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Chestnut polysaccharide rescues
the damaged spermatogenesis
process of asthenozoospermia-
model mice by upregulating the
level of palmitic acid
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Tian Qiao1, Lei Hua2, Yinuo Jiang2, Zihang Mai2, Shuai Yu1,
Yu Tian1, Xiaoyuan Zhang1, Dongliang Lu2, Bin Wang2,
Zhongyi Sun2* and Lan Li1*

1College of Life Sciences, Qingdao Agricultural University, Qingdao, China, 2Department of Urology,
Shenzhen University General Hospital, Shenzhen, China, 3Department of Urology, Daping Hospital,
Army Medical University, Chongqing, China
Introduction: In recent years, the quality of male semen has been decreasing, and

the number of male infertilities caused by asthenozoospermia is increasing year by

year, and the diagnosis and treatment of patients with asthenozoospermia are

gradually receiving the attention of the whole society. Due to the unknown etiology

and complex pathogenesis, there is no specific treatment for asthenozoospermia.

Our previous study found that the administration of chestnut polysaccharide could

alter the intestinal microbiota and thus improve the testicular microenvironment,

and rescue the impaired spermatogenesis process by enhancing the expression of

reproduction-related genes, but its exact metabolome-related repairment

mechanism of chestnut polysaccharide is still unclear.

Methods and results: In this study, we studied the blood metabolomic changes of

busulfan-induced asthenozoospermia-model mice before and after oral

administration of chestnut polysaccharide with the help of metabolome, and

screened two key differential metabolites (hydrogen carbonate and palmitic acid)

from the set of metabolomic changes; we then analyzed the correlation between

several metabolites and between different metabolites and intestinal flora by

correlation analysis, and found that palmitic acid in the blood serum of mice after

oral administration of chestnut polysaccharide had different degrees of correlation

with variousmetabolites, and palmitic acid level had a significant positive correlation

with the abundance of Verrucomicrobia; finally, we verified the role of palmitic acid

in rescuing the damaged spermatogenesis process by using asthenozoospermia-

model mice, and screened the key target gene for palmitic acid to play the rescuing

effect by integrating the analysis of multiple databases.

Discussion: In conclusion, this study found that chestnut polysaccharide rescued

the damaged spermatogenesis in asthenozoospermia-model mice by upregulating

palmitic acid level, which will provide theoretical basis and technical support for the

use of chestnut polysaccharide in the treatment of asthenozoospermia.

KEYWORDS

chestnut polysaccharide, palmitic acid, asthenozoospermia, spermatogenesis,
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Highlights

1. Hydrogen carbonate may be significantly involved with the

chestnut polysaccharide rescue process.

2. Upregulated palmitic acid is important for rescuing the

damaged spermatogenesis process by using chestnut polysaccharide.

3. Palmitic acid may rescue the damaged spermatogenesis

process of asthenozoospermia-model mice via enhancing

PPARA expression.
Introduction

Currently, infertility affects approximately 60 to 80 million

couples worldwide at a rate of 15% (1), and the World Health

Organization (WHO) ranks infertility as the third most common

disease after oncology and cardiovascular disease, with male factors

accounting for approximately 50% of infertility (2). In recent years,

the quality of male semen is decreasing, the number of male

infertilities is increasing year by year, and the issue of male

reproductive health is of concern to the whole society. From the

perspective of semen quality, male infertility is usually a condition

caused by reduced semen quality, with the most common clinical

manifestations being low sperm count (oligospermia), poor sperm

motility (weak spermatozoa) and abnormal sperm shape (abnormal

spermatozoa). According to the latest WHO clinical guidelines,

patients with a sperm progressive motility (PR) <32% in semen are

diagnosed with weak spermatozoa, which is characterized by

reduced sperm motility and decreased sperm motility (3). In

2003, Curi et al. reported that 80% of male infertility was

associated with impaired sperm motility and 20% of male

infertility was directly related to low sperm motility (4), this study

fully demonstrates that weak spermatozoa are an important cause of

the occurrence of male infertility, and considering that normal

sperm motility is necessary for the completion of fertilization, and

that male infertility patients with weak spermatozoa have

significantly reduced sperm motility as a clinical manifestation,

sperm motility is essential for maintaining normal male fertility.

