor. (C, D) A 46-year-old female with a follicular adenoma cystic change on the right side of the thyroid, with small
papillae formation visible. Image (C) shows the thyroid gland positioned to the left. The right gland shadow has a posterolateral projection defect in
the lower and middle parts. (D) A true positive result was predicted by a convolutional neural network model with an overlaid heatmap (D). The
junior physician made an incorrect prediction, and the experienced physician made a correct prediction.
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assigned to each image. Finally, although we performed external

validation of images from two other hospitals in Chongqing and the

improved ResNet-34 model performed well, the study was limited

to within Chongqing. Thus, further multicity and multiregional

studies are necessary to validate the results. We will consider all

these limitations in our future scientific research to enhance the

accuracy and efficiency of predicting thyroid diseases.
Conclusions

The DCNN-based model proposed in this study has shown

impressive results in accurately classifying various thyroid diseases,

including Graves’ disease, subacute thyroiditis, thyroid tumors, and

normal thyroid. In fact, the model performed better than experienced

nuclear medicine physicians with both internal and external

validation sets. Although the model is not always perfect, it can be

used as a valuable tool to assist clinicians in making quick and precise

diagnoses of thyroid disease in their daily practice. As the evidence

supporting the potential of deep learning-based approaches continues

to grow, clinicians may increasingly turn to AI-based diagnostic tools

to reduce the time required for nuclear physicians to evaluate thyroid

disease and to improve the accuracy of diagnosis.
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