Due to the unknown etiology and complex pathogenesis, there is

no specific treatment for weak spermatozoa, and researchers have

been investigating the use of antioxidant therapy or lifestyle changes

to improve sperm quality. Studies have shown that lifestyle changes

can significantly improve semen quality and sperm motility, such as

reducing smoking and alcohol consumption can improve sperm

motility (5). In addition, studies have found that obese patients can

improve testicular function and enhance sperm motility through

weight loss and regular exercise. Also, increasing the number of

intercourse and ejaculation can improve sperm motility (6). Whereas

antioxidant therapy is widely used by clinicians to improve sperm

quality (7), it is now commonly used clinically through

supplementation with carnitine (8), vitamin E (9), selenium (10),

or acetylcysteine (11) to improve semen quality. However, the

therapeutic potential of antioxidants remains controversial because

of insufficient clinical sample sizes (12). In addition, some therapeutic

approaches, including L-carnitine, are inefficient, costly, or have
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potential side effects when used, and there is still an urgent need

for efficient, low-cost, and non-toxic alternative therapies for the

effective treatment of weak spermatozoa.

Chestnut (Castanea mollissima Blume) is a plant of the family

Crustaceae, which is widely grown in most parts of China and is an

ingredient of traditional Chinese medicine. Chestnut is rich in

nutrients such as starch, soluble sugar, crude fiber, protein, amino

acids, and minerals (13). In recent years, polysaccharides

have received increasing attention due to their multiple

biological activities such as antioxidant, anti-inflammatory,

immunostimulatory, anti-proliferative and anti-cancer (14, 15).

Chestnut polysaccharides are the main components in chestnuts

and consist of monosaccharides in the a or b conformation, linked by

glycosidic bonds (16). Chestnut polysaccharides (CPs) include many

monosaccharides such as glucose, rhamnose, arabinose, galactose,

xylose, mannose, and fructose. CPs have been shown to have

anticancer activity (17) and anti-fatigue effect. In addition, chestnut

extract was found to improve the tolerance and survival of lactic acid

bacteria in the gastrointestinal tract (18), and a recent study (19)

showed that the addition of chestnut starch to the diet of mice altered

the ratio of cecum-associated microorganisms and associated

carbohydrate metabolites (e.g., acetic acid). In addition, chestnut

starch induced changes in the expression of several genes in cecum

epithelial cells, including those involved in energy production, cell

cycle and cell junctions (20). This also confirmed that the

components of chestnut starch can alter the gut microbiota and

affect the expression of microbial metabolites and host genes,

providing an important theoretical basis for the development of

this project. Our team discovered that chestnut polysaccharide

could enhance the expression of reproduction-related genes

(STRA8, DAZL, SYCP1, SYCP3 and TNP1) to rescue the impaired

spermatogenesis process (21). Moreover, another study confirmed

that CPs can restore the impaired spermatogenesis process by

adjusting the gut microbiota and intestinal structure (19), which

also laid an important foundation for the subsequent research work

of this project.

Palmitic acid (PA) is a major saturated fatty acid commonly

found in sperm (22). In 2008, a study showed that PA levels were

higher in semen samples from patients with asthenozoospermia

than in the normal population (23). in addition, Kiernan et al. found

that the addition of PA to an extender improved sperm quality in

bulls (24). A recent clinical study found a positive correlation

between high PA intake and the incidence of asthenozoospermia

(25), while Andersen et al. also found a positive correlation between

PA in sperm and total sperm count, further confirming the

importance of PA for sperm production (22). Recent studies

reported that PA has an important effect on maintaining linear

motility and viability of porcine spermatozoa (26), which provides

an important theoretical basis for conducting this study.

Metabolomics is an emerging histology that emerged after

genomics, transcriptomics, and proteomics with the goal of

quantitatively describing metabolite changes in organisms. This

histological approach can reflect events downstream of gene

expression and is closer to the actual phenotype than proteomics

and genomics (27). Our previous study found that the administration

of chestnut polysaccharide could alter the intestinal microbiota and
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thus improve the testicular microenvironment, and rescue the

impaired spermatogenesis process by enhancing the expression of

reproduction-related genes, but its exact metabolome-related

repairmen mechanism of chestnut polysaccharide is still unclear. In

this study, we studied the blood metabolomic changes of busulfan-

induced asthenozoospermia-model mice before and after oral

administration of chestnut polysaccharide with the help of

metabolome, which will provide a more in-depth dissection of the

molecular mechanism of chestnut polysaccharide rescuing the

impaired spermatogenesis process and provide a new direction for

the clinical prevention and treatment of asthenozoospermia.
Materials and methods

The design of this study

Based on the existing research reports and experimental

validation (Figure 1A), we conducted the following design for this

study as displayed in Figure 1C: we set up a total of four

experimental groups, including control group (Ctrl), oral

administration of chestnut polysaccharide group (CPs),

as thenozoospermia-model group (Bus) and chestnut

polysaccharide rescue group (Bus+CPs). The treatment was

started from 3 weeks of age, and subsequently, after one

spermatogenic cycle (5 weeks), blood serum samples from

different treatment groups were collected for metabolome assay

analysis, and the metabolite composition and differential metabolite

functions among different groups were analyzed in detail by various

methods, so as to determine the effects of CPs on the serum

metabolome of asthenozoospermia-model mice and the key

metabolites that play important roles in rescuing damaged

spermatogenesis process.
Breeding environment of mice

Male ICR mice were purchased from Vital River Laboratory

Animal Technology Co., Ltd (Beijing, China). The mice were kept

in a house with a 12-hour cycle of light and12-hour cycle of dark

and a constant temperature (22–23°C) and had free access to food

and water during the experimental phase. The Animal Care and

Ethics Committee of Qingdao Agricultural University approved the

study, which was conducted in accordance with the National

Institutes of Health guidelines for the care and use of laboratory

animals (NIH Publications no. 8023).
Information of CPs and busulfan

The CPs used in this study were brought fromWo Te Lai Si bio-

technology co., Ltd (Lan Zhou, China) and busulfan (B2635,

Germany) was brought from Sigma-Aldrich company.
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Treatment of mice

Busulfan was used to establish the asthenozoospermia model of

male sterility. Different treatment groups (10 mice per group) are as

described in “The design of this study”. The asthenozoospermia-

model mice were treated with busulfan at the concentration of 40

mg per kg body weight. Fresh CPs solutions were prepared daily

and 0.1ml of CPs solution were given orally per day at the rate of

0.1mg per kg body weight every mouse.
Collection of samples

After five-week treatment, mice were slaughtered in accordance

with animal welfare requirements, and the tissues were collected for

further analysis. Mouse blood samples are collected as follows: grasp

the skin of the animal’s neck with the left hand, take the lateral

position to press it lightly on the experimental table, the left thumb

and forefinger press the animal’s eye skin to the back of the neck as

much as possible, so that the animal’s eye is filled with blood and

protrudes, and the eyeball is removed with curved forceps, and the

mouse is inverted with the head downward to make the blood flow

out. After that, the blood serum was extracted and stored at -80°C

until use.
Tissue immunofluorescence

Collected testes were fixed in 4% paraformaldehyde and kept in

a refrigerator at 4°C overnight, then subsequently stored in different

concentrations of dehydrating solutions. The dehydrated testicular

samples were then embedded in paraffin and the resulting paraffin

blocks were sectioned at 5 mm thickness following standard

histological procedures. Sections were deparaffinized and hydrated

in xylene and ethanol. Antigen retrieval was performed using citrate

solution. Sections were then blocked with blocking buffer [3%

bovine serum albumin (BSA, Solarbio, A8020, China), 10%

normal goat serum in TBS buffer] at room temperature for

30 min. Each section was incubated with primary antibodies-

DAZL (Abcam, ab215718, USA) and secondary antibodies

(Beyotime, A0516, China) then sections were imaged under an

Olympus fluorescence microscope (Olympus, BX51, Tokyo, Japan).
Metabolites extraction and
UHPLC-MS/MS analysis

Blood serum samples from treated mice were collected, placed

in Eppendorf tubes per 100 mL, and resuspended with prechilled

80% methanol in a well vortex. Dilute part of the supernatant with

LC-MS grade water to a final concentration containing 53%

methanol. Samples are then transferred to a new Eppendorf tube

and centrifuged at 15,000 g, 4°C for 20 min. Finally, the supernatant
frontiersin.org

https://doi.org/10.3389/fendo.2023.1222635
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Han et al. 10.3389/fendo.2023.1222635
is injected into the LC-MS/MS system for analysis. UHPLC-MS/MS

analysis was performed using the Vanquish UHPLC System

(Thermo Fisher Scientific Technologies) and the Orbitrap Q

ExactiveTM high-frequency mass spectrometer (Thermo Fisher

Scientific Inc.) at Novogene Co., Ltd. (Beijing, China). The Q
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ExactiveTM HF mass spectrometer operates in positive/negative

polarity mode with a spray voltage of 3.5 kV, a capillary

temperature of 320°C, a sheath flow rate of 35 arb, an auxiliary

gas flow rate of 10 arb, an S-lens RF level of 60, and an auxiliary gas

heater temperature of 350°C.
B

C

D E F

G H I

A

FIGURE 1

Study design and CPs-produced changes in metabolic features. (A) Histopathology photos of DAZL staining of mice testes; (B) the beta diversity analysis
between the different groups by Principal Coordinates Analysis (PCoA); (C) the whole design of the study; (D-F). the Orthogonal Partial least squares
discriminant analysis (OPLS-DA) of diverse groups; (G-I). the volcano map of differential expressed metabolites from different comparison groups.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1222635
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Han et al. 10.3389/fendo.2023.1222635
Metabolite profiling from different samples

Raw data files generated by UHPLC-MS/MS were processed

using the Compound Discoverer 3.1 (Thermo Fisher Scientific,

USA) to perform peak alignment, peak picking, and quantitation

for each metabolite. Subsequently, peak intensities were normalized

to the total spectral intensity. The normalized data was used to

predict the molecular formula based on additive ions, molecular ion

peaks, and fragment ions. Peaks were then matched with the

mzCloud, mzVault, and MassList databases to obtain accurate

qualitative and relative quantitative results. Statistical analyses

were performed using the statistical software R (v.3.4.3), Python

(v.2.7.6) and CentOS (v.6.6), When data were not normally

distributed, normal transformations were attempted using the

area normalization method. These metabolites were annotated

using the KEGG database, HMDB database and LIPIDMaps

database. Orthogonal Partial least squares discriminant analysis

(OPLS-DA) were performed using metaX (flexible and

comprehensive software for processing metabolomics data). We

used univariate analysis (t-test) to calculate the statistical

significance (p-value). Metabolites with VIP >1, pvalue <0.05, and

log2 (fold change) ≥0 or log2 (fold change) ≤0 were considered to be

differential metabolites. Volcano plots were used to filter

metabolites of interest which were based on log2 (fold change)

and -log10 (p value) of metabolites with ggplot2 in R language.

For clustering heat maps, the data were normalized using z-scores

of the intensity areas of differential metabolites and were plotted

using the pheatmap package in R language. Correlation between

differential metabolites were analyzed by cor () in R language

(Pearson method). Statistically significant correlations between

differential metabolites were calculated by cor.mtest () in R

language. p value <0.05 was considered to be statistically

significant and correlation plots were plotted using the corrplot

package in R language. Functions of these metabolites and

metabolic pathways were studied using the SMPDB database.

Metabolic pathways enrichment of differential metabolites was

performed; when the ratio was satisfied by x/n > y/N, the

metabolic pathway was considered to be enriched, when the P-

value of the metabolic pathway <0.05, the pathway was considered

as significantly enriched.
Prediction of target genes of candidate
metabolite and expression profiling of
target genes in different databases

Upon confirming the candidate metabolite, we predicted target

genes of candidate metabolite using the Swiss Target-Prediction

webtool (http://swisstargetprediction.ch/) and STITCH Database

(http://stitch.embl.de/cgi/), then candidate genes were further

screened by sorting according to the probability value and

intersecting from two gene sets. After that, we conducted

expression profiling of target gene from The Human Protein

Atlas (https://www.proteinatlas.org/) to further explore its role.
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Detection of the promoting effects of the
candidate metabolite in rescuing damaged
spermatogenesis process in vivo

In this part of the experiment, asthenozoospermia-model mice

were prepared with the aid of busulfan, with reference to existing

literature (28, 29). Three-week-old male mice were used as

experimental subjects, and a control group (Ctrl), a busulfan and

metabolite co-injection group (Bus+PA), and a busulfan injection

group (Bus) were set up, with six mice in each group. The candidate

metabolite intraperitoneal injection concentration was calculated

based on the concentrations screened in the preliminary

experiment. After one spermatogenic cycle, testicular tissues of

different treatment groups were collected and testicular

coefficients were analyzed; sperm quality of mice in different

treatment groups were also statistically analyzed through CASA

to verify the effect of metabolite on sperm motility.
Correlation analysis of 16S rDNA and
metabolite profiling from blood serum

Based on our previous report (19), after completing

metabolomics analyses of the blood serum, the Phylum that were

significantly different after 16S rDNA profiling were correlated with

the metabolites that were significantly different from the metabolite

profiling based on Pearson’s correlation coefficient. Heat maps were

drawn to measure the degree of association between species

diversity and metabolites in environmental samples.
Code availability

Analysis scripts employing these packages (and associated usage

notes) are available from the authors upon request.
Data availability

The microbiota raw sequencing data generated in this study

have been uploaded to the Genome Sequence Archive (GSA) with

the accession number CRA004367 that are publicly accessible at

https://ngdc.cncb.ac.cn/gsa. Metabolomics data employed in this

study are available from the authors upon request.
Statistical analysis

All experiments were repeated at least 3 times and results

were expressed as the mean ± SEM. SPSS software one-

way analysis of variance (ANOVA) following by LSD multiple

comparison test was used for data analysis and we defined p < 0.05

as a significant difference.
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Results

Chestnut polysaccharide produced
significant changes on the metabolome of
asthenozoospermia-model mice

Consistent with our previous study (19), busulfan could

significantly reduce the germ cells in seminiferous tubes, and CPs

treatment effectively restored busulfan-impaired spermatogenesis,

as evidenced by the increased number of germ cells in the Bus+Cps

group mice (Figure 1A). After completing the UHPLC-MS/MS

analysis, we firstly conducted the PCoA analysis of different samples

and the results displayed that the spatial distribution of the Bus

+CPs group and the CPs group was more similar which means

similar components, while the Bus+CPs group was closer to the Ctrl

group than the Bus group, indicating that CPs had a certain rescue

effect on busulfan-induced spermatogenesis disorders (Figure 1B).

Subsequently, the OPLS-DA analysis results (Figure 1D-F) further

validated the influence of CPs or busulfan on metabolome

components, especially for the asthenozoospermia-model mice

(Figure 1F). In addition, the volcano plots (Figure 1G-I) were

used to further show the metabolites differences between different

groups. Based on these results, there were 38 significantly

downregulated metabolites and 76 significantly upregulated

metabolites in CPs vs Ctrl comparison; 46 downregulated

metabolites and 61 upregulated metabolites in Bus vs Ctrl

comparison; 32 downregulated metabolites and 64 upregulated

metabolites in Bus+CPs vs Bus comparison. Above results

demonstrated that CPs produced significant changes on the

metabolome of asthenozoospermia-model mice, which further

verified the important role of CPs-induced metabolome change in

rescuing damaged spermatogenesis process.

Besides, the overall display of metabolites from three

comparison showed large differences (Figure 2A), especially in

Bus+CPs vs Bus comparison. It was found that after CPs gavage,

more metabolites in asthenozoospermia-model group mice

increased significantly than other two comparisons. Nevertheless,

the Bus group had more significantly decreased metabolites than

other two comparisons, which indicated that busulfan may severely

damaged the spermatogenesis process by downregulating some

important metabolites in mice. Also, it was detected that there

was a significant different metabolome between the CPs and Ctrl

groups, which suggests that CPs may have other potential effects in

other biological process.
Hydrogen carbonate may be significantly
involved with the chestnut polysaccharide-
mediated rescue process

After confirming the effect of CPs on the metabolic composition

of asthenozoospermia-model mice, we subsequently conducted a

more in-depth study of the differential metabolites in different
Frontiers in Endocrinology 06
groups. Through cross-comparison analysis of the differential

metabolites in the three comparison groups, we screened and

obtained 21 differential metabolites that coexisted in the three

comparison groups (Figure 2B), and with the help of functional

enrichment analysis of the 21 differential metabolites, we found that

among these core 21 differential metabolites, hydrogen carbonate

and palmitic acid play an important role. We then correlated the top

50 differential metabolites in the three comparison groups and

found that hydrogen carbonate and palmitic acid were also among

the top 50 differential metabolites in the chestnut polysaccharide

group, whereas hydrogen carbonate was not found among the top

50 differential metabolites in the model mice, which also

demonstrated that oral administration of chestnut polysaccharide

affected the hydrogen carbonate content in mice (Figure 2C).

Subsequently, we performed heat map analysis (Figure 3A) and

Stamp analysis (Figure 3C) on the metabolite composition of mice

in the salvage and asthenozoospermia-model mice, and found that

the hydrogen carbonate content of mice in the asthenozoospermia-

model mice was significantly down-regulated after feeding chestnut

polysaccharide, which suggest hydrogen carbonate may be

significantly involved with the chestnut polysaccharide-mediated

rescue process and also provides an important reference for the

subsequent related studies.
Upregulated palmitic acid is important for
rescuing the damaged spermatogenesis
process by using chestnut polysaccharide

In addition to the preliminary confirmation of the important

role of hydrogen carbonate in the salvage of damaged

spermatogenesis by chestnut polysaccharide, we found that

palmitic acid also produced significant changes in the

metabolome of chestnut polysaccharide-salvaged mice

(Figure 2B), and the functional enrichment analysis revealed

that palmitic acid plays an important role in biological processes

such as “Glycerolipid metabolism”, “Fatty Acid metabolism”,

“Fatty Acid Biosynthesis” and “Steroid Biosynthesis”

(Figure 2C). Similarly, the correlation analysis of the top 50

differential metabolites in the three comparative groups showed

that palmitic acid was included in the top 50 differential

metabolites in all three comparisons, which is a preliminary

evidence that the administration of chestnut polysaccharides can

affect the spermatogenesis process by affecting palmitic acid

content (Figure 2D). Subsequent heat map analysis (Figures 3A,

B) and Stamp analysis (Figure 3D) revealed that the palmitic acid

content was significantly up-regulated in the asthenozoospermia-

model mice after feeding chestnut polysaccharide, which further

demonstrated that upregulated palmitic acid is important for

rescuing the damaged spermatogenesis process by using

chestnut polysaccharide and provided an important basis for the

follow-up work of this study.
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Palmitic acid could rescue the damaged
spermatogenesis process of
asthenozoospermia -model mice via
enhancing PPARA expression

After initially determining the important role of palmitic acid

upregulation in the rescue of impaired spermatogenesis by chestnut

polysaccharide, we further verified the effect of palmitic acid by

using asthenozoospermia-model mice, and the results showed that

chestnut polysaccharide had the effect of improving semen quality

(Figures 4A, B), especially on semen density, in addition, the sperm

motility of asthenozoospermia-model mice receiving chestnut

polysaccharide was also increased to some extent; subsequently,
Frontiers in Endocrinology 07
according to the cross comparison analysis between the Swiss

Target-Prediction webtool and STITCH database, the key target

gene of palmitic acid, Ppara, was screened (Figure 3E). The protein

expression of PPARA in different tissues was also analyzed based on

The Human Protein Atlas database, and the results showed that the

protein was highly expressed in testis, which also indicated that this

protein may play an important role in the physiological function of

testis (Figure 3E) and this result provided an important theoretical

basis for the subsequent use of chestnut polysaccharide in the

treatment of asthenozoospermia.

Interestingly, in our association analysis based on previous gut

microbiome results (19), we found that only one phylum

Cyanobacteria was significantly negatively associated with
B C

D

A

FIGURE 2

The candidate metabolites screening. (A) the expression heatmap of differential expressed metabolites from diverse comparison groups; (B) the
cross-comparison analysis of the differential metabolites in the three comparison groups; (C) the enrichment analysis of the core 21 differential
metabolites of the four comparison groups using the SMPDB database; (D) the correlation analysis of the top 50 differential metabolites in the three
comparative groups.
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bicarbonate, and most of the remaining bacteria were negatively

associated, but not significantly (Figure 4C), while only one phylum

Verrucomicrobia was significantly positively associated with

palmitic acid, and most of the remaining bacteria were positively

associated, but not significantly, suggesting that Cyanobacteria

and Verrucomicrobia have important roles in maintaining

normal spermatogenesis.
Frontiers in Endocrinology 08
Discussion

In this study, we studied the blood metabolomic changes of

busulfan-induced asthenozoospermia-model mice before and after

oral administration of chestnut polysaccharide with the help of

metabolome, and screened two key differential metabolites

(hydrogen carbonate and palmitic acid) from the set of
B

C D

E

F

A

FIGURE 3

The expression display of key differential metabolites and screening of candidate target gene. (A) the heat map presentation of partial differential
metabolites of the different groups in each sample; (B) the quantitative analysis of the palmitic acid from different groups; (C, D). the STAMP analysis
of Hydrogen carbonate and palmitic acid difference between groups; (E) the expression profiling of PPARA gene from The Human Protein Atlas;
(F) the prediction and screening of target gene using different tools.
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metabolomic changes; we then analyzed the correlation between

several metabolites and between different metabolites and intestinal

flora by correlation analysis, and found that palmitic acid in the

blood serum of mice after oral administration of chestnut

polysaccharide had different degrees of correlation with various

metabolites, and palmitic acid level had a significant positive

correlation with the abundance of Verrucomicrobia; finally, we

verified the role of palmitic acid in rescuing the damaged

spermatogenesis process by using asthenozoospermia-model mice,

and confirmed the key target gene for palmitic acid to play the

rescuing effect by integrating the analysis of multiple databases. In
Frontiers in Endocrinology 09
conclusion, this study found that chestnut polysaccharide rescued

the damaged spermatogenesis in asthenozoospermia-model mice

by upregulating palmitic acid level, which will provide theoretical

basis and technical support for the use of chestnut polysaccharide in

the treatment of asthenozoospermia.

It is known that hydrogen carbonate has a crucial role in

spermatogenesis (30–33), and the present study further revealed

that hydrogen carbonate may be significantly involved in the rescue

process mediated by chestnut polysaccharide with the help of

metabolomic analysis technique, while further confirming the

important role of hydrogen carbonate in spermatogenesis.
B

C

A

FIGURE 4

The function verification of palmitic acid on semen quality in vitro and correlation analysis of 16S rDNA and metabolite profiling. (A) the statistical
analysis of sperm motility from different groups. The asterisk (*) represents a significant difference and the asterisk (***) represents a very significant
difference. The abbreviation ns represents a non-significant difference; (B) the statistical analysis of semen density from different groups; (C) CPs-
associated changes in metabolic features and their microbial associations. The asterisk (* or **) represents a significant association. The blue block
represents a negative correlation and the red block represents a positive correlation.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1222635
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Han et al. 10.3389/fendo.2023.1222635
However, the specific mechanism of action of how chestnut

polysaccharide affects hydrogen carbonate is unclear, which

will provide us with references and new ideas for our

subsequent studies.

The most important point found in this study is that chestnut

polysaccharide can significantly increase the expression level of

palmitic acid and further improve the impaired spermatogenesis

process by increasing the protein expression of PPARA. Previous

studies have shown that palmitic acid has an important effect on

maintaining semen quality and improving sperm motility (22, 24,

26), and the present study also demonstrated that palmitic acid has

a certain effect on salvaging spermatogenic damage with the help of

asthenozoospermia-model mice, which also an important

theoretical basis for the subsequent in-depth exploration of how

palmitic acid enhances the mechanism of action of spermatogenesis

through up-regulation of Ppara gene expression. In addition, the

mechanism of how chestnut polysaccharide increases palmitic acid

level and the is still unclear, which will be the direction of our

subsequent research.

In conclusion, the present study demonstrated that

chestnut polysaccharide significantly altered metabolome of

asthenozoospermia-model mice, especially upregulating palmitic acid

level, further proving that chestnut polysaccharide has an ameliorative

and salvage effect on mice with weak spermatozoa, which will provide

theoretical basis and technical support for the use of chestnut

polysaccharide in the treatment of asthenozoospermia.
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